前置式厌氧氨氧化—亚硝化MBR耦合工艺性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发高效、低耗的新型生物脱氮工艺,已经成为当今水污染控制领域的研究热点。亚硝化-厌氧氨氧化组合工艺作为一种新型的组合式自养脱氮技术,具有不需外加碳源、运行费用低、节省供氧量及能耗等优点,因此具有广泛的应用前景。但是,传统的后置式ANAMMOX组合工艺依然存在不足,例如要求基质中NO2--N/NH4+-N的比值接近1.32,否则会影响全流程的脱氮效率;如果基质中NO2-N、溶解氧和有机物浓度过高,会对ANAMMOX菌的活性产生抑制作用,这样就降低了反应器脱氮效果。
     针对目前后置式ANAMMOX组合工艺存在的缺陷,本文采用前置式厌氧氨氧化-亚硝化工艺,研究了以ANAMMOX技术为基础的厌氧氨氧化-亚硝化膜生物反应器(MBR)耦合工艺处理废水的可行性,研究取得的主要结果如下:
     (1)控制pH8.0左右、温度32±1℃以及DO浓度≤1.0 mg/L,亚硝化反应器中能够实现NO2--N的大量富集;高FA浓度可以抑制NOB的活性;亚硝化反应器可以在COD浓度≤100 mg/L(COD/NH4+-N≤0.25)的情况下实现稳定运行。
     (2)厌氧氨氧化反应器在有溶解氧存在的条件下稳定运行后,反应器对NH4+-N、NO2--N和TN的平均去除负荷分别为0.68 kg.N/(m3·d)、0.73 kg·N/(m3·d)和1.29kg.N/(m3·d)。处理含COD废水时,反应器对NH4+-N、N02-N和TN的平均去除负荷分别为0.67 kg.N/(m3·d)、0.74 kg·N/(m3·d)和1.32 kg.N/(m3·d)。
     (3)厌氧氨氧化-亚硝化两个反应器耦合后,最佳控制工艺条件为:系统温度32±1℃、pH=8.0、HRT为12 h,回流比为200%,在进水NH4+-N浓度为300 mg/L, COD浓度≤150 mg/L(COD/NH4+-N≤0.5),亚硝化反应器DO≤1 mg/L时,出水中各氮化物的去除效果有明显改善。对NH4+-N和TN的平均去除负荷分别为0.59 kg.N/(m3·d)和0.47 kg.N/(m3·d)。
     (4)利用前置式厌氧氨氧化工艺处理实际污水,控制HRT为12 h、回流比至200%时,当系统运行稳定后,系统对NH4+-N和TN的平均去除负荷分别为0.50 kg·N/(m3·d)和0.40 kg·N/(m3·d),出水中NH4+-N、NO2--N和COD的平均浓度分别为1.38 mg/L、38.92mg/L和15.78 mg/L。研究结果表明,前置式厌氧氨氧化工艺可以处理高氨氮和低C/N比城市污水。
The exploitation of new effective and low-cost biological nitrogen removal processes has recently been a research focus in water pollution control field. As a new autotrophic nitrogen removal technology, the combined anaerobic ammonium oxidation (ANAMMOX) reaction with partial nitrification has the advantages of no organic carbon addition, low operating cost, low oxygen and energy consumption, which contribute to its wide application prospects. However, this postpositional ANAMMOX combined process still has deficiencies. For instance, the ratio of NO2--N/NH4+-N in the partial nitrification effluent is the key operation condition for the combined partial nitrification/ANAMMOX process (1.32 as required), which is difficult to achieve, but very important and necessary. Once NO2--N, dissolved oxygen and organics concentrations in the effluent are beyond the preferred value, ANAMMOX bacteria will be inhibited in this process, leading to the decline of nitrogen removal efficiency.
