新型IC-SBBR组合工艺在猪场废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规模化养殖能够极大提高生产效率和饲养转换率,降低成本,增加经济效益;随着规模化养殖迅速发展,也带来了一系列的环境新问题,特别是规模化猪场废水是一种高含氮有机废水,传统的厌氧消化处理方法不具备生物脱氮的能力,且经常引起出水C/N比例失调,增加后续脱氮难度。
     本文立足于国内外规模化养殖废水生物处理研究的最新成果,提出采用新型IC-SBBR组合工艺处理猪场废水,详细研究该组合工艺处理猪场废水的启动特性和系统稳定运行条件优化,并考察了工艺工程化应用的可行性,充分利用两者的组合优势促进猪场废水高效脱碳除氮。
     实验室试验结果表明,通过接种部分厌氧污泥,IOC反应器通过62d培养驯化,容积负荷提升至6 kgCOD/(m3·d), COD去除率达到81.5%,颗粒污泥粒径增大,但由于厌氧环境下将废水中少量有机氮转化为无机氮,IOC反应器出现了出水NH4+-N浓度高于进水NH4+-N浓度情况。将城市污水处理厂氧化沟的活性污泥作为SBBR启动菌种来源,经过24d的培养驯化,SBBR的COD、NH4+-N和TP的去除率分别可以达到85%、90%和87%以上,并可以稳定运行,确定了SBBR合适运行工况为进水0.25h、厌氧3h、好氧7h、沉淀0.5h、排水0.25h、闲置1h,排泥时间7d。
     实验室研究过程中,工艺对猪场废水中COD、NH4+-N具有较高的处理能力,但总氮平均去除率仅有28.5%;本文通过增加SBBR缺氧-好氧交替频次和添加30%猪场原水两种方式,提升工艺的COD、NH4+-N特别是TN去除效果,增加SBBR缺氧-好氧交替频次可以使TN去除率提升到78.6%。添加30%原水可以使TN去除率提升到50%以上;而由于减少了硝态氮对除磷的干扰,TP去除率也可达到80%以上,处理系统的稳定性得到增强。
     同时,本文还探讨了同步厌氧氨氧化产甲烷反硝化在IOC-SBBR工艺中实现的可能性,实验室研究结果表明工艺启动完成后,厌氧氨氧化活性为4.12 mgNH4+-N/(gVSS·h))或者6.65 mgNO2--N/(gVSS·h);厌氧活性污泥呈红褐色,颗粒呈不规则的椭圆球状,污泥中的细菌有许多为不规则的短杆小球状细菌,属于厌氧氨氧化菌的典型特证;IOC反应器中亚硝氮的去除效果一直高于氨氮的去除效果,NO2--N/NH4+-N去除的比率约为1.44,大于1.32的厌氧氨氧化理论值,说明IOC反应器N02--N和N03--N的去除,除了占主导地位的厌氧氨氧化反应外,通过反硝化作用也实现了部分硝态氮的去除。
     本文在实验室研究基础上,进一步对本工艺工程化的应用进行了研究,示范工程研究结果表明:通过在SBBR反应器中添加30%猪场原水增强厌氧消化液的可生化性,COD、NH4+-N和TP的去除效果得到明显提升;去除率分别提高38.9%、12.15%和7.2%;在IOC-SBBR工艺之后辅助人工湿地进一步脱氮除磷,组合工艺对高含氮猪场有机废水处理效果明显,经过16个月稳定运行,组合工艺的平均去除率:COD 96.5%,NH4+-N 89%,SS 96.2%,TP 86%;工艺出水水质达到《畜禽养殖业污染物排放标准》(GB 18596-2001)要求,折合吨废水处理费用为1.27元,工艺实现了良好的生态和社会效益。
Large-scale farming can greatly improve production efficiency and raise conversion rates, reduce costs and increase economic efficiency; with the rapid development of large-scale farming, also cause a new series of environmental problems also, especially swine wastewater contain high nitrogen and organic, the traditional method of anaerobic digestion can not have the ability of biological nitrogen removal, and often cause the low C/N ratio of the anaerobic digesting fluid and the difference of biochemistry degradation.
     Based on the latest research findings on swine wastewater biological treatment in both domestic and abroad, the article proposed that adopt the new combine IC-SBBR process to treat swine wastewater, that the full advantages of the combine process can realize biological nitrogen and phosphorus removal efficiently; the system start-up conditions optimization and the feasibility engineering applications were detailed studied.
