微波辅助催化氧化印刷电路板有机废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子工业的发展,近年来印刷电路板行业发展迅速。在印刷电路板制备过程中所产生的脱膜废水,处理难度较大,严重地影响了环境。采用传统的生物和物化工艺很难将该废水处理达标,因此该废水的处理成为印刷电路板厂家急需解决的难题。本文以印刷电路板脱膜废水为处理对象,采用微波辅助催化氧化方法对其进行处理,实验结果表明:该方法可以达到较好的处理效果。
     实验中,首先考察了微波加热臭氧氧化脱膜废水的处理效果。通过改变微波功率、pH值、气体流速、反应时间这些影响因素,观察其对废水处理效果的影响,当pH值为8.0、气体流速为300ml/min、臭氧浓度为0.55mg/L、微波功率为500W、处理时间为15min,废水的COD去除率达10.3%。结果表明,仅微波加热臭氧氧化处理废水的效果欠佳。随后,在原实验的基础上加入催化剂来提高氧化处理效果,以微波加热制备出的竹质活性炭作为首选的催化剂。在微波—竹质活性炭—臭氧催化氧化废水的实验中,讨论了催化剂用量、臭氧浓度、气体流速、微波功率、pH值及反应时间对废水处理效果的影响,同时进行了相关因素的正交实验。极差分析表明,各因素主次关系为:催化剂用量>pH值>加热时间>臭氧浓度>微波功率>气体流速;在最佳条件下(催化剂用量为1.5g、pH值为6.0、加热时间为15min、臭氧浓度为0.55mg/L、微波功率为400W、气体流速为400ml/min)进行的实验,废水的COD去除率达85.0%,处理后的COD值为135mg/L,仍未能达到国家排放标准。
     最后,对竹质活性炭进行了改性,使用表面上负载了金属活性组分的竹质活性炭于微波—改性竹质活性炭—臭氧催化氧化印刷电路板废水的实验中。结果表明,改性后的竹质活性炭具有很好的使用寿命,在使用10次后,废水的COD去除率仍可达88.2%;改性后的竹质活性炭比未改性的具有更好的催化效果,当催化剂为1.0g、pH值为6.0、气体流速为400ml/min、臭氧浓度为0.55mg/L、微波功率为500W、处理时间为25min,处理后废水的COD去除率达95.6%,COD值为39mg/L,达到国家一级排放标准。
With the development of the electronics industry, the printed circuit board production has been developed very quickly in recent years. Throughout the processes of printed circuit board, the stripping wastewater has been piped with the characteristics of hard to be handled and dangerous to the environment. Because it was difficult to be treated to the emission stander by biological and physical-chemical processes, the wastewater became the most difficult problem that the PCB factories had to solve. By taking the printed circuit board stripping wastewater as the subject, this paper used microwave assisted catalytic oxidation to treat the wastewater, and he results showed that this method could achieve good effect.
     This paper first studied the influencing factors on the treated effect under microwave heating ozone oxidation by changing microwave power, pH value, gas flow rate and the reation time. As a result, under such a condition of pH value of 6.0, gas flow rate of 400 ml/ min, the concentration of ozone of 0.55 mg/L, microwave power of 500 W, the processing time of 25 minutes, that the COD removal rate could reach to 10.3 percent. The data showed that wastewater treated result was not good under microwave heating ozone oxidation without catalyzer.
     Then, in order to improve the treated effect, catalyzer was added in the original experiment. And the bamboo activated carbon made by microwave irradiation was the perferred one. In the experiments under microwe--bamboo activated carbon--ozone catalytic oxidation, several factors as the catalyst amount, the concentrations of ozone, the gas flow rate, the microwave power, pH value, and the reaction time were studied on treated effect, and these six factors’orthogonal experimentes were taken. The poor analysis showed that the relationshipes between primary and secondary factors were the amount of catalyst> pH value> heating time> ozone concentration> microwave power> air velocity, the treated wastewater COD removal rate under the best condition (the amount of catalyst 1.5 g, pH of 6.0, heating time of 15 minutes, ozone concentration of 0.55 mg/L, 400 W of microwave power, gas flow rate of 400 ml/min) could reach to 85.0 percent, with the treated wastewater COD value of 135 mg/L, which was still unable to meet the state wastewater discharge stander.
