炭砂复合滤池短流程深度净水工艺试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,珠三角地区饮用水水源污染日益加重,给水常规净水工艺主要用于去除水中的细菌和浊度,对水中氨氮、亚硝酸盐氮等污染基本不起去除作用。强化过滤可以在一定程度上实现生化去除氨氮的工艺目标,而且用于现有水厂工艺升级改造具有可实施性。
     本论文针对广州市原水条件进行炭砂复合滤池净水效果试验研究。由于广州市现有水厂正常消毒需要前加氯,以保证氯胺消毒的CT值,本论文侧重研究在有较高前加氯情况下炭砂复合滤池的净水效果,紧密结合实际生产的需要,具有一定的理论和实际应用价值。炭砂复合滤池净水效果试验研究表明:
     处理微污染水与处理高污染水试验,炭砂复合滤池炭层与砂层厚度分别为0.5m和0.7m,滤速9m/h;普通砂滤池砂层厚度为0.9m,滤速8~10m/h。
     (1)炭砂复合滤池浊度去除率与普通砂滤池基本相同,则炭砂复合滤池能达到与普通砂滤池基本相同的浊度去除能力。
     (2)处理微污染水与处理高污染水试验待滤水溶解氧、pH值、余氯的平均值分别为4.48mg/L、7.60、2.13mg/L和4.09mg/L、7.62、2.77mg/L。
     (3)处理微污染水试验炭砂复合滤池待滤水与滤后水CODMn、氨氮、亚硝酸盐氮含量总平均值分别为1.48mg/L、0.70mg/L、0.006mg/L和1.08mg/L、0.10mg/L、0.071mg/L。处理高污染水试验炭砂复合滤池待滤水与滤后水CODMn、氨氮、亚硝酸盐氮含量总平均值分别为2.58mg/L、3.32mg/L、0.022mg/L和2.03mg/L、2.24mg/L、0.518mg/L。由此可见,炭砂复合滤池不适用于高污染水的处理,适用于处理微污染水。
     处理微污染水采用(0.45~0.55):1气水比进行曝气试验,增加曝气后,炭砂复合滤池对CODMn与氨氮的去除量均约增加1倍,而滤后亚硝酸盐氮含量小于0.1mg/L。因此炭砂复合滤池用于处理微污染水时,当待滤水污染物浓度较高以致出水不能达到相关饮用水水质标准,可增加曝气工艺强化净水效果。
     (4)滤池冲洗采用气水联合反冲洗形式,先气洗3min,再水洗7min,冲洗周期为24h。气洗强度为15~20L/(m2.s),水洗强度为9.3~10.5L/(m2.s)。冲洗过程跑炭轻微,冲洗结束2~4h后活性炭性能基本恢复到冲洗以前的净水效果并达到最佳状态,随着时间的推移,除污效果逐渐下降。
     (5)颗粒活性炭滤料使用过后只发生了轻微的磨损。而随着运行时间的推移,活性炭的碘吸附值与亚甲蓝吸附值逐渐降低,达到碘吸附值600mg/g与亚甲蓝吸附值85mg/g的实效指标的时间约为1年,则活性炭使用1年后就需要进行再生。
     根据试验研究结果,在珠三角地区,前加氯量较高时炭砂复合滤池的适用水质为:氨氮<1.0mg/L与CODMn<3.4mg/L的季节性微污染水,适当减少前加氯量能进一步提高炭砂复合滤池的净水效果。
At present, the pollution of drinking water source increases, and the major role of conventional drinking water treatment technology is to remove the bacterial and turbidity in the water, however, it basically has no removal effect for the ammonia-nitrogen and the nitrite-nitrogen in the water. Intensive filtration can achieve the technology target of removing ammonia-nitrogen to some extent, and it is enforceable for the technology transformation of drinking water plant.
     Against the raw water conditions in GuangZhou, this paper carries out a research into water treatment effect of GAC-sand filter. Because of the need for regular disinfection, drinking water plants in GuangZhou need to conduct pre-chlorination, in order to guarantee the CT value of chloramines disinfection, this paper mainly research water treatment effect of GAC-sand filter in the condition of higher pre-chlorination quantity. This research lies closely at the needs of actual production, and has some theoretical and practical application value.Study results of water treatment effect of GAC-sand filter are as follows:
     In the process of micro-polluted and high-polluted water treatment test, carbon layer thickness and sand layer thickness of GAC-sand filter are 0.5m and 0.7m respectively, filtration rate is 9m/h. Sand layer thickness of sand filter are 0.9m, filtration rate is 8~10m/h.
