单级自养脱氮系统中功能菌的分子生物学鉴定及氨氧化反应关键酶基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单级自养脱氮工艺是指在同一反应器内、由自养细菌完成由氨氮至氮气全部转化过程的一类工艺,是近年来出现的一种新型脱氮工艺。该工艺具有简化工艺流程节省供气量和动力消耗、不需外加碳源及减少工艺处理费用等优点,因此有很好的应用前景。但由于该工艺脱氮机理的不明晰,因此影响了其在环保工业上的应用。本研究着眼于该系统的功能菌,从氨氧化菌和厌氧氨氧化菌的种群进化及氨氧化菌功能基因amoA和hao的原核表达入手,以期从生物学角度为该系统的脱氮机理的研究提供理论基础。
     本研究对稳定运行、氨氮转化率及总氮去除率分别达到90%及80%左右的单级自养脱氮系统的底部的活性污泥为研究材料,研究结果如下:
     (1)采用分子生物学方法提取活性污泥细菌总DNA,利用特异引物Pla46rc/Amx820对单级自养脱氮系统中的厌氧氨氧化菌16S rDNA基因进行PCR扩增,扩增产物经克隆、测序及BLAST分析。研究结果表明,该单级自养脱氮系统中存在的厌氧氨氧化菌与目前鉴定出的厌氧氨氧化菌Candidatus Kuenenia stuttgartiensis和Candidatus Brocadia anammoxidans的16S rDNA序列同源性达99%,进化分析证明与Candidatus Kuenenia stuttgartiensis进化上较为接近。
     (2)以活性污泥为材料富集培养氨氧化菌,提取细菌总DNA,分别设计氨氧化菌16S rDNA、氨单加氧酶基因(amoA)及羟胺氧化酶基因(hao)的特异引物,扩增产物经克隆、测序及BLAST分析。研究结果表明该系统中存在的氨氧化菌的16S rDNA、amoA和hao分别与已知具有氨氧化功能的Nitrosomonas europaea ATCC 19178,Uncultured bacterium clone amoA_SBR_JJY clone,Nitrosomonas sp. ENI-11的同源性达到99%,99%,100%。进化分析证明该系统中存在的氨氧化菌和“Nitrosomonas sp. DYS323”、“Nitrosomonas sp. DYS317”、“Uncultured bacterium clone amoA_SBR_JJY 61clone”、“Uncultured bacterium clone amoA_SBR_JJY 70clone”、Nitrosomonas sp.ENI-11hao2进化上较为接近。上述研究结果表明该系统中存在厌氧氨氧化菌和氨氧化菌,其中氨氧化菌属于亚硝化单胞菌属,且在系统中存在几种同属不同种的氨氧化菌。
     (3)本研究将成功克隆的氨单加氧酶基因(amoA)和羟胺氧化酶基因(hao)的全长序列,构建pET32a原核表达载体,得到重组质粒后,转化到表达宿主菌BL21(DE3)中进行原核表达。研究结果表明以1.0 mmol/L IPTG诱导6 h的目标融合蛋白的表达量最高,并通过Western Blot鉴定了目的蛋白的正确表达。粗酶液活性测定结果表明,通过原核表达的AMO和HAO均有较强的活性,为后续构建工程菌株打下了基础。
Single-stage autotrophic nitrogen removal process is achieved in one single reactor, where ammonia is oxidized to nitrogen by autotrophic bacteria simultaneously. It is a new nitrogen removal process and has many advantages such as less gas and power supplying, no extra carbon source, fewer costs of processing etc, and it will have a better application prospect in the field of environmental protection. Until now the mechanism of nitrogen removal is not yet clear, which impedes its application. Research on the functional bacterial in the system has been in progress in order to explicate the mechanism of ammonia romoval. Here this study focused on phylogenetic analysis of two important groups in the single-stage autotrophic nitrogen removal system, anaerobic ammonium-oxidizing bacteria (ANAMMOX bacteria) and ammonium-oxidizing bacteria (AOB), and prokaryotic expression of functional gene amoA and hao in order to provide a theoretical foundation for the mechanism of nitrogen removal.
