好氧有效微生物群反硝化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是水体污染中的一类重要的污染物,对人体健康和环境有极大的危害,它主要以有机氮和无机氮两种形式存在。传统的生物脱氮是通过硝化和反硝化两个过程完成的,首先氨氮由自养的硝化细菌在好氧条件下转化为硝态氮,然后再通过异养的反硝化细菌在缺氧条件下将硝态氮还原为氮气,排出水体。因此,脱氮过程工艺环节较多,处理成本高,操作条件复杂等不足,极大地限制了生物脱氮技术的应用。好氧反硝化菌的发现,为生物脱氮提供了新的思路。本论文从土壤中筛选获得高效好氧反硝化有效微生物群,从而为生物脱氮技术提供较好菌源与技术。现将研究结果分述如下;
     (1)通过反硝化培养基定向筛选,从土壤中分离获得好氧反硝化有效微生物群,该有效微生物群反硝化速率为143.71 mg/L·d,并命名为OAI-EMF。研究表明OAI-EMF在以淀粉为有机碳源时,其反硝化速率达到了144 mg/L·d,Cu~(2+)、Ni~(2+)和Hg~(2+)能抑制OAI-EMF反硝化作用,而Fe~(3+)、Zn~(2+)和Mn~(2+)能激活OAI-EMF反硝化作用。高浓度硝酸盐也能抑制OAI-EMF反硝化作用,而随着C/N的增加OAI-EMF反硝化速率和硝酸盐去除率都增加,在C/N为25∶1条件下,OAI-EMF的硝酸盐去除率达到100%,反硝化速率为184 mg/L·d。
     (2)通过稀释涂布法从OAI-EMF中分离获得两株细菌,分别编号为NCDX—1和NCDX—2,根据菌株NCDX—1和菌株NCDX—2的生理生化实验,菌株NCDX—1和菌株NCDX—2分别符合动性球菌属(Planococcus sp.)和海球菌属(Marinococcus sp.)的特征,菌株NCDX—2初步鉴定为白色海球菌(Marhwcoccus albus)。通过传统分离纯化技术及其反硝化作用分析,该有效微生物群由两种以上细菌组成。
     (3)选择聚乙烯醇作为EMF固定化载体,海藻酸钠为成型助剂,通过PVA—硼酸交联法制备了固定化EMF细胞。固定化EMF颗粒具有较好的脱氮生物活性、较好的机械稳定性和抗溶剂酸碱度,从而为固定化EMF在污水处理方面的应用提供了可能性。
     (4)探讨了固定化EMF脱氮最佳工艺,研究发现固定化EMF在pH6.2-11.2,28℃~32℃,装料系数为20~40%左右的250 mL三角瓶中,培养48 h,固定化EM对硝酸盐的去除率最佳,达到了100%。与游离细胞比较,固定化EMF其对温度稳定性和对pH稳定性都有所提高,说明固定化EMF对外界不良环境的抗性增强了,能较好地适合工业化应用。
     (5)在初始pH 8.2、空气流量为0.025 m~3/h、30℃、将活化的PVA固定化细胞颗粒(湿重)40 g放在装有300 mL脱氮试验培养基的流化床生物反应器(φ40×430mm)中、硝酸盐起始浓度为0.64 g/L条件下,其反硝化动力学规律为;
Nitrogen is one of the most important pollutants in the water.It is hazardous to people's health and environment.Two forms of nitrogen element in the water are organic nitrogen and inorganic nitrogen. Traditional biological denitrogenation involves two procedures—nitrification and denitrification. First of all, ammonia nitrogen is transformed, by autotrophic nitrobacteria in the presence of oxygen, into nitrate nitrogen which will then be reduced to nitrogen by heterotrophic denitrifyimg bacteria in the absence of oxygen, with nitrogen eliminated from the water. Therefore, biological denitrogenation procedures invovle many steps, making the processing cost very high. In addtion, there are other disadvantages, like the complication in the process, which to a great extent restrict the application of biological denitrogenation techniques. And the discovery of aerobic denitrifyimg bacteria offers a new perspective to biological denitrogenation. This reseach screened and isolated from soil possessing highly aerobic denitrification effective microorganisms flora(EMF), which then provides biological denitrogenation with a good source of bacteria and related technologies. All the results are descripted as follows:
     (1) A newly OAI-EMF directed-screened by denitrification culture medium and isolated from soil possessing highly effective denitrification under aerobic condition. The denitrification rate of OAI-EMF is 143.71 mg/L·d. This research reveals that with the starch as its organic carbon source, the denitrification rate of OAI-EMF can reach as high as 144 mg/L·d. Though strongly inhibited by ions like Cu~(2+)、Ni~(2+) and Hg~(2+) , the process of denitrification is activated by ions of Fe~(3+),Zn~(2+) and Mn~(2+) . Nitrate with rich content also inhibits the denitrification of OAI-EMF, the increasing C/N, however, improves its denitrification rate as well as the removal rate of nitrate, which will reach 184 mg/L·d and 100% respectively when the C/N is 25:1.