     (1) Turbidity removal rate of GAC-sand filter is basically the same with sand filter, so GAC-sand filter can reach basically the same turbidity removal ability of sand filter.
     (2) In the process of micro-polluted water treatment test, the average value of DO, pH and chlorine in the influent are 4.48mg/L, 7.60 and 2.13mg/L respectively; In the process of high-polluted water treatment test, the average value of DO, pH and chlorine in the influent are 4.09mg/L, 7.62 and 2.77mg/L respectively.
     (3) The whole process of micro-polluted water treatment test, the average value of CODMn, NH4+-N and NO2--N in the influent and effluent are 1.48mg/L, 0.70mg/L, 0.006mg/L and 1.08mg/L, 0.10mg/L, 0.071mg/L respectively; The whole process of high-polluted water treatment test, the average value of CODMn, NH4+-N and NO2--N in the influent and effluent are 2.58mg/L, 3.32mg/L, 0.022mg/L and 2.03mg/L, 2.24mg/L, 0.518mg/L respectively. It can be seen from this that GAC-sand filter does not apply to the treatment of high-polluted water, apply to the treatment of micro-polluted water.
     Micro-polluted water treatment conduct aeration test with the gas-water ratio (0.45~0.55):1, removal quantity of GAC-sand filter to CODMn and NH4+-N increase nearly by one fold, and NO2--N is less than 0.1mg/L in the influent. Therefore, for micro-polluted water treatment, when the pollutant concentration to be higher so that effluent quality can not achieve relevant drinking water quality standards, aeration can be added to GAC-sand filter to strengthen the water treatment effect.
     (4) GAC-sand filter is washed by means of gas-water joint backwashing, first 3min gas washing, then 7min water washing, the washing period is 24h. The intensity of gas washing is 15~20L/(m2.s), and the intensity of water washing is 9.3~10.5L/(m2.s). In the process of backwashing, the running of carbon is slight. After 2~4h from the end of backwashing, the pollutant treatment effect of granular active carbon can get back to the effect before backwashing and achieve the best. As time goes on, pollutants removal effect decreases gradually.
     (5) Granular active carbon have only been minor wear after being used. As the running time goes on, iodine sorption value and methyleneblue sorption value of granular active carbon lower gradually, and it need one year to reach the iodine sorption value 600mg/g and the methyleneblue sorption value 85mg/g. Therefore, granular active carbon should be regenerated after one year using.
     Based on the experimental results, in the perl river delta region, when the quantity of pre-chlorination is very high, the applicable water quality of GAC-sand filter is seasonal micro-polluted water in which NH4+-N is less than 1.0mg/L and CODMn is less than 3.4mg/L. And the water purification effect of GAC-sand filter can be heightened through appropriate to reduce pre-chlorination quantity.
