A/O_1/H/O_2工艺处理焦化废水硝化过程的实现及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水通常含有高浓度氨氮,浓度范围在600-800 mg·L-1左右。在焦化废水脱氮处理研究及应用中,由A/O工艺发展起来的生物组合工艺较受青睐。但由于焦化废水成分复杂,含有大量有毒物质如挥发酚、氰化物、多种芳香族有机物、杂环及多环芳烃有机物等,对生物脱氮处理存在抑制作用,因此采用目前比较流行的生物脱氮组合工艺处理后氨氮浓度仍然难以实现稳定达标排放。针对通常焦化废水生物处理硝化过程不能有效进行的问题,本研究以课题组自行研制的新型A/O1/H/O2生物流化床组合工艺为对象,系统分析了该工艺的运行过程及处理效果,考察硝化过程的实现条件、影响因素及受到抑制的生物学机理,探索能够有效降解有机物同时稳定实现焦化废水硝化处理的高效新工艺。
     通过对从调试到稳定运行阶段的监测数据及对不同工艺单元运行的过程进行分析,探索A/O1/H/O2生物流化床组合工艺的处理效果:二级好氧流化床是硝化过程发生的主要工艺段,氨氮去除率可达到99.3%,硝化过程得以高效稳定的完成得益于二级好氧段前的工艺段;厌氧和缺氧段使得大部分难降解杂环有机物开环断链,削减毒性同时提高了废水的可生化性;一级好氧流化床去除大部分影响硝化过程的污染物,如COD、挥发酚、SCN-与CN-等,去除率分别高达76.8%,99.7%,96.9%和79.6%,为二级好氧段创造了良好的条件进行硝化反应,该工艺的生物系统出水氨氮浓度可持续低至3 mg·L-1以下,远低于污水综合排放一级标准。
     为了解硝化反应进行的最适条件及抑制影响因素构成机理,分别对硝化过程环境条件影响因素和焦化废水污染物抑制因素进行实验研究,确定适合硝化反应的最佳参数为:氨氮浓度≈150 mg·L-1,温度≈30℃,pH值≈8.5,DO=3-4 mg·L-1,C/N=4,该结果可为工程运行条件的优化控制提供指导依据。结合工程运行中出现的硝化抑制现象,实验证明焦化废水中的典型污染物如氨氮、苯酚、SCN-及含氮杂环化合物可产生硝化抑制效应,实验结果为,氨氮浓度在大于150 mg·L-1时会对硝化过程产生轻微的基质抑制;苯酚在低浓度情况下(30 mg·L-1)即可对硝化过程产生抑制;SCN-浓度为380 mg·L-1时氨氧化抑制率达78.1%,并出现亚硝氮积累;喹啉、吡啶、吲哚和吡咯四种典型含氮杂环化合物对硝化过程的半抑制浓度EC50分别为112.46 mg-L-1、59.51 mg·L-1、9.89 mg·L-1、13.46 mg·L-1。结果表明只有在低COD浓度及低有毒物质存在的条件下,硝化过程才能有效进行。
     氨氮转化为硝氮的生物硝化过程是生物脱氮的关键步骤,易受环境条件因素改变的影响,尤其容易受限于焦化废水中其他污染物的毒性抑制效应,这也是其他生物组合工艺难以实现高效、稳定去除氨氮的重要原因之一。因此,若要提高焦化废水的脱氮效率,并保持生物过程的持久稳定,必须在了解焦化废水污染物生物降解特性的基础上,采用合理的分段工艺,形成高效的除碳单元与脱氮单元,将有机物与氨氮分级降解,避免其他污染物对硝化过程的毒性抑制冲击,在最优运行条件的控制下,才能保证硝化过程得以高效稳定进行。
Coking wastewater usually contains high concentration of ammonia (600-800 mg-L-1), in the field of coking wastewater nitrification research and application, biological combined processes developed from the A/O process are more appealing. However, coking wastewater is complicated, containing a large number of toxic substances such as phenol, cyanide, various aromatic organic compounds, heterocyclic and polycyclic aromatic hydrocarbons, which has negative effect on biological nitrogen removal process, so it is still difficult to reach the discharge standards by current popular biological combined processes. For the issue that nitrification in biological treatment of coking wastewater is usually hard to achieve effectively, a novel A/O1/H/O2 fluidized bed combined process was designed and developed by our research group. In this study, the operation process and treatment effect were systematically analysed; the optimal conditions, influencing factors and biological inhibition mechanism to nitrification were studied. The new A/O1/H/O2 technology employed in coking wastewater treatment can achieve stable and efficient nitrification as well as effective degradation of organic compounds at the same time.