     Finally, the bamboo activated carbon was modified, and whose surface loaded metal was used as the catalyzer in the wastewater treated experiments under microwe--modified bamboo activated carbon--ozone catalytic oxidation. As a result, the modified bamboo activated carbon had good reuseful performance. On the 10th reuse time, the COD removal rate still could reach to 88.2 percent. The data also indicated that the modified bamboo activated carbon was more suitable to be the catalyzer in the experiment than bamboo activated carbon. When 1.0 g the catalyzer was used, pH value of 6.0, gas flow rate of 400 ml/min, the concentration of ozone 0.55 mg/L, microwave power of 500W, the processing time of 25 minutes, the COD removal rate could reach to 95.6 percent, and the treated wastewater COD value was decreased to 39 mg/L, which could meet the first wastewater discharge stander.
引文
[1] 于春泽. PCB 废水(液)处理技术装备现状与展望[J].印制电路信息, 2001(10): 39~43
    [2] 陈锦文,刘丹.二段混凝沉淀-曝气氧化-砂滤处理印刷电路板废水[J].四川环境, 2005, 24(6): 28~29
    [3] 王新刚,吕锡武,朱光灿等.混凝/接触氧化处理印刷电路板废水[J].中国给水排水, 2006, 22(16): 67~68
    [4] 鲍旭平,李义久.印刷电路板显影废水处理研究[J].工业水处理, 2005(11): 22~24
    [5] Pigllatello J J, Dark and photo-assisted Fe2+ catalyzed degradation chlorophenoxy herbicides by hydrogen peroxide [J]. Environ. Sci. & Technol., 1992(26): 944
    [6] 肖玉堂,许建华.利用芬顿试剂预处理难降解的二硝基氯化苯[J].重庆环境科学, 1997, 19(6): 33~36
    [7] Zimmermann F J, Diddams D G.The F.J.Zimmermann process and its appliction to the pulp and paper industry [J]. Tappi, 1960(43): 710
    [8] Zimmermann F J. New waste disposal process. Chem. Eng., 1958(25): 117
    [9] 卢义程,赵建夫,陈玲高.浓度乳化废水处理中铜系催化剂催化氧化处理[J].环境科学, 1997, 18(5): 71~73
    [10] Yu J, Savage P E. Kinetics of catalytic supercritical water oxidation of phenol over TiO2 [J]. Environ. Sci. & Technol., 2000, 34(15): 3191~3198
    [11] Zhong Y, Frisch, Michael A. Catalytic oxidation in supercritical water [J].Ind Eng Chem Res., 1996, 35
    [12] Kondo M M, Jardim W F. Photodegradation of chloroform and urea using Ag loaded titanium dioxide as catalyst [J]. Water Res., 1991, 25(7): 823~827
    [13] Manilal V B, Haridas A, Alexander R, etal. Photocatalytic treatment of toxic organics in wastewater: Toxicity of photo degradatoin products [J]. Water Res., 1992, 26(8): 1035~1038
    [14] Kruger O, Schulze T, Peters D.Sonocheical treatent of natural ground water at different high frequencies: Preliminary results [J]. Ultrasonics Sonochem., 1999, 6(2):123~128
    [15] Bhatnagar A. Sonochemical destrution of Chlorinated C1 and C2 Volatile organic compounds in dilute aqueous solution [J]. Environ. Sci. &Technol., 1994, 28(8):1481
    [16] 严莲荷,王剑虹,潘爱芹.微波催化氧化法处理甲基橙废水[J].化工环保, 2004, 24(1): 38~40
    [17] Tse M Y, Depew M C, Wan J K S.Applications of high power microwave in chemistry[J]. Res. Chem. Intermediat, 1990, 13(3): 221~236