     The laboratory test result indicated that with the vaccination of some anaerobic sludge, the IOC reactor through 62d domestication, the volume load promotion to 6kg COD/(m3·d), COD removal rate achieved 81.5%, anaerobic granular sludge size increases, but under the anaerobic environment, some organic nitrogen converted to the inorganic nitrogen, caused the effluent NH4+-N concentration of IOC reactor was higher than the influent, the SBBR vaccination originated from the Municipal Sewage Treatment Plants oxidation ditch's active sludge, through 24d domestication, COD, NH4+-N and the TP removal rate could achieve 85%,90%and 87%separately, and the SBBR operation steady, the SBBR appropriate operating condition was enter 0.25h, anaerobic 3h, aerobic 7h, precipitation 0.5h, drain 0.25h, idle 1h and arranged putty time 7d.
     In the laboratory research, the process had the high ability on removal of COD and NH4+-N, but the total nitrogen (TN) average removal rate only reached 28.5%; The optimization of SBBR operation mode to increase the oxygen-anoxic alternating frequency and increases 30%raw swine wastewater could promotion COD, NH4+-N and specially TN removal rate, increased the oxygen-anoxic alternating frequency caused the TN removal rate achieved 78.6%. Increases 30%raw wastewater made the TN removal rate promotion to above 50%, for reducing the nitrite disturbance on the phosphorus, TP removal rate also achieved above 80%, the system's stability obtains the enhancement.
     At the same time, the article also discussed the possibility of simultaneous methanogenesis with denitrification and anaerobic ammonium oxidation process realize on the IOC-SBBR system, the laboratory findings indicated anaerobic ammonia oxidation activeness was 4.12 mg NH4+-N/(gVSS-h) or 6.65 mgNO2--N/(gVSS-h) after the process start-up successfully, the anaerobic granule sludge assumed the sorrel, the pellet assumed the spherical anomalous ellipse, the anomalous short pole small spherical bacterium stayed in the sludge, which is the character of anaerobic ammonia oxidation bacterium, the nitrite removal rate was always higher than the nitrate in IOC reactor, the NO2-N/NH4+-N removal ratio was about 1.44, which was higher than anaerobic ammonia oxidation theoretical values 1.32, this can be explained in addition to the dominant anaerobic ammonium oxidation reactions, denitrification was also achieved on partial NO2-N and NO3-N removal in the IOC reactor.
     Based on the laboratory research foundation, further project's application research also achieved, the demonstration engineering research indicated:through increases 30%raw swine wastewater in the SBBR reactor to strengthen the biochemistry ofthe anaerobic digesting fluid, COD, NH4+-N and the TP removal rate obtained the obvious promotion, which enhanced 38.9%,12.15%and 7.2% respectively. The constructed wetlands was auxiliary the IOC-SBBR process to further denitrogenation of the nitrogen and phosphorus removal, the combined process had the high ability removal on swine wastewater, through 16 month steady operations, the combined process had the average removeal rate on COD 96.5%, NH4+-N 89%, SS 96.2%, TP 86%. The effluent quality of the combined process achieved GB 18596-2001 "Poultry Fish breeding and poultry raising Pollutant discharge Standard", equivalent tons of waste water treatment costed of 1.27 yuan, the combined processs achieved a good ecological and social benefits.
引文
[1]邓蓉,张存根.我国畜牧业生产规模分析[J].现代化农业,2004,12:13-16.
    [2]《农业生物质能产业发展规划(2007-2015年)》[D].2007,国家农业部.
    [3]《爱我美好家园千场万户清洁生产行动计划》[D].2009,江西省农业厅.
    [4]林代炎,叶美锋,吴飞龙,翁伯琦.规模化养猪场粪污循环利用技术集成与模式构建研究[J].农业环境科学学报,2010,(02):386-391.
    [5]钱靖华,田宁宁,任远.规模化猪场粪污治理存在的问题及对策[J].中国畜牧杂志2006,42:57-59.
    [6]张子仪.规模化畜牧业排污问题应及早治理.现代畜牧生产的环境与环境管理[M].北京:中国农业科学出版社,1993.
    [7]华南农业大学等.规模化猪场用水与废水处理技术.北京:中国农业出版社,1999,275-276.