引文
[1]孙兰,杨铁戬,廖育煌,等.广州市水源中污染物主要来源分析[J].热带医学杂志, 2006, 6(5): 593~595
    [2]肖锦.城市污水处理及回用技术[M].北京:化学工业出版社, 2002: 10~16
    [3]吴禹泽,夏清,刘鸿亮.中国流域水污染分析[J].环境科学与技术, 2000, 89(2): 1~6
    [4]段蕾.臭氧-炭砂滤池对滦河水深度处理中试研究[D].哈尔滨:哈尔滨工业大学, 2007
    [5]国家环境保护部. 2007年中国环境状况公报
    [6]中华人民共和国水利部.中国水资源公报2007.北京:中国水利水电出版社, 2008
    [7]熊移民.珠江广州河段水质发黑发臭原因浅析[J].铁道劳动安全卫生与环保, 2004. 31(3): 131~133
    [8]刘伟佳,罗不凡,潘冰莹.广州市主要慢性非传染疾病的现状与对策探讨[J].中国公共卫生管理, 2004. 20(4): 363~364
    [9]杨智聪,刘坤方,罗不凡. 1998年广州市区疾病死因监测分析[J].实用预防医学, 2000. 7(6): 452~453
    [10]广州市环境保护局. 2007年广州市环境质量通报
    [11]李兴国.曝气生物滤池处理微污染原水的研究[D].南京:南京理工大学, 2009
    [12]刘辉.全流程生物氧化技术处理微污染原水[D].北京:化学工业出版社, 2003
    [13]申石泉,叶恒鹏,陆少鸣,等. ?三氮ò在深度处理中的去除与转化[J].中国给水排水, 2004, 20(1): 53~54
    [14]肖羽堂,张晶晶,吴鸣,等.我国水资源污染与饮用水安全性研究[J].长江流域资源与环境, 2001, 10(1): 51~59
    [15] Mitsum Takassaki, et al. Evaluation of the NH3-N and COD Removal Submerged Biofilm Process in Tap Water Supply Pretreatment System[J]. Water Science Technology, 1998, 20(11): 517~519
    [16] Dussert, B.W. The Biological A civated Carbon Process for Water Purification[J]. Wat.Eng. Manage, 1994, 41(12): 22~24
    [17]郑平,胡宝兰.生物脱氮技术的研究进展[J].环境污染与防治, 1997, 19(1): 32~35
    [18] H.P.Chu, J.H.C. Wont, X.Y Li. Trihalomethane Formation Potentials of OrganicPollutants in Wastewater Discharge[J]. Water Science Technology, 2002, 46(11): 401~406
    [19] R.P.Galapate, E.Agustiani, A.U.Baes, K. Ito, M.Okada. Effect of HRT and MLSS on THM Precursor Removal in the Activated Sludge Process[J]. Water Science Technology, 1999, 33(1): 131~136
    [20] R.P.Galapate, A.U.Baes, K. Ito, K.Iwase, M.Okada. Trihalomethane Formation Potential Prediction Using Some Chemical Functional Groups and Bulk Parameters[J]. Wat.Res., 1999, 33(11): 2555~2560
    [21]岳舜琳.给水中的氨氮问题[J].净水技术, 2001, 20(2): 12~15
    [22]张维佳.优质饮用水处理单元的分析及成套设备的研究[D].哈尔滨:哈尔滨建筑大学, 1999
    [23]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社, 1999
    [24]宁海丽,朱琨.微污染水处理技术研究进展[J].环境科学与管理, 2006, 31(2): 98~100
    [25]陈莉,范跃华.微污染原水的处理技术发展与探讨[J].重庆环境科学, 2002, 24(6): 67~69, 78
    [26]李圭白.用高锰酸钾去除和控制受污染水源水水中的致突变物[J].给水排水, 1992, 18(2): 15~18
    [27]熊正为,陈春宁.微污染水源水传统处理工艺的强化措施[J].中国锰业, 2001, 19(1): 13~14
    [28]黄晓东,孙伟,庄汉平.强化混凝处理微污染原水[J].中国给水排水, 2002, 18(12): 45~48
    [29]龚圣辉,朱志强.微污染水处理技术现状与展望[J].铜业工程, 2007, (1): 62~64
    [30]岳禹峰,黄仕元,庞朝晖,等.微污染水源水处理技术发展与探讨[J].工业水处理, 2006, 26(9): 14~17
    [31]马军. KMnO4除微污染生产性试验研究[J].中国给水排水, 1997, 13(6): 13~15
    [32]陈楚玉.活性炭在污染水源净化中的应用[J].广西工学院学报, 1997, 8(1): 82~85
    [33]申石泉,叶恒朋,陆少鸣,等.给水深度处理中臭氧副产物的产生及控制[J].城市环境与城市生态, 2003, 16(6): 187~189
    [34]李灵芝,王占生.臭氧-活性炭组合工艺对饮用水中AOC的去除[J].环境科学与技术, 2003, 26(5): 45~46
    [35]吴红伟,刘文君,张淑琪,等.提供生物稳定饮用水的最佳工艺[J].环境科学, 2000, 21(3): 64~67
    [36]李伟光,李欣,朱文芳.固定化生物活性炭处理含有废水的试验研究[J].哈尔滨商业大学学报(自然科学版), 2004, 20(2): 187~190
