活性炭对铝的吸附与解吸的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水污染的日益严重和饮用水水质标准的不断提高,传统的净水工艺已难以满足居民生活用水水质标准,活性炭滤池作为深度处理工艺单元得到了广泛应用和深入研究。一般认为,活性炭滤池出水残余铝浓度平均降低50%,但实际生产过程中却发现个别活性炭滤池经长期运行后,其出水残余铝浓度明显高于沉后水,且pH值升高会加速该情况出现。鉴于活性炭滤池这种特殊性,本文结合净水工艺中铝的浓度变化和影响因素,通过试验对活性炭吸附与解吸铝进行了较为深入的研究。
     首先,通过对净水工艺中铝的浓度变化调查及影响因素分析:水厂原水铝浓度较低;沉后水残余铝浓度可能高于原水;砂滤出水残余铝浓度低于沉后水;运行正常的活性炭滤池在进水pH升高后出水残余铝浓度高于砂滤水,初步认为水厂各工艺单元出水残余铝浓度变化主要原因为:碱铝混凝剂的投加和石灰水的投加而引起的pH值升高。
     其次,基于吸附基本机理,考虑改变吸附条件(初始铝浓度、吸附剂投加量、温度、吸附时间和pH值)对新炭吸附铝进行试验,结果表明:吸附剂投量过多会导致高投加量对应低吸附容量;初始铝浓度过高会导致高初始浓度对应低吸附率;吸附效果随温度升高而提高;吸附过程分前期、中后期两个阶段;吸附平衡后,无论怎样延长吸附时间,相同条件下吸附速率不变;碱性和酸性吸附效果都较好,中性吸附效果最差,控制pH值在中性左右可以延长活性炭使用周期,减少活性炭因铝的吸附饱和而需再生的次数。
     最后,基于解吸基本机理,考虑改变解吸条件(温度、解吸时间、pH值、解吸剂种类和解吸剂浓度)进行了吸附平衡后的活性炭对铝的解吸试验,结果表明:解吸效果随温度升高而提高;解吸过程分初期、中期和后期三个阶段;解吸平衡后,无论怎样延长解吸时间,相同条件下解吸速率不变;碱性和酸性解吸效果都较好,中性解吸效果最差,控制pH值在中性左右可以延缓活性炭滤池炭解吸铝速率;活性炭滤池出水铝超标,对其进行再生,解吸剂NaOH的最佳浓度为0.20mol/L。此试验结果对于控制炭池出水残余铝浓度具有重要参考价值。
With the increasing standards of water purity and increasing water pollutions,the traditional purification process of water is difficult to meet the drinking standard of living.As an advanced water treatment unit,active carbon basin is studied deeply and is used in water purification process.Generally speaking,the average aluminum concentration of water has decreased by 50% after filtering in the carbon basin. Actually,the aluminum concentration of water from the carbon basin is obviously higher than sedimentation from original water,which occurs in some individual tank after running long-time.And the increasing of pH value will activate this process. With the special characteristic of active carbon basin,the experimental study is performed for absorption and desorption of aluminum using active carbon with considering the influencing factor for aluminum concentration in process of water purification in this article.
     Firstly,according to the survey and the experiment research of the influencing factor in the water purification process,the conclusion is that the concentration of aluminum is impacted by pH value and the dosage of coagulant and coagulant-aids.
     Secondly,based on absorption theory,the absorption corresponding experiment is performed according to different initial aluminum concentration,the dosage of adsorbent,temperature,time and pH value.The experiment result shows that high dosage of absorbent and high initial aluminum concentration results in low absorption capacity;the adsorption effect elevates along with the temperature enhance.The adsorption process divides into two periods:earlier,mid and late;after adsorption equilibrium,the rate of adsorption keeps same regardless of lengthening the adsorption time under same condition.pH value is an important carbon absorption efficiency factor of aluminum; the neutral condition adsorption effect is worst.
     Finally,based on desorption theory, the desorption corresponding experiment is performed according to concentration of desorbing,the category of desorbing, desorbing temperature,time and pH value after the adsorption equilibrium.The conclusion is that the increasing desorbing effect with increasing temperature;the desorption process is divided into three period:initial,medium-term,and late.When being balance,no matter how to extend the time of desorbing, the rate of desorption will not change;pH value is the main factor in the process of carbon desorbing aluminum.The effect of desorption is better with acidic and alkaline but the neutral condition is worst;The effect of five kind of strippants(NaAC,NaHCO3,Na2CO3, Na3PO4,NaOH),NaOH are the best for the activated charcoal desorption aluminum;in six density of NaOH(0.01mol/L,0.05mol/L,0.10mol/L,0.20mol/L,0.50mol/L, 1.0mol/L),the effect of 0.20mol/LNaOH is best for the activated charcoal desorption aluminum.The experiment results will have great value on controlling the aluminum concentration of water from the active carbon basin.