    [8]高峰.厌氧消化-SBR工艺处理养猪场废水及工艺最优化的研究:[硕士学位论文].长沙:湖南大学,2005.
    [9]彭武厚.厌氧消化法处理畜禽粪的研究.工业微生物[J].1997(4):1-4.
    [10]国家环境保护总局.2002年中国环境状况公报(EB/OL)
    [11]王幼明,王小龙.高铜的应用对畜禽的慢性中毒作用及对环境生态的影响[J].中国兽医杂志,2001,37(6):36-38.
    [12]国家环境保护总局.2002年中国环境状况公报(EB/OL)
    [13]廖金凤.广东省南海市农业土壤中铜锌镍的环境容量[J].土壤与环境,1999,8(1):15-18.
    [14]高明.长施用有机肥对紫色水稻土铁锰铜锌形态的影响[J].植物营养与肥料学报,2000,6(1):11-17.
    [15]祖艳群,李文,陈海燕等.蔬菜中铅锅铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289-292.
    [16]沈瑾,路旭,孙瑜等.规模化猪场粪污水处理固液分离工艺及设备[J].中国沼气,1999,17(4):18-20.
    [17]于金莲,阎宁.畜禽养殖废水处理方法探讨[J].给水排,2000,26(9):44-47.
    [18]成文.养猪场废水的化学混凝后处理[J].华南师范大学学报(自然科学版),2000,1:82-86.
    [19]Stone, K.C., Poach, M.E, Hunt, P.G., et.al. Marsh-pond-marsh constructed wetland design analysis for swine lagoon wastewater treatment[J]. Ecological Engineering,2004,23 (2):127-133.
    [20]McCaskey,T.A., S.N.Britt,B. G.Ruffin,J., et.al. Strickland.Feed value of broilerlitter for stocker cattle.Highlights of Alabama Agric.Res.1994,41(1):1-2.
    [21]Dela Noue, Basseres A. Biotreatment of anaerobically digested swine manure with microalgae. Biological Wastes,1989,29(1):17-31.
    [22]Sklarz M Y, Gross A, Soares M I M, et.al. Mathematical model for analysis of recirculating vertical flow constructed wetlands. Water Research, (2010), Vol.44 (6), p.2010-2020.
    [23]Robert L. Constructed wetlands for livestock wastewater management. Ecological Engineering,2000,15:41-55
    [24]廖新俤,汪植三.人工湿地在猪场废水处理中的应用[J].农业工程学报,1995,(4):96-100.
    [25]邓仕槐,肖德林,李宏娟,等.畜禽废水胁迫对芦苇生理特性的影响[J].农业环境科学学报.2007,26(4):1370-1374.
    [26]羽中.“十五”期间我国投入35亿元发展农村新能源[J].能源与环境.2006,(5):12-12.
    [27]Sakar S, Yetilmezsoy K, Kocak E. Anaerobic digestion technology in poultry and livestock waste treatment-a literature review. Waste Management & Research, (2009), Vol.27 (1):3-18.
    [28]Zhang, B., Zhao, H., Zhou, S., et.al. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation [J]. Bioresource Technology,2009,100 (23):5687-5693.
    [29]Pinheiro, D.M., Ratusznei, S.M., Rodrigues, J.A.D., et.al. Fluidized ASBR treating synthetic wastewater:Effect of recirculation velocity[J]. Chemical Engineering & Processing:Process Intensification,2008,47 (2):184-191.
    [30]杨朝晖,曾光明,高锋.固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J].湖南大学学报(自然科学版),2002,29(6):95-99
    [31]Nanh Lovanh, John H. Loughrina, Kimberly Cook, et.al The effect of stratification and seasonal variability on the profile of an anaerobic swine waste treatment lagoon. Bioresource Technology, (2009), Vol.100 (15):3706-3712.
    [32]邓良伟.水解-SBR工艺处理规模化猪场粪污研究[J].中国给水排水,2001,17(3):8-11.
    [33]Wong SH. Pilot scale aerobic sequencing batch reactor for pig waste treatment. Journal of the Institution of Water and Environmental Management,1989,3(1):75-81.
    [34]何连生,朱迎波,席北斗,等.集约化猪场废水SBR法脱氮除磷的研究[J],中国环境科学,2004,24(2):224-228.
    [35]Tilehe. Novel mierobial nitrogen removal Proeesses [J]. Biotehnology Ady,2004,22(7): 5193-5201.
