短程同步硝化反硝化的过程控制及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化问题的日渐突现,水质指标体系的不断严格使废水中氮的去除问题成为水污染控制中广泛关注的热点。传统生物脱氮工艺将硝化和反硝化过程在时间上或空间上分离,因此系统复杂,能耗较大,运行管理不便。
     同步硝化反硝化是近几年发展起来的新型生物脱氮工艺,该工艺不仅可以减少污泥生产量,缩短生物脱氮工艺流程,而且省去了第二阶段的缺氧反硝化池或减少其体积,减少了工程造价。若把同步硝化反硝化控制在NO_2~--N阶段,则可进一步缩短反应历程,减少更多的需氧量和碳源。
     本实验采用序批式活性污泥法(SBR),以模拟城市污水为处理对象,研究短程同步硝化反硝化的培养过程、各影响因素的影响效果,并在此基础上以DO、ORP和pH值为过程控制参数进行在线监测,考察DO、ORP和pH在反应过程中的变化规律、其作为过程控制参数的可行性以及各影响因素对其的影响。
     实验中,通过控制DO、泥龄以及排水方式,成功实现短程同步硝化反硝化的稳定运行。稳定运行期间,平均NH_4~+-N、COD和TN的去除率分别为95%、92%和85%。
     控制进水COD为230~260mg/L,NH_4~+-N浓度为30mg/L左右,短程同步硝化反硝化各因素最佳控制范围为:温度为15-25℃,DO为0.5~1.0mg/L;进水pH值为7.0~7.5,进水C/N值范围为10.0:1~13.3:1,在这些范围内,TN去除率均达到80%以上。
     取DO、pH和ORP为SBR短程同步硝化反硝化工艺过程控制参数,对于稳定状态下短程同步硝化反硝化,其反应过程中期DO、pH和ORP曲线突跃点B可以作为COD降解基本结束的控制点,后期的曲线突跃点C可以作为整个反应结束的控制点。而分析各影响因素对其过程控制的影响可知,pH值曲线折点B可作为COD降解基本完成的控制点,ORP曲线折点C可作为整个反应结束的控制点。
Eutrophication question of nature water has become more and more obviously. The increased strictly water quality standard systems make people pay more attention to nitrogen removal of wastewater treatment. The traditional biological denitrification processes make nitrification and denitrification occur in different units or in the same unit in sequence, so forming the result of complicated system, high energy consumption and inconvenient operation management.
     Simultaneous nitrification and denitrification(SND) is a new biological nitrogen removal process which was developed in the last few years. Not only this process may reduce the biomass production, shorten the nitrogen removal pathway, but also omit the second(anoxic) tank, or reduce its size,.and save the construction cost further more. The SND via to nitrite can be achieved by controlling ammonia to be oxidized to nitrite only. Theoretically it can shorten reaction process further, and reduce carbon source and oxygen demand more.
     The experiment was carried out to research on the synthetic municipal wastewater in Sequence Batch Reactor(SBR). The research focus on the sludge culture of SND via to nitrite and the affecting factors. At the basis of these studies, the change law of DO, ORP and pH in the reaction process was studied by on-line monitoring. The possibility of DO, ORP and pH as the process control parameters and the impacts of the other factors were investigated also.
     The stable SND via to nitrite can be achieved by controlling DO, sludge age and drainage method in the research. And the effluent water quality was steady, which the average removal rates of NH_4~+-N, COD and TN can be up to 95%, 92%,and 85% respectly.
     When COD is about 230~260mg/L, NH_4~+-N is about 30mg/L, the best control range of SND via to nitrite is: temperature about 15~25℃, DO about 0.5~1.0mg/L, pH about 7.0~7.5, C/N about 10.0:1~13.3:1. The removal rate of TN can be up to 80% in these range.
     Taking DO, pH and ORP as the controlling parameters of SND via to nitrite process in SBR, the judgment on the ending of COD degradation can be based on the varied curve B of DO, pH and ORP, and the judgment on the ending of SND via to nitrite can be based on the varied curve C of DO, pH and ORP. Analyzing the impacts of process control for influencing factors, it is know that the judgment on the ending of COD degradation can be based on the varied curve B of pH, and the judgment on the ending of SND via to nitrite can be based on the varied curve C of ORP.