     To solve these problems, reverse ANAMMOX and partial nitrification with MBR features was combined, the new integrated process was studied in this thesis, and the main conclusions are as follows:
     (1) Nitrite accumulation could be achieved when the pH value was about 8, the reactor at 32±1℃and dissolved oxygen (DO) concentration was equal to or lower than 1.0 mg/L in partial nitrification reactor. High concentration of free ammonia is a crucial and useful factor, which could inhibit the activities of nitrite oxidizing bacteria. The stable operation of partial nitrification could be realized under COD concentration equal or lower than 100 mg/L (COD/ NH4+-N≤0.25).
     (2) When the operation was stable, the results showed that the ANAMMOX consortium was found adapted to the wastewater containing dissolved oxygen (DO), with the average removal rates of NH4+-N, NO2--N and TN at 0.68 kg-N/(m3-d),0.73 kg-N/(m3-d) and 1.29 kg-N/(m3·d). After COD was added into the influent, the average removal rates of NH4+-N, NO2--N and TN were 0.67 kg-N/(m3-d),0.74 kg-N/(m3·d) and 1.32 kg-N/(m3-d).
     (3) The best operation condition for the reverse anammox/partial nitrification process is: the temperature at 32±1℃, pH value at 8, the hydraulic retention time (HRT) at 12 h, and the recycle ratio at 200%. The removal efficiencies of various nitrogen compounds in the effluent were improved obviously after the NH4+-N concentration is 300 mg/L, COD concentration equal or lower than 150 mg/L (COD/NH4+-N≤0.5), and DO equal or lower than1 mg/L. The average removal rates of NH4+-N and TN in reverse process were 0.59 kg-N/(m3·d) and 0.47 kg-N/(m3-d).
     (4) Utilizing the reverse process to treat real high ammonium wastewater, HRT at 12h, and the recycle ratio at 200%, the average removal rates of NH4+-N and TN were 0.50 kg-N/(m3·d) and 0.40 kg-N/(m3·d), and the concentrations of NH4+-N, NO2--N and COD were 1.38 mg/L,38.92 mg/L and 15.78 mg/L respectively when the operation was stable. The result shows that this reverse ANAMMOX/partial nitrification process can treat special wastewater with high NH4+-N and low C/N rate.
引文
[1]李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    [2]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    [3]沈耀良,王宝贞.废水生物处理新技术—理论与应用.北京:化学工业出版社,2002.
    [4]陈坚.环境生物技术.北京:中国轻工业出版社,1999.
    [5]徐亚同.废水氮磷的处理.上海:华东师范大学出版社,1996.
    [6]张庆冬,赵朝成,赵东风石.化废水脱氮技术现状分析.油气田环境保护,2002,12(3):11-15.
    [7]顾夏声.废水生物处理数学模式.北京:清华大学出版社,1993.
    [8]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.北京:化学工业出版社,2005.
    [9]Young J, Mccarti P L. Treatment of domestic strength wastewater with anaerobic hybrid reactors.. Water Pollution Control Federal,1969,41(1):160-173.
    [10]Jetten M S, Logemann S, Muyzer G, et al. Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek,1997,71(1-2):75-93.
    [11]沈耀良,王宝贞.废水生物除磷工艺中聚磷菌的作用机制及运行控制要点.环境科学与技术,1995,2(1):11-16.
    [12]郭海燕.曝气动力循环一体化同时硝化反硝化生物膜反应器及其特性研究.大连:大连理工太学出版社,2005.
    [13]朱琳,尹立红,浦跃朴.荧光原位杂交法检测环境硝化细菌实验条件优化及应用.东南大学学报(自然科学版),2005,35(2):266-270.
    [14]Pommerening-Roser A, Rath G, Koops H P. Phylogenetic diversity within the genus Nitrosomonas. Systematic and Applied Microbiology,1996,19(3):344-351.
    [15]Lipski A, Spieck E, Makolla A, et al. Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity. Ystematic and Applied Microbiology,2001,34(9): 377-384.
    [16]袁江林,彭党聪,王志盈.短程硝化-反硝化生物脱氮.中国给水排水,2000,16(2):29-31.
    [17]张鹏,周琪,屈计宁,et al.同时硝化与反硝化研究进展.重庆环境科学,2001,23(6):20-24.