     In this study, using the cultivated sludge from the single-stage autotrophic nitrogen removal system with stable operation and 90% of ammonia conversion rate and 80% of total nitrogen removal rate, several aspects were investigated as follows.
     (1) With the total DNA extracted from cultivated sludge, partial 16S rDNA sequence of ANAMMOX bacteria was amplified by polymerase chain reaction (PCR) with a pair of specific primers Pla46rc/Amx820. Amplified product was cloned, sequenced and analyzed by BLAST. The result indicated that the sequence has 99% identities with ANAMMOX bacteria Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia anammoxidans. The phylogenetic analysis showed that the anaerobic ammonium-oxidizing bacteria in the single-stage autotrophic nitrogen removal system have closer relationship with Candidatus Kuenenia stuttgartiensis evolutionarily.
     (2) With the total DNA extracted from cultivated sludge through four times of enrichments, partial sequence of 16S rDNA, the full length sequences of ammonia monooxygenase (amoA) gene and hydroxylamine oxidoreductase (hao) gene of AOB were amplified by PCR with specific primers which were designed according to sequence published NCBI GenBank. Amplified product was cloned, sequenced and analyzed. The result showed that the sequences of 16S rDNA, amoA and hao have 99%, 99% and 100% identities with Nitrosomonas europaea ATCC 19178, Uncultured bacterium clone amoA_SBR_JJY clone, Nitrosomonas sp.ENI-11, respectively. The phylogenetic analysis revealed that the AOB in the single-stage autotrophic nitrogen removal system have closer relationship with“Nitrosomonas sp. DYS323”、“Nitrosomonas sp. DYS317”、“Uncultured bacterium clone amoA_SBR_JJY 61clone”、“Uncultured bacterium clone amoA_SBR_JJY 70clone”and“Nitrosomonas sp.ENI-11hao2”. The results described above demonstrated that ANAMMOX bacteria and AOB exist in the system, and that the AOB belongs to different species of Nitrosomonas sp.
     (3) The full-length sequences of the amoA and hao were successfully amplified with the specific primers based on published amoA and hao sequences in NCBI. The amoA and hao had been cloned into the prokaryotic expression vector pET-32a, generating the recombinant plasmid pET-32a-amoA and pET-32a-hao that were then transformed into E. Coli BL21 (DE3). The best induction of recombinant AMO and HAO was obtained when 1.0 mmol/L IPTG was added into the E. Coli BL21 (DE3) incubated for 6 h at 37℃and 30℃, respectively. Western Blot detection showed that the fusion protein was correctly expressed in E. Coli BL21 (DE3). Detection of crude enzyme activity showed that the activity of AMO and HAO was stronger in vitro. This result established the theoretical basis for building engineering bacteria.
引文
[1]任南琪,马放.污染控制微生物学原理与应用[M].北京:化学工业出版社, 2003, 6: 170-171.
    [2]吴婉娥,葛红光,张克峰.废水生物处理技术[M].北京:化学工业出版社, 2003, 2(第一版): 167-168.
    [3]徐亚同,史家裸,张明等.污染控制微生物工程[M].北京:化学工业出版社, 2001, 5: 170-171.
    [4]李季,杨秀山,彭永等.微生物与水处理工程[M].北京:化学工业出版社, 370-371.
    [5]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998, 11: 6-9.
    [6] C. P.Leslie Grady.Jr.等.张锡辉等译.废水生物处理第二版,改编和扩充[M].北京:化学工业出版社, 21103.
    [7]郑兴灿等.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998, 11.
    [8]周少奇,周吉林.生物脱氮新技术研究进展[M].环境污染治理技术与设备, 2000, 1(6): 11-19.
    [9]冯叶成.王建龙.钱易.生物脱氮新工艺研究进展[J].微生物学通报, 2001, 28(4): 88-91.
    [10] Hunik JH. Engineering aspects of nitrification with immobilized cell[J]. Ph D thesis, wageningen Agricultural University. the Netherlands.1995.
    [11] Third KA, Slickers AO and Kuenen JCr, et al.. The CANON System(Completeiy autotrophic nitrogen removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria[J]. System Appl Microbial. 2001. (24): 588-596.