引文
[1]胡克武,曾锦明,冯兆敏.聚合氯化铝铁对降低水中铝含量的作用.净水技术,2002,21(4):28
    [2]王志红,崔福义,郑学书等.混凝沉淀中影响除铝效率的因素.中国给水排水,2001,17(10):5-8
    [3]汪晓军,肖锦,崔蕴霞.强化絮凝净化法脱除水中的残留铝.工业水处理,1998,18(4):4-6
    [4]王晨,马放,山丹等.固定化生物活性炭处理含硝基苯微污染水的可行性研究[J].环境科学,2007,28(7):1490-1495
    [5]Miltner R J.Treatment of Seasonal pesticides in surface Waters[J].J AWWA, 1989,81(1):43-51
    [6]乔铁军,黄晓东,张金松等.臭氧生物活性炭技术的工艺设计与运行管理[J].给水排水,2007,33(3):15-19
    [7]段蕾,李伟光,吕炳南等.高温高藻期臭氧生物活性炭工艺的处理效果研究[J].中国给水排水,2007,23(9):37-39
    [8]陆少鸣,王宁,杨立.O3-BAC给水深度处理工艺的优化运行[J].华南理工大学学报(自然科学版),2006,34(12):10-14
    [9]施东文,谢曙光,汪蕊等.常规臭氧生物活性炭组合工艺处理[J].北京大学学报(自然科学版),2007,43(2):274-277
    [10]朱斌,王海亮,陆在宏.臭氧生物活性炭净水工艺参数选择及影响因素研究[J].净水技术,2006,25(4):23-26
    [11]崔福义,张霄宇,冯琦.常规水处理混凝沉淀工艺中除浊与除铝的相关性研究.哈尔滨建筑大学学报,2002,35(3):53
    [12]崔蕴霞,肖锦.铝盐絮凝剂及其环境效应.环境污染与防治,1998,20(3):40-41
    [13]邓慧萍.对饮用水中剩余铝问题的研究和探讨.净水技术,1995,54(4):12-13
    [14]黄衍初,曲长菱.土壤中铝的溶出及形态研究.环境科学,1996,17(1):57-59
    [15]崔福义,张霄宇,冯琦.常规水处理混凝沉淀工艺中除浊与除铝的相关性研究.哈尔滨建筑大学学报,2002,35(3):53
    [16]Reiber S.H.,Kukull W.A&Standish-Lee P.Drinking water aluminum and bioavallability.J.Am Wat.Wks Assoc,1995,87(5):86-100
    [17]Reiber S H, Kukull W A, Standish-Lee P. Drinking Water Aluminum and Bioavailability. J. Am. Wat. Wks Assoc,1995,87(5):86-100
    [18]汪晓军,肖锦.化学平衡理论在废水处理中的应用.工业水处理,1990,10(4):3-8
    [19]Marco Schintu,Patrizia Meloni,Antonio Contu. Aluminum Fractions in Drinking Water from Reservoirs. Ecotoxicology and Environmental Safety,2000,46 (1):29-33
    [20]Gardner M J, Gunn A M. Bioavailability of Al from Food and Drinking Water.In: Proc. Royal Soc. Med. Round Table Series:Alzheimer's Diseases and the Environment,London,UK,1991,68-72
    [21]Stumm W, Morgan J J. Aquatic Chemistry. New York:Wiley-Interscience,1981, 1012-1024
    [22]刘风贞,于德奎,吕严等.国人铝日允许摄入量的初步研究.环境与健康,1991,8(2):49-54
    [23]Harris W R, Sheldon J. Equilibrium Constant for the Binding of Aluminum to Human Serum Transferrin. Inorgonic Chemistry,1990,29(1):26-28
    [24]刘文新,栾兆坤,汤鸿霄.饮用水中的铝的生物可给性研究.环境与健康,1997,14(1):44-46
    [25]廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社.1992,125-136
    [26]王晓波,孔繁增.铝对人体健康研究新进展.环境与健康,1997,14(4):53
    [27]吕品祥.深圳市微污染水库水常规处理工艺的改造和深化.www.shuigong. com,2004-12-17
    [28]董锦平,陈涛,邹公伟等.铝对人体健康的影响.环境污染与防治,1998,10(5):9-11
    [29]崔福义,李名锐,王志红.饮用水中铝的危害、来源及现状.哈尔滨建筑大学学报,1997,30(6):51-54
    [30]Jekel M R.Aluminum in Water:How can it be removed?Use of Aluminum Salt in Treatment.In:Proc.of the Int.Water Supply Ass.,Copenhagen,Denmark,1991, 25-31
    [31]Jekel M R. Removal of Al in Coagulation and Acidic Raw Water. Water Supply, 1991,26(3):9-12