    [18]Wanner O, Cunningham A B, Lundman R. Modeling biofilm accumulation and mass transport in a porous medium under high substrate loading. Biotechnology and Bioengineering,1995,47(6):703-712.
    [19]Focht D D, Verstrate W. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology,1977,1:135-214.
    [20]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水,2000,16(2):20-24.
    [21]张庆冬,赵朝成,赵东风.石化废水脱氮技术现状分析.油气田环境保护,2002,12(3):11-15.
    [22]Rusten B, Hern L J, Odegaard H. Nitrogen removal from dilute wastewater in cold climate using moving-Bed biofilm reactor. Water Environment Research,1995,67(1):65-74.
    [23]顾宗濂.环境微生物工程.南京大学出版社,1998,91-93:179-184.
    [24]杜锡康,贾高雄.焦化废水生物脱氮.煤化工,1999,(3):44-45.
    [25]何苗,张晓健.厌氧—缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较.给水排水,1997,23(6):31-33.
    [26]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究.应用与环境生物学报,1999,5(Suppl):68-73.
    [27]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展.上海环境科学,1999,1(1):16-18.
    [28]程晓如,杨开.设计A/O生物脱氮工艺应注意的几个问题.环境与开发,1996,11(4):1-4.
    [29]钱易,米祥友.现代废水处理新技术.北京:中国科学技术出版社,1993.
    [30]乔海兵,王淑莹,李桂荣,et al.连续流间歇曝气氧化沟处理生活污水脱氮除磷研究.环境污染治理技术与设备,2006,7(7):11-14.
    [31]乔海兵,王淑莹,姚学同,et al.污泥回流和前置区THR对氧化沟N、P去除的影响.北京工业大学学报,2007,33(4):408-412.
    [32]朱淑琴,韩梅,张萍.间歇式活性污泥法硝化与反硝化的实验研究.环境工程,1999,17(1):11-13.
    [33]Zyngier D, Araujo O Q, Coelho M A, et al. Robust soft sensors for SBR monitoring. Water Science and Technology,2001,43(3):101-105.
    [34]庞金钊,曹宏斌,杨程,et al.生物膜法去除石化废水氨氮实验.中国给水排水,1998,14(5):47-49.
    [35]石顺存,邹同庆,曾坚贤.涤纶废丝生物接触氧化法处理石化废水.工业水处理,2003,23(9):23-25.
    [36]Gupta A B, Gupta S K. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Research,2001,35(7):1714-1722.
    [37]邹茂荣,彭永臻,荣宏伟.HOBAF工艺处理石化废水生产性实验研究.哈尔滨商业大学学报(自然科学版),2004,20(2):195-198.
    [38]周平,汪诚文,吴晓磊,et al.内循环生物流化床处理石化废水的中试研究.环境科学与技术,1997,18(1):26-29.
    [39]赵宗升,刘鸿亮,李炳伟,et al.,高浓度氨氮废水的高效生物脱氮途径.中国给水排水,2001,17(5):24-28.
    [40]王建龙.生物脱氮新工艺及其技术原理.中国给水排水,2000,16(2):25-28.
    [41]van Loosdrecht M C M, JETTEN M S M. Microbiological Conversions in Nitrogen Removal. Water Science and Technology,1998,38(1):1-7.
    [42]Amann R, Wagner M, Lemmer H. Monitoring the Community Structure of Wastewater Treatment Plants:a Comparison of Old and New Techniques. FEMS Microbiology Ecology, 1998,25(3):205-215.
    [43]Voet J P, Vanstaen H, Verstraete W. Removal of nitrogen from highly nitrogenous wastewaters. Journal of Water Pollution Control Federation,1975,47(4):394-398.
    [44]Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution,1998,102(1):717-722.
    [45]Bemet N, Dangcong P, Delgenes J P, et al. Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering,2001,127(3):266-271.
    [46]白彩华,李亚新.短程硝化反硝化生物脱氮.科技情报开发与经济,2005,15(12):132-133.