    [36]沈瑾,路旭,孙瑜.规模化猪场粪污水处理固液分离工艺及设备[J].中国沼气,1999,17(4):18-20.
    [37]杨虹,李道棠,朱章玉,等.集约化养猪场冲栏水的达标处理[J].上海交通大学学报,2000,34(4):558-560.
    [38]邓良伟,郑平,陈子爱Anarwia工艺处理猪场废水的技术经济性研究[J].浙江大学学报(农业与生命科学版),2004,30(6):628-634.
    [39]Sang-Ill Lee, Jong-Ho Park, Kwang-Baik Ko, et al. Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactors. Water Research,1997,31(7): 1807-1812.
    [40]Ra CS, Lo KV, Shin JS, et al. Biological nutrient removal with an internal organic carbon source in Piggery wastewater treatment. Water Research,2000,34(3):965-973.
    [41]崔理华,朱夕珍,陈智营,等.国内外规模化猪场废水处理组合工艺进展[J].农业环境保护,2000,19(3):188-191.
    [42]Fernaada L.A.Ferrira, Jorge de Lucas Jr, Luiz A.doAmaral. Partial characterization of the pollution load of swine wastewater treated with an integrated biodigestion system. Bioresource Technology,2003 90:101-108.
    [43]林伟华,蔡昌达CSTR-SBR工艺在畜禽废水处理中的应用[J].环境工程,2003,21(3):13-15.
    [44]Cheng Jiayang. Nitrification/denitrification in intermittent aeration process for swine wastewater treatment[J].J.Enviorn.Eng.2001,127(8):705-711.
    [45]Yang P.Y.. Integrating an intermittent aerator in a swine wastewater treatment system for land-limited conditions[J].Bioresource Technology,1999,69:191-198.
    [46]龚丽雯,龚敏红,王成云,等.微电解/接触氧化/稳定塘处理猪场废水[J].中国给水排水,2003,19(8):92-94.
    [47]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,34(3):44-46.
    [48]Voets J P, Wanstaen H, Verstraete W. Removal of nitrogen from highly nitrogenous wastewater[J]. J Wat Pollution Control Fed,1975,47:394-398.
    [49]潘杨,李勇、黄勇.单级生物膜法脱氮机理及影响因素[J].苏州城建环保学院学报,2000,13(4):89-93.
    [50]Hyungseok Yoo,Kyu-Hong hn, Hyung-JIB Lee,Kwang-Hwan Lee,Youn-Jung Kwa and Kyung-Guen Song. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) vianitrite in an intermittently-aerated reactor[J]. Wat. Res.1999,33(1):145-154.
    [51]Hanaki K,Wantawin C.,Ohgaki S..Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J].Wat.Res..1990,24(3):297-302.
    [52]Hellinga C.,Schellen A.A.J.C.,Mulder J.W.,Van Loosdrecht M.C.M.,Heijnen J.J.. The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water[J].Wat.Sci.Tech..1998,37(9):135-142.
    [53]Hansen K H,A ngelidak i I,A h ring B K.A naerobic digestion of sw ine manure:inhibition by ammonia [J]. W at R es,1998,32 (1):5-12.
    [54]Balmelle B, Nguyen KM, Capdeville B, et al. Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Wat.Sci.Tech.,1992,26:1017-1025.
    [55]Villaverde S,Garcia-Encina P A,Fdz-Polanco F. Influence of pH over nitrifying biofilm activity in submerged biofilters[J]. Water Res,1997,31(5):1180-1186.
    [56]Surmacz G J,Cichon A, Minksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification[J]. Water Sci Technol 1997,36(10):73-78.
    [57]魏琛,罗固源.游离氨对稳定生物亚硝化的影响分析[J].重庆环境科学,2003,25(12):50-52.
    [58]Alleman J E. Elevated nitrite occurrence in biological wastewater treatment system[J]. Water Sci Tech,1984,17(1):409-419.
    [59]谢珊.SBR系统中好氧颗粒污泥同步硝化反硝化特性研究.[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程系,2004,21-30.
    [60]张鹏,周琪,屈计宁等.同时硝化反硝化研究进展[J].重庆环境科学,2001,23(6):20-24.
    [61]Virdis.Bernardino,Read.Suzanne T., Rabaey Korneel., Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J].Bioresource Technology,2011,102 (1):334-341.