引文
[1]叶剑锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006
    [2]赵丹,任南琪,马放等.生物脱氮学微生物学及研究进展[J].,哈尔滨建筑大学学报,2002,35(5):60-65
    [3]钱易,祥友.现代废水处理新技术[M].北京:中国科学技术出版社,1993:280-285
    [4]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-18
    [5]陈坚.环境生物技术.第一版[M].北京:中国轻工业出版社,1999
    [6]李勇智.短程生物脱氮和反硝化除磷的基础研究.哈尔滨工业大学博士学位论文.2003
    [7]高廷耀,顾国维.水污染控制工程下册(第二版)[M].高等教育出版社,2001,4
    [8]周仰原.环境条件与同时硝化反应硝化反硝化的研究.同济大学硕士学位论文,2001
    [9]张鹏.低氧条件下同时硝化反硝化工艺研究.同济大学硕士学位论文,2002
    [10]朱晓军,高廷耀,周增炎.低氧活性污泥法脱氮除磷工艺生产性研究[Z].同济大学-达姆斯达特工业大学学术交流会会议论文。1997,1-6
    [11]吕宏德主编.水处理工程技术[M].北京:中国建筑工业出版社,2005
    [12]李军,杨秀山,彭永臻编著.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [13]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-19.
    [14]杨朝辉,曾光明等.废水生物脱氮除磷机理与技术研究的进展[J].四川环境,2002,21(2):25-29.
    [15]林燕,何义亮,孔海南等.MBR中同步硝化反硝化及异样硝化现象的试验研究[J].膜科学与技术,2006,26(2):22~26.
    [16]张志,任洪强,张蓉蓉等.pH值对好氧颗粒污泥同步硝化反硝化过程的影响[J].中国环境科学,2005,25(6):650-654.
    [17]张光亚,陈培钦.好氧反硝化菌的分离鉴定及特性研究[J].微生物学杂志,2005,25(6):23-26.
    [18]马放,王弘宇,周丹丹.活性污泥体系中好氧反硝化菌的选择与富集[J].湖南科技大学学报(自然科学版),2005,20(2):80-83.
    [19]王海燕,刘海涛,田华菡等.全自养生物脱氮新工艺研究进展[J].环境污染治理技术与设备,2006,7(4):1-6.
    [20]任延丽,靖元孝.反硝化细菌在污水处理作用中的研究[J].微生物杂志,2005.25(2):88~92.
    [21]Modin O,Fukushi K,Yamamoto K.Denitrification with methane as external carbon source[J].Water Research,2007,41(12):2726-2738
    [22]Gao S,Peng Y,Wang S,et al.Novel strategy of nitrogen removal from domestic wastewater using pilot Orbal oxidation ditch[J].Journal of Environmental Sciences,2006,18(5):833-839
    [23]Wang X,Xia S,Chen L,et al.Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor[J].Process Biochemistry,2006,41(4):824-828
    [24]Voets J P,Wanstaen H,Verstraete W.Removal of nitrogen from highly nitrogenous wastewater[J].J Wat Pollution Control Fed,1975,47:394-398
    [25]Marshall Spector,Production and Decomposition of Nitrous Oxide Gas during Biological Denitrificaion[J].Water Environmental Research,1998,70:1096-1098
    [26]潘杨,李勇,黄勇.单级生物膜法脱氮机理及影响因素[J].苏州城建环保学院学报,2000,13(4):89-93
    [27]袁江林,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31
    [28]于德爽,彭永臻,张相忠等。中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003,9(1):40-42
    [29]S.Mike,M.Jetten,J.Hom and C.M.Mark van Loosdrecht.Towards a more sustainable municipal wastewater treatment system[J].Wat.Sci.Tech.,1997,35(9):171-180
    [30]Hellinga C,Schellen,A A J C,Mulder J W,et al.The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water[J].Water Sci Technol,1998,37(9):135-142
    [31]Schmidt I,Sliekers O,Schmid M,et al.New concepts of microbial treatment processes for the nitrogen removal in wastewater[J].FEMS Microbiology Reviews,2003,27(4):481-492
    [32]J.W.Muler.N-Removal by SHARON[J].IAWG Conference.1998:30-31
    [33]L.Kuai.Ammonium removal by the oxyen-limited autotropjic nitrification denitrification system[J].Envir.Microbiol.,1998,64(11):4500-4506
    [34]Broda E.Two kinds of lithotrophs missing in nature[J].Z Allg Microbiol,1997,17:491-493
    [35]Kuenen J G,Robertson L A.Combined nitrification-denitrification process[J].EMS Microbiol Rev,1994,15(2):109-117
    [36]Van de graaf L A,Mulder A A,et al.Anaerobic Oxidation of ammonium is a biologically mediated process[J].Appl Envir Microbiol,1995,64(4):1246-1251
    [37]A.L.Stepanov,T.Korpela.Microbial Basis for the Biotechenological Removal of Nitrogen Oxides fromm Flue Gases[J].Biotechol Appl Bichem.1997,25(2):97-104
    [38]A.A.Graff.Anaerobic Oxidation of Ammonium is a Biologically Mediated Process[J].Appl Environ Microbiol.1995,60:1246-1251
    [39]王建龙.NH_4~+的厌氧氧化[J].生命的化学.1997,17(6):37-38
    [40]Irvine R L,Busch A W.Sequencing batch biological reactors:an overview[J].WPCF,1979,51(2):235-243.