    [47]陈清艳,胡群义.亚硝酸氮积累的影响因素.安徽化工,2003,29(5):38-39.
    [48]Hellinga C, Schellen A, Mulder J W, et al. The Sharon process:an innovative method for nitrogen removal from ammoniumrich waste water. Water Science and Technology,1998, 37(9):135-142.
    [49]Jetten M S M, Horn S J, van Loosdrecht M C M. Towards a More SustainableMunicipal Wastewater Treatment Systerm. Water Science and Technology,1997,35(9):171-180.
    [50]Mulder J W, Loosdrecht M C M v, Hellinga C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Science and Technology,2001,43(11):127-134.
    [51]van Kempen R, Mulder J W, Uijterlinde C A, et al. Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Science and Technology,2001,44(1):145-152.
    [52]Genevieve M, Prieur D. Heterotrophic nitrication by a thermophilic Bacillus species as influenced by different culture conditions. Canadian Journal of Microbiology,2000,46(5): 465-473.
    [53]Hong W Z, Donald S M, William K O, et al. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Research,1999,33(4):961-970.
    [54]Kshirsagar M, Gupta A B, Gupta S K. Aerobic Denitrification Studies on Activated Sludge Mixed with Thiosphaera Pantotropha. Environmental Technology,1995,16(1):35-43.
    [55]Kuai L, Verstraete W. Autotrophic denitrification with elemental sulphur in small-scale wastewater treatment facilities. Environmental Technology,1999,20(2):201-209.
    [56]Munch E V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research,1996,30(2):277-284.
    [57]Yoo H, Ahn K H, Lee H J, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Research,1999,33(1):145-154.
    [58]Ho C M, Tseng S K, Chang Y J. Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor. Letters Applied Microbiology,2002, 35(6):481-485.
    [59]Zhao H W, Mavinic D S. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Research,1999,33(4):961-970.
    [60]Robertson L A, van Niel E W, Torremans R A, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology,1988,54(11):2812-2818.
    [61]Robertson L A, Cornelisse R, De Vos P, et al. Aerobic denitrification in various hiterotrophic nitrifiers. Antonie van Leeuwenhoek,1989,56(4):289-299.
    [62]Robertson L A, Kuenen J G. Combined heterotrophic nitrification and aerobic denitrifiaction in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek, 1990,57(3):139-152.
    [63]Satob H, Okabe S, Yamagauchi Y, et al. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Research,2003,37(9): 2206-2216.
    [64]邹联沛,张立,王宝,et al. MBR中DO对同步硝化反硝化的影响.中国给水排水,2001,17(6):10-14.
    [65]Helmer C, Kunst S. Simultaneous nitrification/denitrification in an aerobic biofilm system. Water Science and Technology,1998,37(4-5):183-187.
    [66]Tam L S, Tang T W, Leung W Y, et al. A pilot study on performance of a membrane bio- reaetor in treating fresh water sewage and saline sewage in Hong Kong. Separation Seience and Technology,2006,41(7):1253-1264.
    [67]Mulddr A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology,1995,16(3): 177-183.
    [68]Broda E. Two kinds of lithotrophs missing in nature. Zeitschrift fur Allgemeine Mikrobiologie,1977,17(6):491-493.
    [69]郑平,冯孝善.Jetten M S M, et al厌氧氨氧化菌基质转化特性的研究.浙江农业大学学报,1997,23(4):409-413.
    [70]郑平,胡宝兰,徐向阳,et al.厌氧氨氧化电子受体的研究.应用与环境生物学报,1995,4(1):74-76.
    [71]van de Graaf A A, De Bruijn P, Robertson L A, et al. Autotrophlic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology,1996,142(8): 2187-2196.!
    [72]van de Graaf A A, De Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology, 1997,143(7):2415-2421.
    [73]Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [74]Zheng P, Lin F M, Hu B L, et al. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge. Journal of Environmental Sciences,2004,16(1):13-16.