    [62]张岩,郭岩,白玉华等.附积床生物膜反应器同步硝化反硝化脱氮特性[J].环境科学,2010,31(1):134-139.
    [63]张小玲,彭党聪,王志盈,等.低DO紊动床内有机物对硝化过程的影响[J].中国给水排水,2002,18(5):10-13.
    [64]王晓莲,彭永臻,王淑宝,等.城市可持续污水生物处理技术[J].水处理技术,2004,30(2):106-109.
    [65]Broda E. Two kinds of lithotrophs missing in nature[J]. Z Allg Microbiol,1997,17:491-493.
    [66]Kuenen J G, Robertson L A. Combined nitrification-denitrification process[J]. EMS Microbiol Rev,1994,15-(2):109-117
    [67]Mulder A,Van de graaf A A,Robertson L A,et al. Anaerobic ammonium xidation discovered in a denitrification fluidized bed reactor[J]. EMS Microbiol Rcol,1995,16(3):177-183.
    [68]Mike S M Jetten. New pathways for ammonia conversion in soil and aquatic systems[J]. Plant and Soil,2001,230(1):9-19.
    [69]王建龙.氨的厌氧氧化[J].生命的化学,1997,31(12):1955-1962.
    [70]廖德祥,吴永明,李小明等.亚硝化-厌氧氨氧化联合工艺处理高含氮废水的研究[J],环境科学,2006,27(9):1776-1770.
    [71]Sitong Liu, Fenglin Yang, Yuan Xue, et al. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor[J], Bioresource Technology,2008,99(17):8273-8279.
    [72]Anthonisen A C,Loehr R C,Prakasam TBS. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation,1976,48(5):835-850.
    [73]任勇翔,彭党聪,王志盈,等.亚硝酸型硝化-反硝化工艺处理焦化废水中试研究[J].西安建筑科技大学学报(自然科学版),2002,34(3):264-259.
    [74]Sutherson S, Ganczarczyk J J.Inhibition of nitrite oxidation during nitrification:some observations [J]. Water Pollut Res J Can,1986,21:257-266.
    [75]Turk O,Mavinic D C. Maintaining nitrite build-up in a system acclimated to free ammonia[J]. Water Res,1989,23(22):1383-1388.
    [76]Schmidt I, Sliekers O, Schmid M,et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews,2003,27(4):481-492
    [77]Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Wat. Res.,1996,30(7):1702-1710.
    [78]Mino, T., van Loosdrecht, M.C.M., Heijnen J.J.,et al.Microbiology and biochemistry of the enhanced biological phosphate removal process[J].Water Res.,1997,32:3193-3207.
    [79]郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(上)[J].给水排水,2002,28(6):6-11.
    [80]王晓莲,彭永臻,王淑宝,等.城市可持续污水生物处理技术[J].水处理技术,2004,30(2):106-109.
    [81]Ng W J, Ong S L, Hu J Y. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Wat. Sci. Tech.,2001,43(3):139-146.
    [82]王春英,隋军,赵庆良.反硝化聚磷机理实验.环境污染治理技术与设备,2002,3(6):65-68.
    [83]Kuba T, van Loosdrecht M C M, Brandse F A, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants[J]. Wat. Res.,1997, 31(4):777-786.
    [84]Johwan A, Tomotaka D, Satoshi T, et al. Metabolic behavior of denitrifying phosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions. J. Biosci. Bioeng.,2001,92(5):442-446.
    [85]Sorm R, Bortone G, Saltareli R, et al. Phosphate uptake under anoxic condition in nutrient removal activated sludge system. Wat. Res.,1996,30(6):1573-1584.
    [86]Kerrn-Jesperson J P, Henze M, Strube R.Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor[J]. Wat. Res.,1994,28(1): 1253-1255.
    [87]杨国靖,李小明,曾光明等.一体化除磷脱氮技术—反硝化除磷[J].环境科学与技术,2005,28(2):107-109.
    [88]郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺[J].给水排水,2002,28(6):6-11.
    [89]Mino T, van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Wat. Res.,1998,32(11):3193-3207.
    [90]Ahn J, Daidou T, Tsuneda S, et al. Characteristics of denitrifying phosphate accumulating organisms cultivated in anaerobic/aerobic SBR[J]. Preprint of 1st World Congress of the International Water Association, Paris,2000.