    [12] Kuai L, Verstraete W. Ammonium removal by the oxygen limited autotrophic nitrification denitrification (OLAND) system[J]. Appl Environ Mlcrobiol, 1998. 64(11): 4500-4506.
    [13] Hanaki K, et al.. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J]. Wat Res. 1990. (24): 379-402.
    [14] Laanbroek HJ, Gerards S. Competition for limiting amounts of oxygen between nitrosomonas europaea and nitrobacteria winogradskyi grown in mixed continuous culture[J]. Arch Micribiot, 1993. (159): 453-459.
    [15]王志盈,袁林江,彭党聪等.内循环生物流化床硝化过程的选择特性研究[J].中国给水排水, 2000, 16(4): 1-4.
    [16] Van de Graaf, Mulder AA, de Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Appl Environ Microbial, 1995. (61): 1246-1251.
    [17] Jeten M S M. The anaerobic oxidation of ammonium.[J]. FEMS microbial Rev, 1999. 22(5):421-437.
    [18] Strous M.. Ammonium removal from concentrated waster streams with the Anaerobic Ammonium oxidation(Anammox)process in different reactor configurations[J]. Wat Res, 1997. 31(g): 1955-1961.
    [19] Van de Graaf A. A. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbial, 1997. 143(7): 2415-2421.
    [20] Egli K. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium rich leachate[J]. Arch Microbial, 2001. 175(2): 198-207.
    [21] Jones M L. Mechanisms of dinitrogen gas formation in an aerobic lagoons[J]. Advances in Envrian Res, 2000. 4(2): 133-139.
    [22] SUN G Z , AUSTIN D. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands : Evidence from a mass balance study [ J ] .Chemosphere, 2007. 68 (6): 1120-1128.
    [23] SLIEKERS A O , DDEWORTH N , GOMEZJ L C , et al.Completely autotrophic nitrogen removal over nitrite in one single reactor [ J ]. Water Research, 2002. 36 (10): 2475-2482.
    [24] GON G Z , YANG F L , L IU S T , et al. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox [J ] . Chemosphere, 2007. 69 (5): 776-784.
    [25] Hippen A , Rosenwinkel KH, Baumgarten G, et al. Aerobic deammonification: a new experience in the treatment of wastewater[J]. Water Science Technology, 1997. 35: 111– 1201.
    [26] Helmer C Kunsts,Juretsch Ko s,et al .Nitrogen loss in a nitrifying biofilm system [J]. Wat Sci Tech, 1999. 39(7): 13-21.
    [27] Olav sliekers A Third K A Abmaw. CANON and Aananmmox in a gas-lift reactor[J]. FEMS Mcrobiology Letter, 2003. (18): 339-344.
    [28] Third KA, Sliekers AO. The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria[J]. FEMS Microbiology Letters, 2002. 24(4): 558-596.
    [29] Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Applied & Environmental Microbiology, 1998. 64: 4500-4506.
    [30] Sliekers AO, Derworth N, Campos Gomez JL, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Wat Res, 2002. 36: 2475-2482.
    [31]秦宇,方芳,郭劲松,等.溶解氧对单级自养脱氮系统功能菌数量的影响[J].微生物学报, 2009, 49 (6): 773– 779.
    [32]郭劲松,秦宇,方芳,等.单级自养脱氮系统亚硝化菌株的分离、鉴定及定性[J].微生物学报, 2008, 48(8): 1088 - 1094.
    [33]郭劲松,杨国红,方芳,等.单级自养脱氮污泥的厌氧氨氧化代谢特征[J].重庆大学学报, 2009, 32(6): 721-726.
    [34]秦宇,郭劲松,方芳,等.溶解氧及曝停比对单级自养脱氮系统微生物群落结构的影响[J].环境科学, 2009, 30(2): 493-498.
    [35]方芳,杨国红,郭劲松,等. DO和曝停比对单级自养脱氮工艺影响试验研究[J].环境科学, 2007, 28(9): 1975-1980.