    [75]Kuypers M M M, Silekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature,2003,422(6932):608-611.
    [76]Risgaard-Petersen N, Meyer R L, Revsbech N P. Denitrification and anaerobic ammonium; oxidation in sediments:Effects of microphytobenthos and NO3-. Aquatic Microbial Ecology,2005,40(1):67-76.
    [77]Smith C V, Gregorio D, Talcot R M. The use of ultrafiltration membranes for activated sludge separation. Proceedings of the 24th Annual Purdue Industrial Waste Conference, Indiana,1969:1300-1310.
    [78]Wang J L, Kang J. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochemistry,2005,40(5):1973-1978.
    [79]Devol A H. Nitrogen cycle:Solution to a marine mystery. Nature,2003,422(6932): 575-576.
    [80]Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [81]Furukawa K, Rouse J D, Yoshida N, et al. Mass cultivation of anaerobic ammonium-oxidizing sludge using a novel nonwoven biomass carrier. Journal of Chemical Engineering of Japan,2003,36(10):1163-1169.
    [82]Schmid M C, Maas B, Dapena A, et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Applied and Environmental Microbiology,2005, 71(4):1677-1684.
    [83]Schmid M, Walsh K, Webb R, et al. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria. Systematic and Applied Microbiology,2003,26(4):529-538.
    [84]van Niftrik L A, Fuerst J A, Sinninghe Damste J S, et al. The anammoxsome:an intracytoplasmic compartment in anammox bacteria. FEMS Microbiology Letters,2004,233: 7-13.
    [85]Schalk J, de Vries S, Kuenen J G, et al. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry,2000,39:5405-5412.
    [86]Lindsay M R, Webb R I, Strous M, et al. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacteria cell. Archives of Microbiology,2001, 175:413-429.
    [87]Egli K, Fanger U, Alvarez P J J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology,2001,175(3):198-207.
    [88]Strous M, van Gerven E, Kuenen G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Applied and Enviromental Microbiology,1997,63(6):2446-2448.
    [89]Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium-oxidizing bacteria. ASM News,2001,67(9):456-463.
    [90]Jetten M S M, Strous M, van de Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews,1998,22(5):421-437.
    [91]Gut L, Plaza E, Trela J, et al. Combined partial nitritation/Anammox system for treatment of digester supernatant. Water Science and Technology,2006,53(12):149-159.
    [92]Toh S K, Ashbolt N J. Adaptation of anaerobic ammonium-oxidizing consortium to synthetic coke-ovens wastewater. Applied Microbiology and Biotechnology,2002,59: 344-352.
    [93]Bock E, Schmidt I, Stuven R, et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonia or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiology,1995,163(1):16-20.
    [94]Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant Journal of Biotechnology,2002,99(3):295-306.
    [95]Dapena-Mora A, Campos J L, A M-C, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR. Journal of Biotechnology,2004,110(2):159-170.
    [96]郑平,冯孝善,Jetten M S M, et al. ANAMMOX流化床反应器性能的研究.·环境科学与技术学报,1998,18(4):367-372.
    [97]胡宝兰,陈旭良,郑平,et al.两种Anammox反应器性能的对比研究.环境科学学报,2005,25(4):545-551.
    [98]杜兵,司亚安,孙艳玲,et al.推流固定化生物反应器培养ANAMMOX菌.中国给水排水,2003,19(17):42-26.
    [99]Third K A, Slikers A O, Kuenen J G, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limittion:nteraction and competition between three groups of bacteria. Systematic and Applied Microbiology,2001,24(4): 588-596.
    [100]Hao X D, Heijnen J J, van Loosdrecht M C. Sensitivity Analysis of a Biofilm Model Describing a One-Stage Completely Autotrophic Nitrogen Removal (CANON) Process. Biotechnology and Bioengineering,2002,77(3):266-277.
    [101]Sliekers A O, Derwort N, Campos Gomez J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research,2002,36(10):2475-2482.
    [102]Jetten M S M, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Current Opinion in Biotechnology,2001,12(3): 283-288.