     (2) Two aerobic denitrifying bacterial strains named NCDX—1 and NCDX—2 were isolated from OAI-EMF . After physiological and biochemical experiments, the strain NCDX—1 was preliminary classified within the Planococcus sp. and the strain NCDX—2 was preliminary classified within the Marinococcus albus. It can be concluded that these effective microorganisms flora are composed of more than two kinds of bacteria, through traditional isolating and purifying technologies.
     (3) Polyvinyl alcohol (PVA) was selected as the immobilized carrier of EMF and sodium alginate as the shaping assistant. The immobilized EMF bacteria were produced through PVA—boric acid crosslinking method. The immobolized EMF particles have good biological denitrogenation activity, mechanical stability and resistant to pH of sovlent, which then makes possible the application of immobilized EMF to waste water treatment.
     (4) The thesis discussed the optical process of immobized EMF denitrogenation. And it's been found that in the triangular flasks of 250 mL with pH 6.2~11.2, the temperature 28℃~32℃, and the loading coefficient about 20~40 %, after 48 hours of culture, immobilzed EMF could realize the highest the removal rate of nitrate—100 %. Compared with free bacteria, immobolized EMF has better temperature consistency and PH stability, which shows it has stronger resistance against the outside unpleasant environment and it's more suitable for industrial application.
     (5) Under the conditions of the initial pH 8.2, the air flow rate 0.025 m~3/h, the temperature 30℃, the activated PVA immobolized bacteria particles 40 g(natural weight), the fluidized bed bioreactor (φ40×430mm) of 300 mL of dinitrogenation experiment medium, and the initial concentration of nitrate 0.64 g/L, the rule ofdenitrification kinetics is:
引文
[1]周少奇.环境生物技术[M].北京;科学出版社,2003
    [2]赵嘉平,唐明.有效微生物群(EM)的研究进展[J].西北林学报,2003,18(3);50-53
    [3]贺学林.EM与农业发展[J].榆林学院学报,2003,13(3);29-30
    [4]金京德,曹忠,江浩.日本有效微生物应用技术及吉林省有效微生物开发应用前景[J].农业与技术,2005,25(2);78-81
    [5]严平,廖银章,李旭东.EM有效微生物技术在在废水处理中的应用与发展[J].工业用水与废水,2004,35(4);1-4
    [6]王平,吴晓芙,李科林等.应用有效微生物群(EM)处理富营养化源水实验研究[J].环境科学研究,2004,17(3);39-43
    [7]薛刚,姬鄂豫.有效微生物和絮凝剂处理酒精生产废水[J].工业水处理,2003,23(2);31-33
    [8]王国平,黄晓菊,李寿泉等.应用EM技术处理生活污水的研究[J].徐州建设职业技术学院学报,2002,2(3);33-35
    [9]田娜,朱亮.高效复合菌的富集培养实验研究[J].环境科学与技术,2004,27(2);15-16