    [36]黄俊丽,王贵学,肖丽,等.全程自养脱氮体系中硝化菌株的筛选和鉴定[J].西南大学学报(自然科学版), 2007, 29(1): 34-38.
    [37]徐冬梅,聂梅生,金承基.亚硝酸型硝化试验研究[J].给水排水, 1999, 25(7):37-39.
    [38]黄俊丽,肖丽,王贵学,等.全程自养脱氮体系中的微生物区系分析[J].微生物学通报, 2005, 35(6): 78-82.
    [39]李慧莉,吕炳南,李芳,等.新型脱氮技术:一体化完全自养脱氮系统[J].水资源保护, 2007, 23(4): 73-76.
    [40]赵宗升,刘鸿亮,李炳伟,等.高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水, 2001, 17(5): 24-28.
    [41]郑金来,李君文,晁福寰.几株亚硝化菌的筛选及初步鉴定[J].上海环境科学, 2002, 21(5): 291-293
    [42] Hanks.J. H.., R. L. Weintraub. The Pure Culture Isolation of Ammoniaoxidizing Bacteria. J. Bacteriol. 1936, 32: 653–670.
    [43] Homes N G,et al. Mutagenesis and expression of amo,which codes for ammonia monooxygenase in Ntrosomonas europaea[J. J Bacteriol, 1998, 180(13): 3353-3359.
    [44] Voytek M A,Ward B B. Detection of ammonium-oxidizing bactetia of beta-subclass of the class proteobacteria in aquatic samples with the PCR[J]. Appl Environ Microbiol, 1995. 61: 1444-1450.
    [45] Daniel J. Arp, Luis A. Sayavedra-Soto,Norman G. Hommes.Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea[J]. Arch Microbiol , 2002, 178: 250-255.
    [46]陈岭.氨单加氧酶基因(amoA)在氨氧化细菌种群分析和定量检测中的应用研究[D].浙江大学, 2003.
    [47] Woese,C.R. et al. The Phylogeny of purple bacteria: the alpha subdivision[J]. Syst. APPl. Mierobiol, 1984, 5: 316-326.
    [48] Head,L.M.et al. The phylogeny of autotrophic ammonia-oxidizing Bacteria as detennined by analysis of 16S ribosomal RNA gene sequences[J]. J. General. Mierob, 1993. 139: 1147-1153.
    [49] Teske , A.et al.1994.Evolutionary relationships among ammonia and intrite-oxidizing bacteria[J]. J. Bacteria. 1994. 176: 6623-6630.
    [50] Bdard L.W.et al. Physiology,biochemistry and specific inhibitors of CH4,NH4+and CO oxidation by methnotrophs and nitrifiers[J]. Microbiol.Rev. 1989. 53: 68-84.
    [51] KlotZ,M.G.et al. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia-oxidizing bacteria: a third member of the amo operon[J]. FEMS Microbiol. Lett. 1997, 150: 65-73.
    [52] McTavish, H. et al. 1993.Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea[J]. J. Bacteriol.1993, 175: 2436-24.
    [53] Jeanette M. Norton . J. Javier Alzerreca. et al. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria[J]. Arch Microbiol, 2002, 177 : 139-149.
    [54] Daniel J. Arp, Luis A. Sayavedra-Soto,Norman G. Hommes. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea[J]. Arch Microbiol. 2002, 178: 250-255
    [55] Hyman,M.R.1998.Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes,alkenes and akynes[J]. APPL. Environ.Mierobiol. 1998, 64: 3187-3190.
    [56] Keener,W.K.et al. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia-oxidizing bacteria; a third member of the amo operon[J]. FEMS Microbiol.Lett. 1997, 150: 65-73.
    [57] Rasche,M.E.et al. Oxidation of mnohalogenated ethanes and n-chiorinated alkanes by whole cells of Nitrosomonas europaea[J]. J.Bacteriol. 1990, 172: 5368-5373.
    [58] Vermelli,T.et al. Degradation of halogenated hydtoeatbon aliphatic aompounds by the ammonia oxidizing bacterium Nitorsomonas europaea[J]. Appl. Environ. Mierobiol. 1990, 56: 1169-1171.