    [18] Dinesen T R J, Tse M Y, Depew M C. A mechanistic study of the microwave induced catalytidecompositions of organic halides [J]. Res. Chem. Intermediat, 1991, 15(2): 113-127
    [19] 陈长林,洪品杰,戴树珊等.微波场对固态氧离子导体上的甲烷氧化偶联的影响[J].高等学校化学学报, 1997, 18(1) : 99~102
    [20] Cha C Y, Kong Y. Enhancement of NOx adsorption capacity and rate of char by microwave radiation [J]. Carbon, 1995, 33(8): 1141~1146
    [21] 马文,王新强,倪炳华.微波催化法分解硫化氢的研究[J].石油与天然气化工, 1997, 26(1): 37~41
    [22] Abramovith R A, Huang B Z, Davis M, etal. Decomposition of PCBs and other polychlorinated aromatics in soil using microwave energy [J]. Chemosphere, 1998, 37: 1427~1436
    [23] Abramovith R A, Huang B Z, Abramovith D A, etal. In situ decomposition of PCBs in soil using microwave energy [J]. Chemosphere, 1999a, 38: 2229~2236
    [24] Abramovith R A, Huang B Z, Abramovith D A, etal. In situ decomposition of PAHs in soil desorption of organic solvents using microwave energy [J]. Chemosphere, 1999b, 39: 81~87
    [25] Abramovith R A, Capracotta M. remediation of waters contaminated with pentachloro- phenol [J].Chemosphere, 2003, 50: 955~957
    [26] 丁迎伟,周岩民,刘文斌.控制动物排泄物对环境污染的对策[J].粮食与饲料工业, 1999, 32(8) :38~39
    [27] Werner C etal.Hospitals using new medical waste disposal methods to save money [J].Hospital Materials Management, 1993, 18(7): 10~13
    [28] Abramovith R A, Capracotta M. Remediation of waters contaminated with pentachlorophenol [J]. Chemosphere, 2003, 50(7): 955~957
    [29] Jou CH, Tai HS. Application of granulated activated carbon packed-bed reactor microwave radiation field to treat phenol [J]. Chemosphere, 1998, 37(4): 685~698
    [30] Tai HS,Jou CH.Application of granular activated carbon packed-bed reactor in microwaveradiation field to treat phenol [J]. Chemosphere, 1999, 38(11): 2667~2680
    [31] 杨良玉,曾庆福,杨俊.微波再生铁屑-活性炭处理染料废水[J].武汉科技学院学报, 2003, 16(5): 37~41
    [32] 王金成,薛大明,全燮.微波辐射处理活性艳蓝KN-R染料溶液的研究[J].环境科学学报, 2001, 21(5): 628~630
    [33] 洪光,王鹏,张国宇等.改性氧化铝微波诱导氧化处理雅格素蓝 BF-BR 染料废水的研究[J].环境科学学报, 2005, 25(2) : 254~258
    [34] LIU X T, QUAN X, BOLL. Simultaneous pentachlorophenol decomposition and granular Activated carbon regeneration assisted by microwave irradiation [J]. Carbon, 2004, 42(2): 415~422
    [35] X. Liu, X. Quan, L. Bo, S. Chen and Y. Zhao, Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by MW irradiation [J]. Carbon, 2002, 22(3): 235-238
    [36] 卜龙利,全燮,陈硕等.微波辅助催化氧化高浓度含醛废水应用研究[J].大连理工大学学报, 2006, 46(1): 1000~1008
    [37] 陈孟林,邹异红,李爱雯.微波-活性炭催化法处理结晶紫溶液的研究[J].广西师范大学学报自然科学版, 2004, 22(3): 77~80
    [38] 张国宇,王鹏,姜思朋.微波诱导氧化处理雅格素红 BF23B150%染料废水的研究[J].环境科学, 2004, 25(S): 52~55
    [39] Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV-illumination method. Ⅰ. Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions [J].Environmental Science & Technology, 2002, 36(6): 1357~1366
