曝气池组建厌氧微生物脱氨氮工艺及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨氮是引起水体富营养化的主要因素之一,同时也是我国水环境多年检出与超标率最多的指标。氨氮污染严重威胁到人类的生产生活和生态平衡。因此废水脱氮的理论研究与技术开发一直都是环境科学与工程领域的研究热点。近年来新技术与工艺不断涌现,但这些技术在不同程度上,存在着建设和运行成本较高或处理效率低等问题。因此,开发适合我国国情且经济、有效的脱氮技术和工艺,具有重要的理论与实际意义。
     本文提出在曝气池内组建厌氧微生物的方法,来改善系统微生物的结构与功能,实现对废水的深度、高效处理。组建方法、微生物比例、污染物浓度与组分等因素会对系统产生明显的影响。实验发现,游离式直接组建厌氧微生物有一定的效果,但稳定性差。采用碳纤维膜组建技术是可行的。当好氧微生物与厌氧微生物总量的配比为2:1时,脱氮效果最佳。当废水水质C/N比在4以上时,脱氮效果较好,系统对氨氮和COD的去除率分别达到97.2%和92.1%以上,且对总氮平均去除率比传统技术提高了46.4%。
     铝具有广泛的生物学毒性。实验结果显示,随着进水Al~(3+)浓度的不断增加,瞬时沉降速度明显增加,而对活性污泥的沉降比基本没有影响。铝对COD去除率基本上没有影响,而对废水中NH_4~+-N氧化过程的影响却非常明显,随着活性污泥中铝含量的逐渐增加,NH_4~+-N去除率出现了先升后降的变化趋势。NH_4~+-N去除率下降的趋势与此时铝对微生物细胞膜电解质透性的影响规律呈负相关关系,发现了铝对氨氧化微生物种群的干扰作用。进一步的实验结果发现,当第1d进水Al~(3+)浓度为2.5mg/L时,铝对体系氨氮去除率、单位MLSS氨氮去除量均有促进作用。氨氧化细菌对铝也具有一定的适应性。氨氧化细菌生物量大的体系对铝耐受力强。随着铝的进一步升高,其对氨氧化细菌的氧化损伤就越强,这主要表现在微生物体内超氧阴离子的积累加大,进而会造成细胞膜透性增大;此时加入外源性抗氧化剂,能够有效地减轻应激水平,使体系氨氮去除率得到恢复。
The accumulation of nitrogen in the water always cause eutrophication. It's repartedthat the content of ammonia in the water has overrun the normal level in recentyears.Pollutions caused by ammonia have seriously threatened human beings' life and thebalance of ecosystem.The study on the theory and technology of nitrogen removal inwastewater treatment has been generally concerned in environmental science and thefield of engineering. There are high cost and low efficency in present processes. So weneed to study ecnomic, efficient techniques and processes that are suitable for the nationalcircumstances for nitrogen removal.
     For the purpose of researching ecnomic and efficient techniques in wastewatertreatment, we have presented the new technology of reconstructing anaerobic microbes inaeration basin to improve the structure and function of microbe system. The system mayhave been obviously affected by reconstructing methods, microbe proportion,theconcentration and component of pollutants and so on. The results have shown thatreconstructing anaerobic microbes in aeration basin directly has some effect,but it is notstable. And reconstruction with biofilm is available. The average removal rate of totalnitrogen has been improved to 46.6%, while that of ammonia and organic carbon hasreached 97.2% and 90.6% under the weight ratio of 2:1 between anaerobic and aerobicmicrobe. In addition, the C/N ratio in the waste water has gone up to 4.0.
     Aluminum is a multitarheted toxicant on micrbes. The results showed thatinstantaneous sedimentation speed had increased evidently with the rise of aluminumconcentration, and SV of activated sludges hadn't change. Aluminum had no effect onthe removal efficiency of COD, but had a great effect on the oxidation of NH_4~+ -N. Withaluminum concentration rising, the removal efficiency of NH_4~+ -N presented a trend of rising initially and then decreasing, which showed a negative correlation between thedeclining trend and the effect of aluminum in activated sludges on the cellular membraneof microbiota. It indicated that aluminum had the most serious interference onammonium oxidation of microbial community. The effect on ammoniumoxidingbacterium has been discussed furtherly. The results have showed that aluminum has goodeffect on removal efficiency of NH_4~+ -N and removal content of NH_4~+ -N in MLSS Whenthe concentration of Al~(3+) is 2.5mg/L in inflow. At the same time, ammoniumoxidingbacterium have some adaptability on aluminum. The resistance of ammoniumoxidingbacterium also reinforced in the system with larger MLSS. The permeability of cellularmembrane and the concentration of superoxide radical are all rising, whenammoniumoxiding bacterium has been stressed. Exogenous antioxidants has scavengingeffect on superoxide radical, and removal efficiency of NH_4~+ -N has risen.