    [59] Sinigalliano , C.D.et al. Amplifieation of the amoA gene fro diverse species of ammonium-oxidizing bacteria and from a indigenous bacterial population form seawater[J]. Appl. Environ. Microbiol. 1995, 61: 2712-2706.
    [60] Rennie,R.J.et al. Immunofluorescence studies of Nitrobacter population in soils[J]. Can.J. Mierobiol. 1977, 23: 1011-1017.
    [61] Hiroya Shinozaki and Manabu Fukui .Comparison of 16S rRNA, ammonia monooxygenase subunit A and hydroxylamine oxidoreductase gene, in chemolithotrophic ammonia-oxidizing bacteria[J]. J. Gen. Appl. Microbiol. 2002, 48: 173-176.
    [62] Holmes, A. J., Costello, A., Lidstrom, M. E. et al. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related[J]. FEMS Microbiol. Lett. 1995, 132: 203-208.
    [63] Purkhold, U.et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rDNA and amoA sequence analysis: implications for molecular diversity suveys[J].Appl. Environ.Mierobiol. 2000, 66: 5368-5382.
    [64] Juretschko,S.et al. Combined molecular and conventional analyses of Nitrifying bacterium diversity in activated sludge:Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations[J]. Appl. Environ.MicmbioL. 1998, 64: 3042-3051.
    [65] Hioms , W.D.et al. Amplifieation of 16S ribosomal RNA genes of autotrophic ammonia-oxdizing bacteria demonstrates the ubiquity of nitrosospiras in the environment[J]. Microbiology. 1995, 141: 2793-2800.
    [66] Ulrike Purkhold, Michael Wagner,Gabriele Timmermann. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates:extension of the dataset and proposal of a new lineage within the nitrosomonads[J]. International Journal of Systematic and Evolutionary Microbiology. 2003, 53: 1485-1494.
    [67] Laia Calvó,MartíCortey,Jose-Luís García-Marín,L. Jesús Garcia-Gil1. Polygenic analysis of ammonia-oxidizing bacteria using 16S rDNA, amoA,and amoB genes[J]. Nternational Microbiology. 2005, 8: 103-110.
    [68]李君文,周娟,王新为,等.亚硝酸细菌amoA基因的克隆、测序与表达[J].应用与环境生物学报, 2004, 10(3): 345-348.
    [69]赵祖国,孔庆鑫,王景峰,等.一种羟胺氧化酶基因序列的PCR扩增及其生物信息学分析[J].应用与环境生物学报, 2009, 15 ( 1 ): 100-105.
    [70] Broda E. Two kinds of lithotrophs missing in nature[J]. ZAllg Microbial.1977, 17: 491-493.
    [71] Mulder AAA, Van de Graaf LA, et al. Anaerobic ammonium oxidation discovered in a denitrification fluidized bed reactor[J]. FEMS Microhiol Ecol. 1995, 16: 177-183.
    [72] Van de Graaf A A. Autotrophic growth of an anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology.1996. 142 (8). 2187-2196.
    [73] Jeten M S M. The anaerobic oxidation of ammonium[J]. FEMS microbial Rev. 1999, 22(5): 421-437.
    [74] Strous M. Missing lithortroph identified as new planctamucete [J]. Nature. 1999, 400(6743): 446-449.
    [75] Strous M, E van Gerven and Kuenen JG et al. Efects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge[J]. Appl. Environ Microbial. 1997, (63):2446-2448.
    [76] Van de Graaf, Mulder AA, de Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Appl Environ Microbial. 1995, (61): 1246-1251.
    [77] Abelinvich A and Vonshak A. Anaerobic metabolism of nitrosomonas eruopaea. [J]. Arch Microbial. 1992, 158: 267-270.
    [78] Logemami S, Schand J and Bijvank S, et al. Molecular microbial diversity in a nitrifying reactor system without sludge retention[J]. FEMSMicrobiol Ecol. 1998, (27): 239-249.
    [79] Third KA, Slickers AO and Kuenen JCr, et al. The CANON System(Completely autotrophic nitrogen removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria[J]. System Appl Microbial. 2001, 24: 588-596.