     In order to study the treatment effect of A/O1/H/O2 biological fluidized bed combined process, the monitoring datas adopted from commission period to the stable operation and operation process of different units were analyzed. The results showed that the second aerobic fluidized bed is the main process where nitrification occurred and ammonia nitrogen removal rate reached 99.3%, nitrification process can be highly efficient and stable thanks to the completion of the process before the second aerobic segment; ring-opening reaction and degration of most of the refractory heterocyclic compounds happened in anaerobic and anoxic processes, reducing toxicity while improving biodegradability of wastewater; the first aerobic fluidized bed removes most of the pollutants which can affect the nitrification process, such as COD, phenol, SCN-and CN-, the remove rate were 76.8%,99.7%,96.9% and 79.6% respectly, and create suitable conditions for nitrification in the second aerobic stage. The ammonia effluent concentration of biological system is continuously lower than 3 mg·L-1, which was much lower than the integrated wastewater discharge standards.
     To find out the optimal conditions for nitrification and mechanism of nitrification inhibition, the impact of environmental conditions and pollutant inhibitory factors of coking wastewater on the nitrification process were studied by experiment. The optimal parameters for nitrification were obtained as follows:ammonia concentration≈150 mg·L-1, temperature≈30℃, pH value≈8.5, DO= 3-4 mg·L-1, C/N= 4; the results can provide the guidance for the operating conditions of the project. According to nitrification inhibition in the project operation, typical pollutants such as ammonia, phenol, SCN- and nitrogen containing heterocyclic compounds were proved to be nitrification inhibitors. Results showed that it has slight substrate inhibition when ammonia concentration greater than 150 mg·L-1; phenol in low concentration (30 mg·L-1) can inhibit nitrification; ammonia oxidation inhibition rate can reach 78.1% when SCN- concentration is 380 mg·L-1, and the nitrite accumulate; half inhibitory concentration of four kinds of typical nitrogen heterocyclic compounds like quinoline, pyridine, indole and pyrrole on nitrification process were 112.46 mg·L-1,59.51 mg·L-1,9.89 mg·L-1 and 13.46 mg·L-1 respectly. The results indicated that nitrification process can be effectively react only in low COD concentration and low-toxic pollutants existing conditions.
     Nitrification is a key step in biological nitrogen removal process, it is vulnerable to the impact of changes in environmental conditions, particularly prone to be inhibited by toxic pollutants in coking wastewater, which is the important reasons that it is difficult for other biological processes to remove ammonia efficiently and stablely.
     Therefore, to improve the efficiency and maintain lasting stability of nitrification in coking wastewater treatment, the biological degradation characteristic of pollutants in coking wastewater should be investigated. A reasonable combined process which formed by a highly efficient carbon remove unit and a nitrogen remove unit should be employed, it will prevent nitrification inhibition impact of other toxic pollutants, on the basis of optimal operating conditions, stable and efficient nitrification process can be ensured.