引文
[1] 沈耀良,王宝贞编著.废水生物处理新技术——理论与应用[M].北京:中国环境科学出版社,1999
    [2] 钱易等.环境保护与可持续发展[M].北京:高等教育出版社,2000:50~51
    [3] 国家环境保护总局.2004中国环境状况公报.环境保护[J],2005,6(19):11~28
    [4] 郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [5] 吴婉娥,葛红光,张克峰.废水生物处理技术[M].北京:化学工业出版社,2003:167~168
    [6] 周彤等.污水的零费用脱氮[J].给水排水,2000,26(2):37~39
    [7] 张景来,王剑波等.环境生物技术及应用[M].北京:化学工业出版社,2002:377~378
    [8] 仝全刚,王继徽,刘大鹏.高浓度氨氮废水的处理现状与发展[J].工业水处理,2002,22(9):9~12
    [9] 吴方同等.吹脱法去除城市垃圾填埋场渗滤液中的氨氮[J].给水排水,2001,27(6):20~24
    [10] 丁思慧.用物化法对高浓度氨氮废水的前期处理[J].安徽化工,2000,106(4):42~43
    [11] 娄金生,谢水波,何少华等.生物脱氮除磷原理与应用[M].北京:国防科技大学出版社,2002:75~78
    [12] 高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J].上海环境科学,1999,18(1):16~18
    [13] 秦麟源.废水生物处理[M].上海:同济大学出版社,1988:310~330
    [14] 李军,杨秀山,彭永臻.微生物与水处理工程[M]。北京:化学工业出版社,2002:376~382
    [15] 许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000:535~537
    [16] 冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学通报,2001,28(4):88~91
    [17] 王建龙.生物脱氮新工艺及其技术原理.中国给水排水[J],2000,16(2):25~28
    [18] 周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11~19
    [19] 袁江林,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):6~9
    [20] 赵宗升,刘鸿亮,李炳伟等.高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水,2001,17(5):24~28
    [21] Hanaki K.,Wantawin C.and Ohgaki S..Nitrification at low levels of dissolved oxyen with and without organic loading in a suspended-growth reactor[J]. Wat.Res., 1990, 24(3):297~302
    [22] Villaverde S.,FDZ-Polanco and Garcia P.A.Nitrifying biofilm acclimation to free ammonia in submerged biofilters.Start-up influence[J]. Wat.Res., 2000, 34(2):602~610
    [23] Vanbenthum W.A.J.,Derissen,B.P.,Van Loosdrecht,M.C.M.and Heijnen,J.J.. Nitrogen removal using nitrifying bilfilm growth and denitrifying suspended growth in a bilfilm airlift suspension reactor coupled with a chemostat[J]. Wat.Res., 1998, 32(7):2009~2018
    [24] 王志盈,袁林江,彭党聪等.内循环生物流化床硝化过程的选择性研究[J].中国给水排水,2000,16(4):1~4
    [25] Hellingga C,van Loosdrecht M C M.The Sharon process for nitrogen removal in ammonium rich wastewater[J]. Mededelingen Faculteit Landbouwwetenschappen, Unibersiteit Gent 62(4b): 1743~1750
    [26] Jetten M S M,Horn S J,van Loosdrecht M C M.Towards a more sustainable municipal wastewater reatment system[J]. Wat.Sci.Tech., 1997, 35(9): 171~180
    [27] 徐冬梅,聂梅生.亚硝酸型硝化试验研究[J].给水排水,1999,25(7):37~39
    [28] 周少奇.生物脱氮的生化反应计量学关系式[J].华南理工大学学报,1998, 26(3):124~126
    [29] 邹联沛,王宝贞等.膜生物反应器处理污水性能的研究[J].哈尔滨建筑大学学报,2001,34(2):57~60
    [30] 曾薇,彭永臻等.两段SBR法去除有机物及短程硝化反硝化[J].环境科学,2002,23(2):50~54
    [31] U.van Dongen, M.S.M. Jetten and M.C.M. van Loosdrecht. The SHARON(r)-Anammox(r) Process for treatment of ammonium rich wastewater[J]. Water science and Technology, 2001, 44(1): 153~160
    [32] Jetten S M,Strous M.The anaerobic Oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5):421~437
    [33] Castingnetti D, Hollocher T C. Heterotrophic nitrification among denitrifiers[J]. Appl.Env.Microbial, 1984, 47:16~20
    [34] 门晓欣.Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究[J].中国给水排水,1999,15(3):1~7
    [35] 高庭耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6~9
    [36] 曹国民,赵庆祥,张彤.单极生物脱氮技术的发展[J].中国给水排水,2000,16(2):6~9
    [37] Mike S M Jetten. New pathways for ammonia conversion in soil and aquatic systems[J]. Plant and Soil, 2001, 230(1):9~19
    [38] J.paul Heoderson, James w.Atwater. High ammonia landfill leachate treatment using anaerobic filter and rotating biological contactor[J]. Canadian Journal of Civil Engineering, 1995, 22(5):992~1000
    [39] Gupta SK, Raja S M. Simultaneous nitrification denitrification in a rotating biological contactor[J]. Envir.Tech., 1994, 15(3): 145~153
    [40] 孟怡,徐亚同.制药废水硝化-反硝化除氮研究[J].化工环保,1999,19(4):204~207
    [41] Zhou Shaoqi,Fang Hanping. Simutaneous nitrification and denitrification of high ammonia organic wastewaters treatmem[J]. Asia Industrial Technology Congress, 1999, (4)Hongkong, ET-E3-3.