    [37] Erich Wittmann, Annie Tazi-Painb, Thierry Chanussotc et al. Clarification of a highly turbid karstic water by microfiltration[J]. Desalination, 2002, 145: 309-313
    [38] Sylwia Mozia, Maria Tomaszewska, Treatment of sur-face water using hybrid processes adsorption on PAC andultrafiltration[J]. Desalination, 2004, 162: 23-31
    [39] Kim W H, Nishijima W, Shoto E ,et al. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment[J]. Wat Sci Tech, 1997, 35(8): 21~28
    [40]范洁.臭氧-生物活性炭深度处理饮用水安全技术研究[R].哈尔滨:哈尔滨工业大学, 2001
    [41]高乃云,严敏,乐林生.饮用水强化处理技术[M].北京:化工工业出版社, 2005
    [42] M.W.Lechevallier, W.C.Becker, P.Schorr, R.G.Lee. Evaluating the Performance of Biologically Active Rapid Filters[J]. J.AWWA, 1992, 84(4): 136~146
    [43] E.R.Bruce. In Situ Determination of Parameter for Biofilms: Isolation and Characterization of Oligotrophic Biofilms[J]. Biotechnol.Bioeng., 1986, 28(11): 1753
    [44] A.Matilainen, N.Vieno, T.Tuhkanen. Efficiency of the Activated Carbon Filtration in the Natural Organic Matter Removal[J]. Environ.Int., 2006, 32(3): 324~331
    [45] A.Andersson, P.Laurent, A.Kihn, M.Prévost, P.Servais. Impact of Temperature on Nitrification in Biological Activated Carbon(BAC) Filters Used for Drinking Water Treatment[J]. Water Res., 2001, 35(12): 2923~2934
    [46] D.Urfer, P.M.Huck, S.J.Booth, B.M.Coffey. Biological Filtration for DOM and Particle Removal:a Critical Review[J]. J.AWWA, 1997, 89(12): 83~98
    [47] B.M.Coffey, S.W.Krasner, M.J.Sclimenti, P.A.Hacker, J.T.Gramith.A. Comparison of Biologically Active Filters for the Removal of Ozone by-Products,Turbidity and Particles[J]. Proceeding AWWA WQTC, New Orleans, 1995
    [48] M.Prevost, G.Richardson, R.E.Franco. Removal of Various Biodegradable OrganicCompounds by First-and Second-Stage Filtration.Proc.12th Ozone World Congress[J], Lille, France, 1995
    [49] S.W.Krasner, M.J.Scllimente, M.C.Bradley. Testing Biologically Active Filters for Removing Aldehydes Formed During Ozonation[J]. J.AWWA, 1993, 85: 62~71
    [50]李亚新,侯建荣.生物砂滤池处理微污染原水工艺特性研究[J].给水排水, 1997, 23(7): 6
    [51]黄晓东.强化常规工艺处理深圳微污染水源水的试验研究[D].北京:清华大学, 1999
    [52]杨开,周涛,高婷.生物活性炭-砂滤处理微污染原水研究[J].中国给水排水, 2000, 16(12): 54~56
    [53]龙小庆.生物活性滤池特性研究与改造工程[D].北京:清华大学, 2001
    [54]张长,曾光明,余建,等. GAC-石英砂生物过滤处理微污染源水的特性[J].中国环境科学, 2004, 24(2): 209~213
    [55]王广智,李伟光,王锐,等.炭砂滤池在松花江污染应急处理中的应用特性研究[J].给水排水, 2007, 33(8): 11~15
    [56]徐兵,高翔,蒋黎明.活性炭/砂双滤料滤池处理微污染原水[J].中国给水排水, 2007, 23(14): 23~25
    [57]曹植,杨春平.炭砂滤池与砂滤池处理稳定性微污染地表水对比试验[J].工业水处理, 2008, 28(9): 43~46
    [58]刘建广,张晓健,王占生.温度对生物炭滤池处理高氨氮原水硝化的影响[J].中国环境科学. 2004, 24(2): 233~236
    [59]王新为,孔庆鑫,金敏,等. pH值与曝气对硝化细菌硝化作用的影响[J].解放军预防医学杂志, 2003, 21(5): 319~322
    [60]李思敏,张建昆,宿程远,等.生物砂滤池去除微污染源水中有机物的试验研究[J].中国给水排水, 2006, 22(17): 57~59
    [61]方平,陆少鸣,刘姣.生物砂滤池对有机物和氨氮的去除[J].环境科学与技术, 2006, 29(12): 73~74, 79
    [62]张宏陶.生活饮用水标准检验法方法注解[M].重庆:重庆大学出版社, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700