引文
[1]姜谦.2010-2015年中国焦化行业投资分析及前景预测报告[R].2010
    [2]任源,韦朝海,吴超飞,等.生物流化床A/O2工艺处理焦化废水过程中有机组分的GC/MS分析[J].环境科学学报,2006,26(11):1785-1791
    [3]谢旭东,郑金讳,吴浩然,等.焦化废水生物脱氮工艺及浅析[J].西南给排水,2003,25(6):24-26
    [4]张砚琴.焦化废水的危害度评价[J].北方环境,2005,30(1):90-92
    [5]赵晓帅,牛钰.国内焦化废水处理技术探讨[J].中国环境管理干部学院学报,2008,18(2):79-82
    [6]郭大陆.焦化废水NH3-N, COD降解技术研究[J].环境工程,1999,11(3):6-11
    [7]张晓丽,等.沸石去除废水中氨氮的实验研究[J].科技情报开发与经济,1999(1):14-17
    [8]张昌鸣,等.粉煤灰处理焦化废水的研究[J].燃料与化工,1998,9(2):319-322
    [9]Abeling U., Seyfried C.F. Anaerobic-aerobic treatment of high strength ammonium wastewater nitrogen removal [J]. Wat. Sci.Technol,1992,26:1007-1015
    [10]尹君贤.焦化污水的生物脱氮处理[J].燃料与化工,1996,27(6):309
    [11]戴树桂.环境化学[M].北京:高等教育出版社,1997.
    [12]李奇勇.三钢焦化污水治理现状及对策探讨[J].福建能源开发与节约,2000,(3):45-46
    [13]尹承龙.焦化废水处理存在的问题及其解决对策[J].给水排水,2000,26(6):35-37
    [14]刘柒变.A/O生物法脱除焦化废水中氨氮的工艺及影响因素[J].煤化工,1994,68:53-57
    [15]毛云海,曹吉良.A-O法焦化废水处理装置的开工与调试[J].燃料与化工,2003,34(1):29-33
    [16]陈凤岗,刘俊新,金承基,等.薛城焦化废水的A/O处理工艺[J].给水排水,1994,1:27-30
    [17]Yu H.Q., Gu G.W., Song L.P. Post treatment of Effluent from Coke Plant Wastewater Treatment System Sequencing Batch Reactors[J]. Journal of Environmental Engineering,1997,12(3):305-308.
    [18]张文艺,钟梅英.SBR法处理焦化废水的试验研究[J].安徽化工,2001,109(1):28-29.
    [19]李春杰.焦化废水的体化膜序批式生物反应器处理[J].上海环境科学,2001,20(1):24-26.
    [20]Yamamoto K., Win K.M. Tannery wastewater treatment using a sequencing batch membrane reactor[J]. Wat. sci. Tech.,1991,23:1639-1644
    [21]李春杰,耿淡.SMSBR去除焦化废水中有机物及氮的特性[J].中国给水排水,2001,17(5):6-11
    [22]耿淡,周琪,屈计宁.SMSBR反应器去除焦化废水中的氨氮[J].中国给水排水,2002,18(7):8-11
    [23]袁林江,彭党聪,王志盈.短程硝化—反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31
    [24]耿艳楼.简捷硝化—反硝化系统处理焦化废水的研究[D].清华大学博士论文,1992:36-42
    [25]Surmacz-Gorska J., Cichon A., Miksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification [J]. Wat. Sci. Tech.,1997,36(10):73-78
    [26]Ruiz G., Jeison D., Chamy R. Nitrification with high accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research,2003,37:1371-1377.