    [42] Straous M, van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(ANAMMOX) process in different Reactor configurations[J]. Wat.Res., 1997, 31(8):1955~1962
    [43] 王建龙.氨的厌氧氧化[J].生命的化学,1997,31(12):1955~1962
    [44] 郑平,胡宝兰,徐向阳等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):74~76
    [45] 胡宝兰,郑平,冯孝善.污泥生物硝化性状的研究[J].浙江农业大学学报,1998,24(4):355~358
    [46] 郑平,冯孝善.ANAMMOX流化床反应器性能的研究[J].环境科学学报,1998,18(4):367~372
    [47] 郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193~198
    [48] H.Siegrist, S.Reithaar, G.Koch, et al. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon[J]. Water Science and Technology, 1998, 38(8-9): 241-248
    [49] Van de Graaf, Mulder A, de Bruijin P. Autotrophic growth of anaerobic ammonium oxidation microorganism in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187~2196
    [50] Strous M.van Gerven E, J. G.Kuenen and M.Jetten. Effects of aerobic and microaerobic conditions on anaerobic ammonium oxidizing (Anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63, 2446~2448
    [51] Ingo Schmidt, Olav Sliekers, Markus Schmid, Irina Cripus, Marc Strous, et al. Aerobic and anaerobic oxidizing bacteria-competitors or partners? [J]. FEMS Microbiology Ecology, 2002, 39: 175~181
    [52] Urara Imajo, Takaaki Tokutomi, Kenji Furukawa. Granulation of anammox microorganisms in up-flow reactors[J]. Water Sci.Technol., 2004, 49(5-6): 155~163
    [53] Siegrist H., Reithaar S., Koch G.and Lais P. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon[J]. Wat.Sci.Tech., 1998, 38(8-9): 241~248
    [54] Linping Kuai, Willy Verstraete. Ammonium removal by the oxyen-limited autotrophic nitrification-denitrification system[J]. Appl.Envir.Microbial, 1998, 64: 4500~4506
    [55] 肖锦主编.城市污水处理及回用技术[M].北京:化学工业出版社,2002
    [56] 王欣,黄瑞敏,陈可复。制革废水氨氮处理的研究进展[J].皮革化工,2004,21(2):9~13
    [57] 王趁义,毕树平。环境水体中聚合铝形态的分析测试技术研究进展[J].分析科学学报,2004,20(3):317;318.
    [58] 左剑恶,杨洋,蒙爱红。高氨氮浓度下的亚硝化过程及其影响因素研究[J].环境污染与防治,2003,25(6):332~335
    [59] 屈计宁,金志刚,何群彪.高效硝化细菌的富集技术研究[J].同济大学学报,1999,27(3):351~354
    [60] 杨宁.污泥中硝化细菌富集培养技术的研究[J].科技情报开发与经济,2003,13(7):103~105
    [61] 唐光临,徐楚韶,董凌燕.同时硝化反硝化脱氮反应器的强化[J].水处理技术,2003,29(6):347
    [62] 曹国民,赵庆祥,龚剑丽等.单级生物脱氮的特性研究[J].环境科学,2000,21(3):40~43
    [63] 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版)[M].北京:中国环境出版社出版,1997
    [64] 吴婉娥,葛红光,张克峰.废水生物处理技术[M].北京:化学工业出版社,2003.82-83.
    [65] 王绍文.Al-CAS-PVA三元体系光度法测定微量铝[J].理化检验-化学分册,1997,33(9)38~41.
    [66] 陈学森.植物育种学实验[M].北京:高等教育出版社,2004,118.
    [67] Randall C W, Barnard J L and Stensel H D. Design and retrofit of wastewater treatment plants for biological nutrient removal[M]. Water Quality Management Library, Technomic Publishing Company, Inc, Lancaster, PA, 1992, Vol.5
    [68] 黄漪平等.太湖水环境及其污染控制.北京:科学出版社,2001:1—4
    [69] 王趁义,毕树平.环境水体中聚合铝形态的分析测试技术研究进展[J].分析科学学报,2004,20(3):317;318.
    [70] 刘文新,栾兆坤,汤鸿霄.水体中铝(Ⅲ)的化学形态及其生态效应的研究进展[J].生态学报,1996,16(2):212~220。
    [71] 郑荣梁.自由基生物学[M].北京:高等教育出版社,1992,23.
    [72] Wood P M, Niwification as a Bacterial energy Source. In: Prosser J I. ed. Nitrification, Special Publ Soc Gen Microbiol, vol20.Oxford: IRL Press, 1986, 39~62
    [73] 马欣悦,邵华,周一兵等.沙蚕闭合循环式养殖系统中细菌的数量及其代谢活性[J].大连水产学院学报,2005,20(3):177
    [74] 陈岭,明镇寰.硝化池中氨氧化细菌amoA基因的检测及其多样性研究[J].浙江大学学报(理学版),2004,31(5)
    [75] 郑荣梁主编.自由基生命科学进展[M].原子能出版社,2001,第8集,2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700