    [41]Mumz M,Lavm A G,Diaz M.Start-up strategy for SBR treatment of complex industrial wastewater[J].Wat.Sci.Technol.,1994,30(3):149-155.
    [42]李健,陈双星,石凤林等.大型SBR工艺启动特点及活性污泥培养驯化[J]. 给水排水,2001,27(5):30-32
    [43]周雹.SBR工艺的分类和特点[J].给水排水,2001,27(2):31-33.
    [44]陈国喜,詹伯君.SBR生化系统的应用及其发展[J].环境科学进展,1998,6(2):35-39
    [45]彭永臻.SBR法的五大优点[J].中国给水排水,1993,9(2):29-31
    [46]Dennis R W,Irvine R L.Effect of fill:react ratio on sequencing batch biological reactors[J].WPCF,1979,51(2):255-263
    [47]Silverstem J,Schroeder E D.Performance of SBR activated sludge processes with nitrification/denitrification[J].Wat.Pollut.ControlFed,1983,55:377
    [48]Alleman J E,Irvine R L.Storage-induced denitrification using sequencing batch reactor operation[J].Water Research,1980,14:1483-1490
    [49]Ketchum L H,Irvine R L,Breyfogle R E,et al.,Comparison of biological and chemical phosphorus removals in continuous and sequencing batch reactors[J].Water Poll ControlFed,1987,59:13-18
    [50]Coelho M AZ,Russo C,Araujo O Q F.Optimization of as equencing batch reactor for biological nitrogen removal[J].Water Res.,2000,34(10):2809-2817
    [51]Alleman J E,Irvine R L.Storage-induced denitrification using sequencing batch reactor operation[J].Water Research,1997,(14):1483-1488
    [52]王福珍.污泥膨胀问题与序列间歇式活性污泥法[J].中国环境科学,1995,(4):131-134
    [53]Han Qingyu.Effects of addition of ferric hydroxide or powered activated carbon on sequencing batch reactors treating coke-plant wastewater.Environ[J].Sci.Health,1997,32(5):1605-1619.