    [27]Tseng C.C., Koopman B., Potter T.G. Effect of influent chemical oxygen demand to nitrogen ratio on partial nitrification complete denitrification process [J]. Wat. Res., 1998,32(1):165-173
    [28]滕蒙,孟庆锐.利用A/A/O工艺处理焦化废水的工程实例总结[J].科学技术与工程,2010,10(3):835-838
    [29]朱文亭.污水的水解(酸化)—好氧生物处理工艺[J].城市环境与城市生态,2000,13(5):43-48
    [30]李咏梅,彭永臻,顾国维,等.焦化废水中有机物在A1-A2-O生物膜系统中的降解机理研究[J].环境科学学报,2004,24(2):242-248
    [31]Zhang M., et al. Comparison between Anaerobic-Anoxic-Oxic and Anoxic-Oxic Systems for Coke Plant Wastewater Treatmen[J]. Environ. Eng.,1997:876-883
    [32]王喜权.焦化废水中氨氮及CODcr降解技术的研究[J].贵州环保科技,2003,9(4):5-10
    [33]何苗,张晓健,雷晓玲,等.厌氧—缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较[J].给水排水,1997,23(6):31-34
    [34]仇雁翎,赵建夫,李咏梅,等.A1-A2-O生物膜系统处理焦化废水实验中好氧段影响因素的研究[J].重庆环境科学,2001,23(6):16-19
    [35]李亚新,李林永.A2/O工艺处理焦化废水述评[J].科技情报开发与经济,2004,14(1):128-133
    [36]杨云龙,白晓平.焦化废水的处理技术与进展[J].工业用水与废水,2001,32(3):8-10
    [37]黄力群.焦化废水处理技术研究开发最新进展[J].水处理技术,2008,34(12):1-6
    [38]贾鹏,牛继勇,李君敏.A/O2工艺处理焦化废水[J].给水排水,2007,33(3):69-70
    [39]郭行杰.焦化废水处理的新工艺缺氧-好氧-接触氧化法[J].环境保护,1999,6:20-21
    [40]赵芳芳,彭娜,蔡建安.新型A/O/A直流脱氮工艺处理焦化废水的研究[J].中国给水排水,2008,24(19):10-12
    [41]李柳,李立敏.O/A/O工艺应用高效优势菌处理焦化废水的中试[J].燃料与化工,2006,45(6):37-40
    [42]程志强,高富丽,杨云龙.A1-A2-O1-O2工艺处理焦化废水试验研究[J].山西建筑,2008,34(8):10-11
    [43]潘碌亭,吴锦峰,束玉保,等.基于HSB的A2/O2—强化絮凝工艺在焦化废水处理中的应用[J].给水排水,2010,36(1):52-56
    [44]王健.工艺在焦化废水处理中的应用[J].环境科学与管理,2008,33(8):112-117
    [45]郑纬元,张新喜.A2/O2工艺处理焦化废水的工程应用[J].工业用水与废水,2007,38(2):74-76
    [46]Arp D.J., Sayavedra-Soto L.A., Hommes N.G.. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas euroPaea [J]. Arch Microbiol,2002,178:250-255
    [47]Sundermeyer-Klinger H., Meyer W., Warninghoff B., et al. Membrane-bound nitrate oxidoreductase of Nitrobacter:evidence for nitrate reductase system [J]. Arch Microbiol, 1984,140:153-158.
    [48]Hoehstein, L.Ⅰ., Tomlinson G.A..The enzymes associated with denitrification [J]. Annual Reviews in Microbiology,1988,42:231-261
    [49]Prasad R., Power J.F. Nitrification inhibitors for agriculture, health, and the environment [J]. Advances in Agronomy,1995,54:233-281
    [50]Anthonisen A.C., Loehr R.C., Prakasam T. B. S., et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal (Water Pollution Control Federation),1976, 48(5):835-852
    [51]Turk O., Mavinic D.S. Preliminary assessment of a shortcut in nitrogen removal from wastewater [J]. Can J Civil Engineering,1986,13(6):600-605
    [52]Grunditz C., Gumaelius L., Dalhammar G. Comparison of inhibition assays using nitrogen removing bacteria:Application to industrial wastewater[J]. Wat. Res.,1998, 32(10):2995-3000
    [53]Neufeld R., Greenfield J., Rieder B. Temperature, cyanide and phenolic nitrification inhibition[J]. Wat. Res.,1986,20(5):633-642
    [54]李娟英,赵庆祥,江敏.苯酚及其衍生物对氨氮生物硝化的抑制研究[J].环境工程学报,2008,(1):27-30
    [55][美]L-S范.气液固流态工程[M](俞正青,译)北京:中国石化出版社,1989
    [56]方佩珍,潘永亮,杨平,等.生物流化床在废水处理中的应用进展[J].工业用水与废水,2002,33(5):1-3