    [32]Reijnen G K, KIWA itd. Aluminum in Ground Water, Origin, Sampling,Analysis and Removed. Water Supply,1991,9(3):4-8
    [33]Vachon P, Tyagl R D, Auclalr J C, et al.Chemical and Biological Leaching of Aluminum from Red Mud. Environ Sci Technol,1994,28(1):26-30
    [34]Jerzy Lukasik,Yueh-Fung Cheng. Removel of Microorganisms from Water by Columns Containing Sand Coated with Ferric and Aluminum Hydroxides.Wat.Res,1999,33(3):769-777
    [35]梁怡婷,刘睿情.饮用水中残余铝的危害和研究现状.西南给排水,2(X)1,23(5):10
    [36]黄德丰.环境铝的生物化学毒性.环境科学从刊,1992,13(3):32
    [37]黄毓忠'自来水中铝离子的含量问题.西南给排水,1998,1(1)
    [38]吕新之.铝的污染和危害.环境保护,1998,(5):38-39
    [39]李燕.铝对人体的潜在危害.环境科学,1992,12(2)
    [40]栾兆坤,汤鸿霄.聚合铝的凝聚絮凝特征及作用机理.环境科学学报,1992,12(3):130
    [41]栾兆坤,汤鸿霄.聚合铝形态分布特征及其转化规律.环境科学学报,1988,8(2):146
    [42]栾兆坤,冯利,汤鸿霄.水解聚合铝溶液中形态分布的定量模拟研究.环经科学学报,1995,15(1):39
    [43]栾兆坤,汤鸿霄,陈瑶.聚合铝絮凝动力学过程的研究.环境化学,1996,15(6):523
    [44]栾兆坤,汤鸿霄,于忱非.混凝过程中铝和聚合铝水解形态的动力学转化及其稳定性.环境科学学报,1997,17(3):321-326
    [45]郑淑娟,王炳建,高宝玉.新型混凝剂聚合硅酸铝铁处理模拟水样后的残余铝含量研究.精细石油化工进展,2003,4(12):23-26
    [46]高宝玉,岳钦燕,王占生等.聚硅氯化铝的混凝效果及在处理水中的残留铝研究.中国给水排水,1999,15(7):1-4
    [47]刘睿倩.饮用水处理中残余铝去除的实验研究.哈尔滨建筑大学硕士论文,1999,6
    [48]张霄宇.引用谁中残余铝的研究.哈尔滨建筑大学硕士论文,2000,6
    [49]李明玉,陈伟红,杜海宽等.聚硅酸铝的混凝性能与其对水中残留铝的影响.给水排水,2000,26(11):16-18
    [50]王志红,崔福义.聚合铝类混凝剂及混凝条件对余铝的影响试验研究.给水排水,2001,27(2):25-27
    [51]王志红,崔福义.pH值和水温对残余铝的影响试验研究.广东工业大学学报,2003,20(3):71-75
    [52]崔福义,张霄宇,冯琦等.常规水处理混凝沉淀工艺中除浊与除铝的相关性研究.哈尔滨建筑大学学报,2002,35(3):52-55
    [53]王志红,崔福义,张霄宇.饮用水过滤中的除铝实验研究.工业用水与废水,2001,32(5):7-10
    [54]崔福义,胡明成,张燕等.我国部分城市饮用水中的铝含量调查.中国给水排水,2002,18(1):5-8
    [55]王趁义,毕树平,张彩华.铝盐水解聚合及其形态转化过程的电位滴定曲线研究.分析测试学报,2004,23(5):1-6
    [56]肖定华.供水系统中铝的影响因素与控制措施.湖南大学硕士论文2007,5
    [57]张霄宇.饮用水中残余铝的研究.哈尔滨建筑大学硕士论文,2000,6
    [58]Peters.P.G.How to limit Al Concentration in Water Supply.1991,9
    [59]PT Srinivasan,T Viraraghavan.Characterisation and Concentration Profile of Aluminum during Drinking-water Treatment.Water SA,2002,28(1):99-106
    [60]Benschoton J.E.Effects of Temperature and pH on residual Al for alum and Poly aluminum Coagulants.Water Supply,1992,10
    [61]Nillson R.Residual Al Concentration in Drinking Water after Treatment with Al salts.Health Aspects Water Supply,1992,10
    [62]Yagi M.Behavior of Al in Water Purification Process at Purification Plants in the rever Yodo System.Water Supply,1992,10
    [63]Ac.Sect Mei.Sanitary and Healthy Aspects of Al in Drinking Water.Water Supply,1992,10
    [64]Goold,R.R.Wyss,R.G.Horsley,M.B.Elder,D.B.Harms,L.L.Noel,W.F.&Rand.S.J.E nhancing distribution system water qulity at water district NO.1 Proc.Am.Wht.Wks Assoc.Water Qulity Technology Conference,Philadelphia, Pennsylvania,1991,6:23-27