    [91]Kerrn-Jesperson J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Wat. Res.,1993,27(4):617-624.
    [92]Lee D.S, Jeon C.O, Park J M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Wat.Res.2001,35(16):3968-3976.
    [93]Johwan Ahn, Tomotaka Daidou, Satoshi Tsuneda, et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using poly-merase chain reaction-denaturing gradient gel electrophoresis as-say[J].Water Research,2002,36:403-412.
    [94]J. Meinhold, E. Arnold and S. Isaacs. Effect of nitriteon anoxic phosphate uptake in biological phosphorus removal activated sludge[J].Water Res.1999,33:1871-1883.
    [95]杨国靖.单级SBR系统好氧颗粒污泥实现同步除磷脱氮及其微生物机理的研究.[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程系,2005,30-38.
    [96]Jens Peter, Keren Jespersen, Mogens Henze. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Wat Res,1994,28(5):1253-1255.
    [97]Falkentoft C M,Harremoes P. Combined denitrification and phosphorus removal in a biofilter [J]. Wat Sci Tech,2000,41 (4-5):493-501.
    [98]Habets, L.H.A., Engelaar, A.J.H.H. Anaerobic treatment of inuline effluent in an internal circulation reactor[J]. Wat Sci Tech,1997,35 (10):189-197.
    [99]张忠祥,钱易.废水生物处理新技术[M].北京:清华大学出版社,2004:381-382.
    [100]Gonzalez, O., Esplugas, M., Sans, C. Performance of a Sequencing Batch Biofilm Reactor for the treatment of pre-oxidized Sulfamethoxazole solutions[J]. Water Research,2009,43 (8):2149-2158-
    [101]王乾扬,方士,陈国喜等.膜法SBR工艺处理皮革废水研究[J].中国给水排水,1997,15(3):54-56.
    [102]Pambrun.V, Paul. E, Sperandio.M. Treatment of nitrogen and phosphorus in highly concentrated effluent in SBR and SBBR processes[J]. Water science and technology:a journal of the International Association on Water Pollution Research,2004,50 (6):269-276.
    [103]Kumar, B Manoj,Chaudhari.S. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source[J]. Water science and technology:a journal of the International Association on Water Pollution Research,2003,48 (3):73-79.
    [104]方茜,陈凤冈等.两种序批式生物系统处理屠宰废水的对比实验[J].中国给水排水,2000,16(7):57-58.
    [105]詹伯君,陈国喜等.膜法SBR工艺处理印染废水工程设计[J].给水排水,1997,23(7):25-28.
    [106]Chiou R.J., Yang Y.R. An evaluation of the phosphorus storage capacity of an anaerobic/aerobic sequential batch biofilm reactor [J]. Bioresource Technology,2008,99 (10):4408-4413.
    [107]Andrade do Canto C.S., Rodrigues J.A.D, et.al. Ratusznei S.M, et.al. Feasibility of nitrification/denitrification in a sequencing batch biofilm reactor with liquid circulation applied to post-treatment [J]. Bioresource Technology,2008,99 (3):644-654.
    [108]Mohan S., Mohanakrishna G.,Veer Raghavulu S, et.al. Enhancing biohydrogen production from chemical wastewater treatment in anaerobic sequencing batch biofilm reactor (AnSBBR) by bioaugmenting with selectively enriched kanamycin resistant anaerobic mixed consortia [J]. International Journal of Hydrogen Energy,2007,32 (15):3284-3292.
    [109]Mohana S V, Rao N C, Sarma P N, et.al. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR) [J]. Journal of Hazardous Materials,2007,144:108-117.
    [110]王亚宜,李探微等.序批式生物膜技术(SBBR)的应用及其发展[J].浙江工业大学学报,2006,34(2):213-218.
    [111]李军,王宝贞,聂梅生.淹没序批式生物膜法除磷工艺特性研究[J].中国给水排水,2001,17(7):1-5.
    [112]ZhiJian Zhanga, Jun Zhub, Jennifer King, et al. A two-step fed SBR for treating swine manure [J]. Process Biochemistry,2006,41(4):892-900.
    [113]许英杰,冯贵颖,买文宁.生产性IC反应器厌氧颗粒污泥的生物学特征[J],环境污染治理技术与设备2005,6(4):84-85.
    [114]国家环保局编委会.水和废水监测分析方法[M].第三版.北京:中国环境科学出版社,1997,96-120.