    [10]冯骞,王超,薛朝霞等.EM生物接触氧化反应器启动过程试验研究[J].河南大学学报,2005,33(1);55-58
    [11]党建章.水果废水处理的光合菌、EM法研究[J].深圳职业技术学院学报,2004,3(1);21-23
    [12]聂发辉,项东玲,王平等.应用PFS-EM组合工艺处理藻型富营养化原水的研究[J].给水排水,2004,30(2);7-11
    [13]王平.EM技术在水处理领域的系统应用研究[D].中南林学院,2002;81-82
    [14]车美芹,朱亮.有效微生物(EM)处理食品废水的实验研究[J].环境科学研究,2002,15(3);53-56
    [15]曹海艳,张雁秋,孙云丽.用EM-SBBR法与SBBR法处理生活污水的比较研究[J].环保科技,2007,13(1);35-38
    [16]陈永祥,程晓如,邵青.EM用于SBR反应器处理生活污水[J].中国给水排水,2002,18(6);48-50
    [17]周德庆.微生物学教程[M].北京;高等教育出版社,2001;140-141
    [18]Robertson LA.,Kuene J.G.Aerobic Denitrification;a Controversy Revived Arch[J].Microbiol,1984,139(5);351-354
    [19]Klangduen P.,Jurg K.Model Development for Simultaneous Nitrification and Denitrification Water[J].Sci.Tech,1999,39(1);235-243
    [20]Hamid-Reza,et al.Denitrification Activity of the Bacterium Pseudomonas sp.ASM-2-3 Isolated from the A_riake Sea Tideland[J].Biosci.Bioeng.,2004,97(1);39-44
    [21]Naoki Takaya,et al.Aerobic Denitrification Bacteric That Produce Low Levels ofnitrous Oxide[J].Applied and Environmental Microbiology,2003,69(6);3152-3157
    [22]孔庆鑫,李君文,王新为等.一种新的好氧反硝化细菌筛选方法的建立及新菌株的发现[J].应用与环境生物学报,2005,11(2);222-225
    [23]李平,郑永良,陈舒丽等.一株好氧反硝化细菌的鉴定及其在废水处理中的应用[J].应用与环境生物学报,2005,11(5);600-603
    [24]Robertson L.A.,et al.Nitrogen Removal from Water and Waste.Microbial Control of Pollution[J].1992,2;227-267
    [25]Vandegraaf W.,Mulder A.A.A.,et al.Anerobic Oxidation of Ammonium Biologically Mediated Prcess[J].Appl.Envir.Microbiol,1995,44;1246-1251
    [26]于爱茸,李尤,俞吉安.一株耐氧反硝化细菌的筛选及脱氮特性研究[J].微生物学杂志,2005,25(3);78-81
    [27]张玉芹,刘开启,王革等.反硝化细菌的筛选及培养条件的研究[J].农业环境科学学报,2005,24(1);165-168
    [28]项慕飞,汪苹,李秀婷等.废水脱氮系统中好氧反硝化菌的筛选与鉴定[J].食品科技,2006.7;153-155
    [29]龙雯,陈存社,汪萍等.一株好氧反硝化细菌的分离与鉴定[J].中国酿造,2006,8;28-30
    [30]Robertson L.A.,et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotroph[J].Appl Environ Mcrobiol,1988,11(54);2812-2818
    [31]周丹丹,马放,王弘宇.关于好氧反硝化菌筛选方法的研究[J].微生物学报,2004,44(6);837-839
    [32]周立祥,黄峰源,王世梅.好氧反硝化菌的分离及其在土壤氮素转化过程中的作用[J].土壤学报,2006,43(3);430-434
    [33]张光亚,方柏山,闵航.好氧同时硝化一反硝化菌的分离鉴定及系统发育分析[J].应用与环境生物学报,2005,11(2);226-228
    [34]马放,王弘宇等.活性污泥体系中好氧反硝化菌的选择与富集[J].湖南科技大学学报(自然科学版),2003,20(3);80-83
    [35]Pollice A.,Tandoi V.,Lestingi C.Influence of Aeration and Sludge Retention Time on Ammonium Oxidation to Nitrite and Nitrate[J].Water Research,2002,36;2541-2546.