    [54]Sanghoon L,Jihun L.Effects of heavy metals and phenol on the operation of sequencing batch reactor added activated carbon[J].Hwahak Konghak,2000,38(2):269-276
    [55]周少奇,周吉林.生物脱氮新技术研究发展[J].环境污染治理技术与设备,2000,1(6):11-19
    [56]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水, 2000,16(2):29-31
    [57]袁林江,王志盈,彭党聪等.生物流化床内亚硝酸积累实验[J].中国环境科学,2000,20(3):207-210
    [58]王志盈,袁林江,彭党聪等.内循环生物流化床内硝化过程的选择特性研究[J].中国给水排水,200,16(4):1-4
    [59]王志盈,刘超翔,彭党聪等.高氨浓度下生物流化床内硝化过程的选择特性研究[J].西安建筑科技大学学报,2000,32(1):1-3
    [60]王志盈,刘超翔,彭党聪等.低溶氧下生物流化床内硝化过程的选择特性研究[J].西安建筑科技大学学报,2000,32(1):4-7
    [61]Turk O.,Mavinic D.S.Maintaining nitrite build up in a system acclimated to free ammonia[J].Wat.Res.,1989,23(11):1383-1388
    [62]S.Villaverde,F.FDZ-Polanco,et al.Nitrifying biofilm acclimation to free ammonia in submerged biofilters:Start-up influence[J].Wat.Res.,2000,34(2):602-610
    [63]Joanna Surmacz-Gorska,Andrzej Cichon,et al.Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification[J].Wat.Sci.Tech.,1997,36(10):73-78
    [64]Hanaki K.,Wantawin C.,et al.Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended growth reactor[J].Wat.Res.,1990,24(3):297-302
    [65]周海东,刘勤亚,张业健.泥龄应用中有关问题的探讨[J].污染防治技术,2003,16(2):13-16
    [66]van loosdrecht MCM,Jetten MSM.Microbiological conversions in nitrogen removal[J].Wat Sci Tech,1998,38(1):1-7
    [67]Zhao HW,Mavinic DS,Oldham WK,Koch FA.Controlling factors for simultaneous nitrification and denitrification in a two-stage inter-mittent aeration process treating demestic sewage[J].Wat Res,1999,33(4):961-970
    [68]吴静文,李文英,许萍妹.好氧颗粒污泥与普通活性污泥的同步培养与性能比较[J].太原理工大学学报,2006,37(6):611-614
    [69]PengDC,Bernet N,Delgenes JP.Moletta R.Aerobic granular sludge-a case report E[J].Wat Res.1999,33(3):890-893
    [70]Morgenroth E,Sherden T,van Loosdrecht MCM,Heijnen JJ,Wilderer PA.Aerobic granular sludge in a sequencing batch reactor[J].Wat Sci Tech,1997,31(12):I39-146
    [71]Beun JJ,Hendriks A,van Loosdrecht MCM,,Morgenroth E,Wilderer PA,Heijnen JJ.Aerobic granulation in a SBR reactor[J].Wat Res,1999,33(10):2283-2290
    [72]Etterer T,Wilderer PA.Generation and properties of aerobic granular sludge[J].Wat Sci Tech,2001,43(3):19-26
    [73]辛明秀,周培瑾.低温微生物研究进展[J].微生物学报,1998 38(5):400~403
    [74]解英丽,池福强,龙韬.亚硝酸盐反硝化与硝酸盐反硝化对比研究[J].工业安全与环保,2009,35(2):11-13
    [75]王鹏,林华东.短程硝化反硝化影响因素分析[J].工业用水与废水,2007,38(2):12-15
    [76]唐光明,吴文卫,杨逢乐.同时硝化反硝化的生态因子研究进展[J].环境科学导刊,2009,28(1):8-12
    [77]祝贵兵,彭永臻,郭建华.短程硝化反硝化生物脱氮技术[J].哈尔滨工业大学学报,2008,40(10):1552-1557
    [78]尚会来,彭永臻,张精蓉,王淑莹.温度对短程硝化反硝化的影响[J].环境科学学报,2009,29(3):516-520
    [79]张立秋,韦朝海,张可方,张朝升,方茜,李淑更.常温下SBBR反应器中亚硝酸型同步硝化反硝化的实现[J].环境工程,2009,27(1):40-43
    [80]张可方,杜馨、张朝升.DO、C/N对同步硝化反硝化影响的试验研究[J].环境科学与技术.2007,30(6):3~5;
    [81]张立秋、张可方,张朝升.DO对亚硝酸型SND的影响[J].水处理技术,2008,8(8):29-33:
    [82]马娟,彭永臻,王丽,王淑莹.温度对反硝化过程的影响以及pH值变化规律[J].中国环境科学,2008,28(11):1004-1008
    [83]白璐,王淑莹,宋乾武,代晋国,陈滢.不同温度低溶解氧条件下活性污泥 法处理污水的效果研究[J].安全与环境工程,2006,13(4):39-42
    [84]方茜、张朝升、张可方等.污泥龄及pH值对同步硝化反硝化的影响[J].广州大学学报,2008,3(7):50-54;
    [85]杜馨,张可方,方茜.碳源对SBR工艺同步硝化反硝化的影响[J].中国给水排水.2007,23(11):47~51;
    [86]高景峰,彭永臻,王淑莹等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700