    [65]Fuge,R,Pearce,N.J.G&Perkins,W.T.Unusual sources of aluminum and heavy metals in potable waters.Environ.Geochem.Health,1992,14(1):15-18
    [66]Lauer,W.C.& Loham,S.R.Non-calcium carbonate Protective film lowers Lead values.Proc.American Water Works Association Water Quality Technology Conference,San Francisco,California,1994,11 (6):1753-1760
    [67]Havics,A.A.Two instance of partical contamination in consumer drinking water supplies.Microscope,2001,49(1):1
    [68]Kirmeyer,G.J.Piersoon,G,Clement,J,Sandvig,A,Snoeyink,V.L.Kriven,W.&Campe r,A.Distribution System Water Quality Following Corrosion Control Strategies.American Water Works Association Research Foundation,Denver, Colorado,1999
    [69]Snoeyink,V.L,Schock,M.R.Sarin,P.Wang,L.Chen,A-S-C,Harmon,S.M"Aluminu m-Containing Scales in Water Distribution Systems:Prevalance and Composition."In press.AQUA,2003
    [70]沈曾民,张文辉,张学军等.活性炭材料的制备与应用.北京:化学工业出版社,2006,1-23
    [71]立本英机,安部郁夫.活性炭的应用技术—其维持管理及存在问题(日).高尚愚.江苏:东南大学出版社,2002,7-16
    [72]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展.碳素技术,2003,126(3):23-28
    [73]Grajek H, Swiatkowski A, Witkiewicz Z, et al. Changes in the surface chemistry and adsorptive properties of active carbon previously oxidized and heat-treated at various temperatures.I.physicochemical properties of the modified carbon surface. Adsorption Science and Technology,2001,19(7):565-576
    [74]Fabish T J, Schleifer D E. Surface chemistry and the carbon black work function. Carbon,1984,22(1):19-38
    [75]Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon,1994,32(5):759-769
    [76]张建策.活性炭表面改性及对饮用水中三氯甲烷吸附性能研究.湖南:湖南大学化学化工学院,2006,6-10
    [77]Kienle H,Bader E.活性炭材料及其工业应用.魏同成.北京:中国环境科学出版社,1990,7-13
    [78]Fernando J. Beltran, Manuel Gonzalez, Juan F. Gonzalez. Industrial wastewater advanced oxidation:Part I.UV radiation in the presence and absence of hydrogen peroxide. Wat Res,1997,31(10):2405-2414
    [79]李启灵,陈建林,杨凯.活性炭-H2O2:催化氧化处理氨基C酸工业废水的研究.南京大学学报(自然科学),2003,39(3):446-449
    [80]丁春生,秦树林,缪佳等.二氧化氯/活性炭催化氧化处理对硝基苯甲酸废水影响因素.环境科学,2008,29(5):6621-0721
    [81]刘睿倩.饮用水处理中残余铝去除的实验研究,哈尔滨建筑大学硕士学位论文.1999,36-52
    [82]近藤精一,石川达雄,安部郁夫.吸附科学.李国希.第一版.北京:化学工业出版社,2006,6-7
    [83]张自杰,林荣忱,金儒霖.排水工程(下册).第四版.北京:中国建筑工业出版社,2000,538-555
    [84]许保玖,龙腾锐.当代给水与废水处理原理.第二版.北京:高等教育出版社,1999,128
    [85]Dharani Dhar Das,Ranjit Mahapatra,Jyotsnamayee Pradhan,et al.Removal of Cr(VI) from Aqueous Solution Using Activated Cow Dung Carbon.Journal of Colloid and Interface Science,2000,232(2):235-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700