    [103]Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in a gas lift reactor. FEMS Microbiology Letters,2003,218:339-344.
    [104]Kalyuzhnyi S V, Gladchenko M A, Mulder A, et al. DEAMOX-New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Research,2006,40(19):3637-3645.
    [105]Kalyuzhnyi S V, Gladchenko M A, Kang H, et al. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents. Water Science and Technology,2008,57(3):323-328.
    [106]van Dongen U, Jetten M S M, van Loosdreche M C M. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Science and Technology,2001, 44(1):153-160.
    [107]郝晓地,曹秀芹,仇富国,et al.模拟评价亚硝化-厌氧氨氧化生物膜工艺中氧的消耗.环境科学学报,2006,26(5):798-802.
    [108]Helmer C, Kunst S, Juretschko S, et al. Nitrogen loss in a nitrifying biofilm system. Water Science and Technology,1999,39(7):13-21.
    [109]Christian F, Boehler M, Philipp H, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology,2002,99(3):295-306.
    [110]Chen P, Le-Clech V, Fane A G. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science,2006,284(1-2):17-53
    [111]邢传宏,钱易,Eric T.超滤膜-生物反应器处理生活污水及其水力学研究.环境科学学报,1997,18(5):19-22.
    [112]Lee J, Ahn W Y, Lee C H. Comparison of the filtration charaeteristies between attaehed and suspended growth microorganisms in submerged membrane bioreaetor. Water Researeh, 2001,35(10):2435-2445.
    [113]Cul Z F, Chang S, Fane A G J. The use of gas bubbling to enhance membrane proeesses. Membrane Seience,2003,221(1-2):1-35.
    [114]Kallg I J, Yoon S H, Lee C H. Comparison of the filtration chajracteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Research, 2002,36(7):1803-1813.
    [115]Defrance L, Jaffrin M Y. Comparison between filtrations at fixed transmembrane pressureand fixed permeate flux:application to a membrane bioreactor used for waste water treatment. Journal of Membrane Seience,1999,152(2):203-210.
    [116]Windey K, De Bo I, Verstraete W. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Research,2005,39(18):4512-4520.
    [117]Kumar S M, Madhu G M, Roy S. Fouling behaviour, regeneration options and on-line control of biomass-based power plant effluents using microporous ceramic membranes. Separation and Purification Technology,2007,57(1):25-36.
    [118]Fujii T, Sogino H, Rouse J D. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biobass carrier. Journal of Bioscience and Bioengineering,2002,94(5):412-418.
    [119]Furukawa K, Lieu P K, R H, et al. Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Science and Technology,2006,53(6):83-90.
    [120]Mobarry B K, Wagner M, Urbain V, et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Applied and Enviromental Microbiology,1996, 62(6):2156-2162.
    [121]Harmsen H J M, Prieur D, Jeanthon C. Group-specific 16SrRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Applied and Environmental Microbiology,1997a, 63:4061-4068.
    [122]Daims H, Bruhl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology 1999,22:434-444.
    [123]Manz W, Amann R I, Ludwig W, et al. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria:problems and solutions. Systematic and Applied Microbiology,1992,15:593-600.
    [124]Schwieger F, Tebbe C C. Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Applied and Enviromental Microbiology,2000,66(8):3556-3565.
    [125]Neef A, Amann R, Schlesner H, et al. Monitoring a widespread bacterial group:in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology,1998,1144: 3257-3266.
    [126]Kowalchuk G A, Bodelier P L E, Heilig G H J, et al. Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiology Ecology,1998,27:339-350.
    [127]Regan J M, Harrington G W, Noguera D R. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-scale chloraminated drinking water distribution system. Applied and Environmental Microbiology,2002,68:73-81.
    [128]Benson D A, Karsch-Mizrachi I, Lipman D J, et al. GenBank. Nucleic Acids Research, 2002,30(1):17-20.
    [129]Siegrist H, Reithaar S, Koch G, et al. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon Water Science and Technology, 1998,37(4-5):589-591.