    [36]支霞辉,王红武,丁峰.常温条件下短程硝化反硝化生物脱氮研究[J].环境科学研究,2006,19(1);26-29
    [37]支霞辉,丁峰,彭永臻等.常温条件下短程硝化反硝化生物脱氮影响因素的研究[J].环境污染与防治,2006,28(4);254-256
    [38]陈滢,王洪臣,彭永臻.控制低溶解氧浓度实现生活污水短程硝化研究[J].哈尔滨商业大学学报(自然科学版),2004,20(3);339-341
    [39]Yoo H.,et al.Nitrogen Removal from Synthetic Waste water by Simultaneous Nitrification and Denitrification(SND)via Nitrite in an intermittently-Aerated Reaction[J].Wat.Res.,1999,33(1);145-154
    [41]林燕,何义亮,孔海南.MBR中同步硝化反硝化及异养硝化现象试验研究[J].膜科学与技术,2006,26(2);22-27
    [42]张志,任洪强等.pH值对好氧颗粒污泥同步硝化反硝化过程的影响[J].中国环境科学,2005,25(6);650-654
    [43]张龙,肖文德,李伟.SBR系统中同时硝化反硝化生物脱氮研究[J].环境工程,2005,23(4);29-32
    [44]杜馨,张可方,方茜.同步硝化反硝化(SND)影响因素的试验研究[J].广州大学学报(自然科学版),2007,6(1);70-76
    [45]刘峻岭,吴正高,赵宗升.同步硝化反硝化影响因素的研究[J].环境科学与管理,2006,31(8);166-168
    [46]沈耀良,黄勇.固定化微生物污水处理技术[M].北京;化学工业出版社,2002;1-200
    [47]谢东海,韩奇,唐文浩.微生物固定化技术在污水处理中的应用[J].环境与可持续发展,2006,4;48-49
    [48]陈铭,周晓云.固定化细胞技术在有机废水处理中的应用与前景[J].水处理技术,1997,23(2);28-30
    [49]何延青,刘俊良,杨平等.微生物固定化技术与载体结构的研究[J].环境科学,2004,25;101-104
    [50]吴光前,王丽萍.固定化微生物废水处理技术的现状与前景[J].污染防治技术,2003,16(4);80-83
    [51]张红兵.固定化微生物处理有机污染物[J].山西化工,2007,27(1);30-35
    [52]李贤胜,施永生.固定化微生物技术在废水脱氮中的应用[J].云南环境学,2006,5(3);30-33
    [53]冯本秀,赖子尼,齐素芳.固定化微生物技术去除水体中氨氮的研究进展[J].广东化工,2005,10;74
    [54]聂大仕,谢菲,崔莹莹.固定化微生物技术处理废水研究进展[J].上海化工,2004,9;7-10
    [55]Mallouchos A.,et al.Grape Skins as a Natural Support for for Yeast Immobilization[J].Biotech Lett,2002,24(16);1331-1335
    [56]孙洋,杨林.甲壳素为载体固定化活性污泥处理蛋粉废水的研究[J].大连轻工业学院学报,2006,26(1);41-44
    [57]Sen S.,Demirer G.N.Anaerobic Treatment of Real Textile Wastewater With a Fluidized Bed Reactor[J].Water Research,2003,37(8);1868-1878
    [58]陈巍,罗志刚.天然多糖在酶固定化载体材料中的应用[J].中国甜菜糖业,2007,1;29-32
    [59]Lei C.X.,Hu S.Q.,Shen G.L.Immobilization of Horseradish Peroxidase to a Nano-Au Monolayer Modified Chitosan -entrapped Carbon Paste Electrode for the Detection of Hydrogen Peroxide[J].Talanta,2003,59;981-988
    [60]邢晓慧,吕晓玲,宫慧梅等.甲壳素、壳聚糖作为固定化酶载体的研究进展[J].食品研究与开发,2002,23(2);29-31
    [61]袁定重,张秋禹等.磁性高分子微球研究进展及其在生化分离中的应用[J].料科学与工程学报,2006,24(2);306-610
    [62]胡书春,周祚万.磁性高分子微球研究进展[J].料科学与工程学报,2003,21(4);616-619
    [63]吴光前,王丽萍.固定化微生物废水处理技术的现状和前景[J].污染防治技术,2003,16(4);80-83
    [64]Groetzschel S.,et al.Degradation of Petroleum Model Compounds Immobilized on Clay by a Hypersaline Microbial Mat[J].Biodegration,2002,13(4);273-283.