    [40] Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV-illumination method. Ⅱ. Characteristics of a novel UV-VIS- microwave integrated irradiation device in photodegradation processes [J].Journal of Photochemistry and Photobiology A: Chemistry, 2002, 153 (1~3): 185~189
    [41] Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV-illumination technique. Ⅲ. A microwave-powered plasma light source and photo reactor to degrade pollutants in aqueous dispersions of TiO2 illuminated by the emitted UV/visible radiation [J]. Environmental Science & Technology, 2002, 36(23): 5229~5237
    [42] Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UVillumination technique. Ⅳ. Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV irradiated TiO2/H2O dispersions [J].Journal of Photochemistry and Photobiology A: Chemistry, 2003,159(3): 289~300
    [43] Horikoshi S,Saitou A, Hidaka H etal.Environmental remediation by an integrated microwave/UV illumination ethod.Ⅴ .Thermal and nonthermal effects of microwaveradiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/VIS radiation [J].Environmental Science& Technology, 2003, 37(24): 5813~5822
    [44] Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UVillumination technique.Ⅵ .A simple modified domestic microwave oven integrating an electrodeless UV/VIS lamp to photodegrade environmental pollutants in aqueous media [J].Journal of Photochemistry and Photobiology A: Chemistry , 2004, 161(2-3): 221~225
    [45] Horikoshi S, Hidaka H, Serpone N.Environmental remediation by an integrated microwave /UV-illumination method: Ⅶ . Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A [J]. Journal of photochemistry and Photobiology A: Chemistry, 2004, 162(1): 33~40
    [46] HorikoshiS, Hojo F, HidakaH.etal. Environmental remediation by an integrated microwave/UVillumination technique.Ⅷ .Fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particles under UV irradiation.Environmental [J]. Science & Technology, 2004, 38(7): 2198~208
    [47] 赵坤宇,吴晓龙,朴尚宪.超声清洗 MBR 生物膜—臭氧化技术在水中的应用[J].环境科学与管理, 2006, 31(1): 118~121
    [48] 陈怡,卢建国.混凝气浮-臭氧生物活性碳串联工艺深度处理炼油废水的应用研究[J].石油化工环境保护, 2005, 28(2): 7~12
    [49] 王龙,李思敏,李艳平.臭氧组合工艺处理微污染水源水的试验研究[J].河北工程大学学报(自然科学版), 2007, 24(2): 50~54
    [50] 戴世明,李发站, 吕锡武.气浮与臭氧生物活性炭处理富营养化太湖水[J].水处理技术, 2007, 44(4): 28~29
    [51] 何志桥, 裘建平, 宋 爽等.臭氧强化电絮凝处理直接耐晒大红 4BS 模拟染料废水[J]. 化工学报, 2007, 58(10): 2573~2579
    [52] 金瑞洪.臭氧对活性污泥特性影响研究[J].环境污染治理技术与设备, 2004, 5(9):48~50
    [53] 张红岩,吕荣湖,郭绍辉.混凝--臭氧氧化法处理三磺泥浆体系钻井废水[J].过程工程学报, 2007, 7(4): 1~5
    [54] Nishijima W, Fahmi, Mukaidani T, et al. DOC Removal by Multi-stage Ozonation. Biological Treatment [J]. Water Res., 2003, 37: 150~154
    [55] Kotronarou A, et al. Decomposition of Parathion in Aqueous Solution by Ultrasonic lrradiation [J]. Environ Sci. Technol, 1992(7): 1461~462