    [130]Khin T, Annachhatre A P. Novel microbial nitrogen removal processes. Biotechnology Advances,2004,22(77):519-532.
    [131]李小鹏,张代钧,曹琳,et al.氨氧化菌在污水生物处理中的作用.中国给水排水,2004,20(5):24-27.
    [132]国家环境保护局,水和废水检测分析方法编委会.水和废水检测分析方法(第四版).北京:中国环境科学出版社,2002.
    [133]Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammonia and nitrous acid Water Pollution Control Federation,1976,48(5):835-852.
    [134]Bae W, Baek S C, Chung J W, et al. Nitrite accumulation in batch reactor under various operational conditions. Biodegradation,2002,12:359-366.
    [135]Wang J L, Yang N. Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry,2004,39(10):1223-1229.
    [136]Helmer C,Tromm C, Hippen A, et al. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems. Water Science and Technology,2001,43(1):311-320.
    [137]Balmelle B, Nguyen K M, Capdeville B. Study of factors controlling nitrite build-up in biological processes for water nitrification. Water Science and Technology,1992,26(5-6): 1018-1025.
    [138]Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research,2003,37(6): 1371-1377.
    [139]Tokutomi T. Operation of a nitrite-type airlift reactor at low DO concentration. Water Science and Technology,2004,49(5-6):81-88.
    [140]Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended growth reactor. Water Research,1990,24(3): 297-302.
    [141]王志盈,刘超翔,彭党聪,et al.高氨浓度下生物流化床内亚硝化过程的选择特性研究.西安建筑科技大学学报,2000,32(1):3-7.
    [142]Alleman J E. Elevated Nitrite Occurrence in Biological Wastewater Treatment Systems. Water Science and Technology,1984, 17(2-3):409-419.
    [143]Gong Z, Liu S T, L Y F, et al. Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal. Bioresource Technology,99(8):2749-2756.
    [144]Meng F G, Yang F L, Shi B Q, et al. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities. Separation and Purification Technology,2008,59(1):91-100.
    [145]Dong X, Tollner E W. Evaluation of Anammox and denitrification during anaerobic digestion of poultry manure. Bioresource Technology,2003,86(2):139-145.
    [146]Storus M, van Gevren E, Kuenen J G, et al. Eeffets of aerboic and microaerobic conditions on the anaerboic ammonium-oxidizing (ANAMMOX) sludge. Applied and Environmental Microbiology,1997,63(6):2446-2448.
    [147]Pynaert K, Smets B F, Wyffels S, et al. Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lad-scale rotating biological contactor. Applied and Environmental Microbiology,2003,69(6):3626-3635.
    [148]Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium-oxidizing bacteria. ASM News, 2001,67(9):456-463.
    [149]Schmid M C, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology,2000,23:93-106.
    [150]Quan Z-X, Rhee S-K, Zuo J-E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environmental Microbiology,2008,10(11):3130-3139.
    [151]郑平,胡宝兰,徐向阳.厌氧氨氧化菌好氧代谢特性的研究.浙江大学学报(农业与生命科学版),2000,26(5):521-526.
    [152]Poth M. Dinitrogen production from nitrite by a Nitrosomonas isolate. Applied and Enviromental Microbiology,1986,52(4):957-959.
    [153]Liu S T, Yang F L, Xue Y, et al. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor. Bioresource Technology,2008,99(17):8273-8279.
    [154]Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended growth reactor. Water Research,1990,24(3): 297-302.
    [155]Lieu P K, Homan H, Kurogl A, et al. Characterization of sludge from single-stage nitrogen removal using anammox and partial nitritation (SNAP). Japanese Journal of Water Treatment Biology,2006,42(2):53-64.
    [156]Henze M, Harremoes P, LA Cour Jansen J. Wastewater Treatment:Biological and Chemical Processes. Springer, Heidelberg,1997.
    [157]陈洪斌,唐贤春,董滨,et al.市政污水处理厂工艺运行探讨.环境工程,2006,24(6):19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700