    [80] Verstraete W. Analysis of Biofilms performing the oxygen-limited autotrophic nitrification denitrification (OLAND) process, Biofilms Symposium -Microbial Ecology and their role in Nature and Disease. 2002, 22 Nov, Brussels, Belgium.
    [81] Schmid M C,Maas B, Dapena A.Biomarkers for In Situ Detection of Anaerobic ammonium-Oxidizing (Anammox) Bacteria[J]. Applied and Environmental Microbiology. 2005, 71: 1677-1684.
    [82] Kartala B, Jayne R, van Niftrika L A, et al. Candidatus“Anammoxoglobus propionicus”a new propionate oxidizingspecies of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology. 2007, 30: 39-49.
    [83] Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments [J]. Appl Environ Microbiol. 2002, 68: 1312-1318.
    [84] Schmid M C, Walsh K, Webb R, et al. Candidatus“Scalindua brodae”, sp. nov., Candidatus“Scalindua wagneri”,sp.nov.,two new species of anaerobic ammonium oxidizing bacteria[J]. Syst Appl Microbiol. 2003, 26: 529-538.
    [85] Schalk J, DeVries S, Kuenen J G, et al. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation[J]. Biochemistry. 2000, 39: 5405-5412.
    [86] Nielsen M,Revsbech N P,Larsen L H,et al. On-line determination of nitrite in wastewater treatment by use of a biosensor[J]. Water Sci Technol. 2002, 45: 69-76.
    [87] Amann R I,Ludwig W,Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cellswithout cultivation[J]. Microbiol Rev. 1995, 59: 143-169.
    [88] Neef A,Amann R I,Schlesner H,et al.Monitoring a widespread bacterial group:in situ detection of planctomycetes with 16S rRNA-targeted probes[J].Microbiology,1998,144:3257-3266.
    [89] Lee N, Nielsen P H, Andreasen K H, et al. Combination of fluorescent in situ hybridization and microautoradiography a new tool for structure-function analyses in microbial ecology[J].Appl Environ Microbiol. 1999, 65: 1289-1297.
    [90] M.S.M.Jerten,O.Sliekers,M.Kuypers,T.Dalsgaard,L.van Niftrik,I.Cirpus,et al. Anaerobic ammonium oxidation by marine and freshwater Planetomyeete-Like bacteria[J]. Appl Mierobiol biotechno. 2003, 63: 107-114.
    [91]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社, 2004.
    [92] Schmid M., et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Syst. Appl. Microbiol. 2000, 23: 93-106.
    [93] Egli K., et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J]. Arch. Mierobiol. 2001, 175: 198-207.
    [94] Toh S.K., Webb R.I., Ashbolt N.J. Enriehment of autotrophic anaerobic Ammonium-oxidizing consortia from various wastewaters[J]. Microbial Eeology, 2002, 43(l): 154-167.
    [95]雒怀庆,胡勇有.厌氧氨氧化污泥中效应菌的分子生物学研究[J].微生物学报, 2005, 45(3): 335-338.
    [96]徐昕荣,贾晓珊,陈杰娥.一种未见报道过的厌氧氨氧化微生物的鉴定及其活性分析[J].环境科学学报, 2006, 26(6): 912-918.
    [97]任宏洋,张代钧,丛丽影,等.一种未见报道的厌氧氨氧化菌分子生物学鉴定[J].环境科学学报, 2008, 2(3): 314-318.
    [98]祖波,张代钧,阎青.一种新厌氧氨氧化菌的16S rRNA基因序列测试[J].环境科学, 2008, 29(2): 469-473.
    [99]孙栋,唐莉丽,王倩倩,等.高盐极端环境土壤基因组DNA的分离纯化方法研究及基因文库的构建[J].广西农业生物科学, 2006, 25(1): 24-29.
    [100] Strous,M., Pelletier,E., Mangenot,S., et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature. 2006, 440 (7085): 790-794.
    [101] Schmid,M., Schmitz-Esser,S., Jetten,M. and Wagner,M.16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection[J]. Environ. Microbiol. 2001, 3 (7): 450-459 .