    [115]Liu Y, Xu H L,Yang S F,Tay J H.Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor[J].Water Res.2003,(37):661-673.
    [116]Liu Y Q, Liu Y,Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules [J].Appl, Microbiol, Biot.2004,65(2):143-148.
    [117]Tay J H,Xu H L,Teo K C.Molecular mechanism of granulation.Ⅰ:H+ translocation-dehydration theory[J].J.Environ.Eng.2000,126:403-410.
    [118]Ye, F.-X., Shen, D.-S., Feng, X.-S. Anaerobic granule development for removal of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor[J]. Process Biochemistry,2004,39 (10):1249-1256.
    [119]WANG Jian, JI Min,LI Zheng,et al. Municipal landfill leachate t reat ment byusing co mbined UASB and MBR system and its problems [J].Environmental Engineering,2003, 16(6):215-217.
    [120]孙振世,陈英旭,杨哗等.UASB的启动及其影响因素[J].中国沼气,2000,18(2):17-191.
    [121]Song M., Shin S.G., Hwang S. Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater [J]. Bioresource Technology,2010,101 (1):S23-S28.
    [122]Baloch M.I, Akunna J.C, Kierans M. Structural analysis of anaerobic granules in a phase separated reactor by electron microscopy [J]. Bioresource Technology,2008,99 (5):922-929.
    [123]Uemura S, Harada H. Effect of temperature elevation from 55℃ to 65℃ on the performance of a thermophilic UASB reactor and characteristics of methanogenic granular sludge[J]. Environ. Technol.,1993,14(10):897-90l.
    [124]Fang H H P, Lau I W C. Startup of thermophilic (55℃) UASB reactors using different mesophilic seed sludges[J]. Wat. Sci. Tech.,1996,34(5-6):445-452.
    [125]邓香萍.序批式生物膜反应器脱氮除磷试验研究.[南昌大学硕士学位论文].南昌:南昌大学环境科学与工程学院,2007.
    [126]邓洪权,潘永亮,杨坪.内循环三相生物流化床启动特性实验研究[J].环境科学与技术,2001.24(1):12-15.
    [127]邓良伟.猪场废水处理新工艺研究[浙江大学博士学位论文].2007年.
    [128]Kluber H D, Conrad R. Effects of nitrate, nitrite, NO and N2O on Methanogenesis and other redox p rocesses an anoxic rice field soil[J]. FEMSMicrobiology Ecology,1998,25: 301-318.
    [129]StamsA J M, Oude Elferink S JW H, Westermann P. Metabolic interactions between methanogenic consortia and anaerobic resp iring bacteria [J]. Advances in Biochemical Engineering Biotechnology,2003,81:32-39.
    [130]Sorensen J.Capacit y for denit rification and reduction of nit rate toammonia in a coastal marine sediment [J].Appl Environ Microbiol 1978,35(2):301-305.
    [131]Jorgensen K S,Tiedje J M.Survival of denitrifiers in nitrate free,anaerobic environments[J]. Applied and Environmental Microbiology,1993,59(10):3297-3305.
    [132]Francis A J,Slater J M,Dodge C J.Denit rification in deep subsurface sediments[J]. Geo microbiol J 1989,7(1-2):103-116.
    [133]陈莉莉,左剑恶,楼俞等.同时产甲烷反硝化在UASB反应器中的实现[J],中国沼气,2006,24(2):3-7.
    [134]袁志丹,左剑恶,甘海南等.同时产甲烷反硝化与硝化串联工艺处理淀粉废水[J].环境科学学报,2008,28(7):1272-1278.
    [135]N. Bernet, N. Delgenes, J.C. Akunna, et al. Combined Anaerobic-aerobic SBR for the Treatment of Piggery Wastewater [J]. Wat. Res.,2000,34:611-619.
    [136]J.H. Im, H.J. Woo, M.W. Choi, et al. Simultaneous Organic and Nitrogen Removal from Municipal Landfill Leachate Using an Anaerobic-Aerobic System[J]. Wat. Res.,2001, 35(10):2403-2410.
    [137]A. Mosquera-Corral, M. Sanchez, J. L. Campos, et al. Simultaneous Methanogenesis and Denitriflcation of Pretreated Effluents from a Fish Canning Industry[J]. Wat. Res.,2001, 35(2):411-418.