    [65]Welander U.,Mattiasson B.Denitrification at Low Temperatures Using a Suspended Carder Biofilm Process[J].Water Res,2003,37;2394-2398
    [66]杨春燕,刘丽,张桦等.固定化硝化细菌去除废水中氨氮的效果研究[J].解放军预防医学杂志,2006,24(3);192-193
    [67]黄正,范玮,李谷.固定化硝化细菌去除养殖废水中氨氮的研究[J].华中科技大学学报(医学版),2002,31(1);18-20
    [68]谭佑铭,罗启芳.不同碳源对固定化反硝化菌脱氮的影响[J].卫生研究,2003,32(2);95-97
    [69]田晋红,熊平,张传斌等.固定化反硝化细菌脱氮的研究[J].西南农业大学学报(自然科学版),2004,26(3);318-321
    [70]Cao G.M.,et al.Characterization of Nitrifying and Denitrifying Bacteria Coimmobilized in PVA and Kinetics Model of Biological Nitrogen Removal by Coimmobilized Cells[J].Enzyme and Microbial Technology,2002,30;49-55
    [71]刘海琴,韩士群,李国锋.固定化复合微生物对废水的脱氮效果[J].江苏农业科学,2006,6;432-434
    [72]安立超,孙静等.混合固定细菌单级生物脱氮技术[J].污染防治技术,2003,16(3);58
    [73]李军,顾国维,韦苏.序批式膜反应器同步硝化和反硝化的特性[J].中国环境科学,2005,25(6);646-649
    [74]徐伟锋,郑淑平等.生物膜法同步硝化反硝化影响因素的分析[J].天津城市建设学院学报,2003,9(1);4-7
    [75]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京化学工业出版社,2002,96
    [76]Zhao Y.,Zhao Y.W.,Li F.T.Application and Development of Integrated Equipment for Sewage Treatment[J].Environ Prot Sci,2004,30(125);16-19
    [77]时彦芳,胡翔,王建龙.生物流化床反应器脱氮技术的研究与应用进展[J].工业水处理,2005,25(3);9-12
    [78]Xiao H.,Yang P.,Guo Y.Study on the Operation of the Integrated Anaerobic Aerobic Reactor for Treating High Strength Organic Wastewater[J].Sichuan Environ,2005,24(2);4-7
    [79]左东升,何绪文等.好氧高效过滤分离生物流化床的试验研究[J].环境工程学报,2007,1(3);11-14
    [80]Hidalgo M.D.,et al.Biofilm Development and Bed Segregation in a Methano -genic Fluidized Bed Reactor[J].Water Research,2002,36(2);3083-3091
    [81]Simonel I.S.,et al.Factors Influencing the Nitrification Efficiency of Fluidized Bed Filter with a Plastic Bead Medium[J].Aquacultural Engineering,2002,26(1);41-59
    [82]Wen J.p.,et al.The Denitrification of Nitrate Contained Wastewater in a Gas-liquid -phase Flow Airlift Loop Bioreactor[J].Biochemical Engineering Journal,2003,15(1);153-157
    [83]葛晓虹,张振家等.固定化包埋硝化菌去除源水中氨氮研究[J].中国给水排水,2006,22(3);51-54
    [84]崔玉波等.新型循环流化床的脱氮除磷机理[J].中国给水排水,2005,21(1);93-95
    [85]占天刚,王晓昌等.生物造粒流化床脱氮除磷研究[J].水处理技术,2007,33(3);20-23
    [86]王鹤立,程丽,周丹丹.高效复合生物流化床反应器三相分离区污泥对处理效果的影响[J].工业水处理,2007,27(1);45-47
    [87]黄振国等.生物流化床法处理炼油废水同时硝化与反硝化实验研究[J].炼油技术与工程,2007,37(1);59-62
    [88]Hecht U.,Moh H.Factors Controlling Nitrate and Ammonium Accumulation in Ioumustard(Sinapis alba)Seedlings[J].Physiologia Plantarumr,1990,78;37-9387
    [89]吴国琳.水污染的检测与控制[M].科学出版社,2004,115-117
    [90]沈萍,范秀容,李广武.微生物学实验(第三版)[M].高等教育出版社,2004,2;28-31
    [91]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].科学出版社,2001;242-245
    [92]门学虎,李彦锋.聚乙烯醇载体的制备及应用研究进展[J].甘肃科学学报,2004,16(3);31-35
    [93]王丽丽.高效反硝化菌的实验研究及其脱氮动力学分析[D].天津大学,2003,46-49
    [94]Kumar S.B.,et al.Gas-Holdup Measurements in Bubble Columns Using Computed Tomography[J].American Institute of Chemical Engineering Journal,1997,43(6);1414-1425
    [95]邵友元等.序半连续式反应器工艺进行生物废水处理中的数学模拟[J].环境污染治理技术与设备,2005,6(4);32-35
    [96]Shao Y.,et al.Wastewater Treatment in a Sequencing Fed-batch Reactor[J].Biochemical Engineering &Equipment(Poland),2005,4;53-57
    [97]邵友元等.SFBR工艺顺序进行硝化和反硝化的动力学研究[J].环境污染治理技术与设备,2006,7(6);73-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700