    [56] 肖海燕,黄思涵,丘泰球等.超声波/臭氧降解有机磷农药的研究进展.现代食品科技, 2007, 23(12): 1~4
    [57] 克里斯蒂安.戈特沙克,尤迪.利比尔(李风亭,张冰如,张善发等译).水和废水臭氧氧化----臭氧及其应用指南[M].中国建筑工业出版社, 2003
    [58] 王志国.微波催化氧化降解 T 酸废水的研究.硕士毕业论文[M].河北工业大学, 2005.3
    [59] 卜龙利.高浓度有毒有机废水微波辅助常压连续催化湿式氧化工艺研究[M].博士毕业论文,大连理工大学, 2005.7
    [60] 汪奎宏.竹类资源利用现状及深度开发[J].竹子研究汇刊, 2000, 19(4): 72~75
    [61] 张利波,彭金辉,张世敏等.微波辐射烟杆氯化锌法制造活性炭工艺[J].安全与环境学报, 2004, 4(2): 51~53
    [62] 樊希安, 彭金辉,秦文峰,等.微波辐射处理竹节废料制备活性炭研究[J].林产化学与工业, 2003,23(3):56~60
    [63] 彭金辉,杜青山.微波辐照下氯化锌法制取优质活性炭[J].林产化学与工业, 1997, 17(4): 81~82
    [64] 彭金辉,樊希安,王尧等.微波辐射竹节磷酸法制备活性炭的研究[J].林产化学与工业, 2004, 24(1): 91~94
    [65] 彭金辉,张利波,张世敏等.微波加热烟杆活性炭制备微孔活性炭的研究[J].材料科学与工程学报, 2006, 24(1): 57~61
    [66] 高建培,黄斌,张利波.微波加热烟杆制备活性炭处理含铜废水[J]《.工业加热》, 2007, 36(3): 96~98
    [67] 陈丛瑾,黎跃,赵兰线.微波氯化锌法马占相思木材剩余物制备活性炭[J].林产化学与工业. 2007, 27(1): 115~115
    [68] Booske J H, Cooper R F, Dobson I. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids.J [J]. Mater. res., 1992, 7: 495~501
    [69] Bond G, Moyes R S, Whan S A, Recent applications of microwave heating in catalysis [J]. Catal. Today, 1993, 17: 427~437
    [70] Menendez J A, Dominguez A, Inguanzo M, etal. Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J. Anal. Appl. Pyrolysis, 2004, 71: 657~667
    [71] Pollington S D, Bond G, Moyes R B, etal. The Influence of microwaves on the rate of reaction of proan-1 with ethanoic acid [J] . Org. Chem., 1991, 56: 1313~1314
    [72] 张耀斌.微波辅助湿式空气氧化水中难降解有机物的研究[M].博士毕业论文,大连理工大学, 2005.2
    [73] 马东升,高勇,邓立育.微波协同臭氧/分子筛催化降解水中微量的硝基苯[J].高师理科学刊, 2005, 8(3): 52~56
    [74] 张朝红,凌洪洁,臧树良等.活性炭细化及在微波辐照快速降解酸性红 B 中应用[J]. 环境科学与技术, 2007, 30(7): 69~70
    [75] 傅大放,邹宗柏,曹鹏.活性炭的微波辐照再生试验[J].中国给水排水, 2003, 13(5): 7~9
    [76] 张秋波.煤加压气化废水的催化湿式氧化处理[J].环境科学学报, 1988, 8(1): 6~11
    [77] 杜鸿章,房廉清,江义等.难降解高浓度有机废水催化湿式氧化净化技术.高活性高稳定性的湿式氧化催化剂的研制[J].水处理技术, 1997, 23(2): 83
    [78] Lin S H, Wu F. Catalytic wet air oxidation of phenolic wastewaters [J]. Environ., 1996, 17(2): 175~183
    [79] Mantzavions D. Catalytic wet oxidation of p-coumaric acid: partial oxidation intermediates, reaction pathways and catalyst leaching. Appl.Catal. B [J]: Environ., 1996, (7): 396
    [80] 姜思朋,王鹏,张国宇等.微波诱导氧化法处理 BF-BR 染料废水[J].中国给水排水, 2004, 20(4): 110~112
    [81] 陈若冰,姚淑心. 微波作用下过氧化氢氧化孔雀石绿染料废水研究[J].环境科学与管理, 2007, 32(2): 70~72
    [82] 王金成, 薛大明, 全燮等. 微波辐射处理活性艳蓝KN-R染料溶液的研究[J]. 环境科学学报, 2001, 21(5): 628~630
    [83] Longli Bo, Xie Quan, Xitao Liu, etal. Microwave assisted catalytic oxidation of p-nitrophenol using carbon-supported metal catalysts [J]. Proceedings of China-Japan joint symposium on environmental chemistry, 2004: 60-61
    [84] 王尚弟,孙俊全.催化剂工程导论[M].北京,化学工业出版社, 2001
    [85] 银董红,尹笃林,伏再辉等.微波固相法制备 ZnCl2/NaY 催化剂[J].催化学报, 1999, 20(4): 419~422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700