    [138]Daijun Zhang, Peili Lu, Tengrui Long, et al. The Integration of Methanogensis with Simultaneous Nitrification and Denitrification in a Membrane Bioreactor. Process Biochem., 2005,40:541-547.
    [139]G. Ruiz, D. Jeison, R. Chamy. Development of Denitrifying and Methanogenic Activities in USB Reactors for the Treatment of Wastewater:Effect of COD/N Ratio[J]. Process Biochem., 2006,41:1338-1342.
    [140]Eiroa M, Kennes C, Veiga M C. Formal dehyde and urea removalin a denitrifying granular sludge blanket reactor [J]. Wat. Res.,2004,38(16):3495-3502.
    [141]Broda E. Two kinds of lithotrophs missing in nature [J]. Z Allg Microbiol,1997, 17:491-493.
    [142]Zhiquan Yang, Shaoqi Zhou, Yanbo Suna. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor[J]. Journal of Hazardous Materials,2009,169(1-3):113-118
    [143]Kenji Furukawa, Yasuhiko Inatomi, Sen Qiao, et al. Innovative treatment system for digester liquor using anammox process[J]. Bioresource Technology,2009,100(22): 5437-5443.
    [144]I. Fernandez, A. Mosquera-Corral, J.L.Campos, et al. Operation of an Anammox SBR in the presence of two broad-spectrum antibiotics[J]. Process Biochemistry,2009,44 (4):494-498.
    [145]Siegrist H., Reithaar S., Koch G, Lais P. Nitrification Loss in Nitrifying Rotating contactor Treating Ammonium-Rich Wastewater Without Organic Carbon [J].Wat.Sci. Tech,1998, 38(8-9):241-248.
    [146]U. van Dongen, M.S.M. Jetten and M.C.M. van Loosdrecht. The SHARON-Anammox process for treatment of ammonium rich wasterwater [J]. Water Science and technology 2001,44(1):153-160.
    [147]王建龙.生物脱氮新工艺及其技术原理[J].中国给水排水,2000,16(2):25-28.
    [148]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-18.
    [149]谢珊,李小明,曾光明等.好氧颗粒污泥的性质及其在脱氮除磷中的应用[J].环境污染治理技术与设备.2003,4(7):70-73.
    [150]L in Y F,Chen K C.Denitrification and methanogenesis in a co-immobilized m ixed culture system[J].W ater Res,1995,29(1):35-43.
    [151]Eiroa M, Kennes C, Veiga M C. Formal dehyde and urea removalin a denitrifying granular sludge blanket reactor [J]. Wat. Res.,2004,38(16):3495-3502.
    [152]操家顺,周文理,张玉涛等.厌氧氨氧化、反硝化与甲烷化耦合研究[J].南京理工大学学报(自然科学版),2009,(04):538-542.
    [153]张代钧,阎青,祖波EGSB-BAF集成系统实现厌氧氨氧化、甲烷化和短程硝化反硝化[J].环境科学研究,2009,(04):467-472.
    [154]ZHANG Daijun.The integration of methanogensis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor[J].J Environ Sci,2003, 15(3):423-432.
    [155]WANG Jianlong, KANG Jing. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor [J].Process Biochemistry, 2005,40(5):1973-1978.
    [156]Strous M, Kuenen J G,Jetten M S M. Key physiology of anaerobic ammonium oxidation[J]. Appl Environ Microbiol,1999,65(7):3248-3250.
    [157]Kluber H D, Conrad R,1998. Effects of nitrate, nitrite, NO and N2O on Methanogenesis and other redox p rocesses an anoxic rice field soil [J]. FEMS Microbiology Ecology,25: 301-318.
    [158]Hendriksen, H., Ahring, B.K., Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor:operating performance[J]. Wat. Res.,1996,30, 1451-1458.
    [159]祖波,张代钧,白玉华等.EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究[J].环境科学研究,2007,20(2):51-57.
    [160]Strous M, Heijnen JJ, Kuenen JG, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorga-nisms [J]. Appl. microbial. Biotechnol.,1998 50:589-596
    [161]Fux C, Boehler M, Hubber P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology,2002,99:295-306.
    [162]Bhunia P and Ghangrekar MM. Comments on "Enhanced granulation by natural ionic polymer additives in UASB reactor treating low-strength wastewater" [J], Water Research, 2006,40(6):1505-1506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700