    [102] Woebken,D., Lam,P., Kuypers,M.M., Naqvi,S.W., Kartal,B., Strous,M.,Jetten,M.S., Fuchs,B.M. and Amann,R.A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J]. Environ. Microbiol. 2008, 10 (11): 3106-3119.
    [103] Kartal,B., van Niftrik,L., Sliekers,O., et al. Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria[J]. Rev. Environ. Sci. Biotechnol. 2004, 3: 255-264.
    [104] Nakajima,J., Sakka,M., Kimura,T., et al. Enrichment of anammox bacteria from marineenvironment for the construction of a bioremediation reactor[J]. Appl. Microbiol. Biotechnol. 2008, 77 (5): 1159-1166.
    [105] Quan,Z.X., Rhee,S.K., Zuo,J.E.,et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environ. Microbiol. 2008, 10 (11): 3130-3139.
    [106]冯骏.工业用水处理微生物分析[M].广州:广东科技出版社, 1989: 109-111.
    [107] Yamagata,A., Kato,J., Hirota,R., et al. Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11[J]. J. Bacteriol. 1999, 181 (11): 3375-3381.
    [108] Voytek,M.A. Relative abundance and species diversity of autotrophic ammonia-oxidizing bacteria in aquatic systems[D]. Thesis (1996) University of California at Santa Cruz.
    [109] Baribeau,H., Kinner,C.A., Stephen,J.R., et al. Microbial population characterization of suspended and fixed biomass in drinking water reservoirs[J].(in) AMERICAN WATER WORKS ASSOCIATION - WATER QUALITY TECHNOLOGY CONFERENCE PROCEEDINGS;(2000)
    [110] Fouratt,M.A., Rhodes,J.S., Smithers,C.M.,et al. Application of temperature gradient gel electrophoresis to the characterization of a nitrifying bioaugmentation product[J]. FEMS Microbiol. Ecol.2003, 43 (2): 277-286.
    [111] Burrell,P.C., Phalen,C.M. and Hovanec,T.A. Identification of bacteria responsible for ammonia oxidation in freshwater aquaria[J]. Appl. Environ. Microbiol. 2001, 67 (12): 5791-5800.
    [112] Park,H.D. and Noguera,D.R. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations[J]. Appl. Microbiol. 2007, 102 (5): 1401-1417.
    [113]黄正,赵芳,刘红艳,等.活性污泥中硝化细菌16S rDNA鉴定方法研究[J].华中科技大学学报(医学版), 2004, 33(3): 269-272.
    [114] Hirota,R., Yamagata,A., Kato,J.,et al. Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11[J]. J. Bacteriol. 2000, 182 (3): 825-828.
    [115] Avrahami,S., Liesack,W. and Conrad,R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers[J]. Environ. Microbiol. 2003, 5 (8): 691-705.
    [116] Nogueira,R., Melo,L.F., Purkhold,U., et al. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon[J]. Water Res. 2002, 36(2): 469-481.
    [117] Sayavedra-Soto,L.A., Hommes,N.G. and Arp,D.J. Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea[J]. J. Bacteriol. 1994, 176 (2): 504-510.
    [118] Schmid,M.C., Hooper,A.B., Klotz,M.G., et al. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria[J]. Environ. Microbiol. 2008, 10(11): 3140-3149.
    [119] Olsen, T. C., and A. B. Hooper. Energy coupling in the bacterial oxidation of small molecules: an extracytoplasmic dehydrogenase in Nitrosomonas[J]. FEMS Microbiol. Lett. 1983, 19: 47-50.
    [120] Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker, molecular finescale analysis of natural ammonia-oxidizing populations[J]. Appl Environ Microbiol. 1997, 63: 4704-4712.
    [121] Wehrfrite JM,Reilly A,Spiro S,Richardson DJ. Purification of hydroxylamine oxidase from Thiosphaera pantotropha .Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification[J]. FEBS lett, 1983, 335(2): 246-250.
    [122]中国医学科学院卫生研究所编著.水质分析法[M].北京:人民卫生出版社, 1972: 136-139.
    [123] Frear DS, Burrell RC. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants[J]. Anal Chem, 1955, 27(10): 1664-1665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700