    [57]Hoyland G. Aerobic treatment in "oxitron" biological fluidized bed plant at coleshill[J]. Water Pollution Control,1983,82(4):479-493
    [58]Copper P F. Complete treatment of sewage in a two-stage fluidized-bed system part 1[J]. Water Pollution Control,1982,81(4):447-464
    [59]TatsuhikoSuzuki. Anew sewage treatment system with fluidized pellet bed separator[J]. Wat. Sci. Technol,1993,27(11):185-192
    [60]Koch B. Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen-containting aromatic compounds[J]. Wat. Res.,199,25(1):1-8
    [61]Puhakka J A. Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents[J]. Wat. Res.,1992,26(6):765-770
    [62]Puhakka J A. Biodegradation of chlorophenols by mixed and pure cultures from a fluidized-bed reactor[J]. Applied Microbiol Biotechnol,1995,42(6):951-957
    [63]Ryhiner G. Operation of a three-phrase biofilm fluidized sand bed reactor for aerobic wastewater treatment [J]. Biotechnology and Bioengineering,1988,32(5):677-688
    [64]A IMAIM. Removal of refractory organics and nitrogen from landfill leachate by the microoganism-attached activeated carbon fluidized bed process[J]. Wat. Res.,1993, 27(1):143-145
    [65]Moteleb M A. Anaerobic degradation of 2,4,6-trinitrotoluene in granular activated carhon fluidized bed and batch reactors[J]. Wat. Sci. Technol,2001,43(1):67-75
    [66]Hirata A., Hosaka Y., Basuki B.T., et al. Nitrification of ammonia nitrogen in a three-phase fluidized bed [J]. Water Pollution Research,1989(12):575-581
    [67]Hirata A., Takemoto T., Ogawa K., et al. Evaluation of kinetics parameters from concentration step change response of three-phase fluidized bed biofilm reactor for wastewate treatment [J]. Biochemical Engineering,2000(5):165-171
    [68]周少奇.环境生物技术[M].北京:科学出版社,2003:23
    [69]韦朝海,贺明和,吴超飞,等.生物三相流化床A/O2组合工艺在焦化废水处理中的工程应用[J].环境科学学报,2007,27(7):1107-1112
    [70]蔡建安.三相气提升循环流化床处理焦化废水[J].水处理技术,1997,23(2):110-114
    [71]V'azquez I., Rodriguez J., Maranon E. Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process[J]. Journal of Hazardous Materials,2006, B137:1681-1688
    [72]李恩超.A2/O工艺去除焦化废水中挥发性有机物的研究[J].广州化工,2009,37(8):190-192
    [73]李咏梅,顾国维,仇雁翎等.厌氧酸化在焦化废水脱氮和毒性削减中的作用[J].环境科学,2001,22(4):86-90
    [74]赵建夫,钱易,顾夏声.用厌氧酸化预处理焦化废水的研究[J].环境科学,1990,11(3):30-34
    [75]何苗,张晓健,瞿福平,等.焦化废水中芳香族化合物及杂环化合物在活性污泥法处理中的去除特性[J].中国给水排水,1997,13(1):14-17
    [76]Ganzarczyk J.J. Second stage activated sludge treatment of coke plant effluents[J]. Water Research,1972,7:1137-1157
    [77]钱易,文一波.焦化废水中难降解有机物去除的研究[J].环境科学研究,1992,5(5):1-8
    [78]张晓健,雷晓玲.焦化废水中几种难降解有机物的厌氧生物降解特性[J].环境工程,1996,14(1):10-13
    [79]何苗.焦化废水中有机污染物经厌氧酸化后对好氧生物降解性能的影响[J].中国环境科学,1998,18(3):276-279
    [80]李亚新.厌氧水解酸化SBR工艺预处理焦化废水的研究[D].太原理工大学硕士学位论文,1998,6:1-5
    [81]韦朝海,谢波,张献忠,等.内循环流化床结构参数及其反应器性能的相关性[J].高校化学工程学报,2001,15(3):236-241
    [82]黄梅,周少奇.同时硝化反硝化脱氮机理及影响因素分析[J].环境卫生工程,2006,14(5):22-29
    [83]Robertson L.A., Kuenen J.G.. Aerobic denitrification:A controversy revived[J]. Arch Microbiol,1984,139:351-354
    [84]张悦,曾薇,刘春兰,等.单级好氧和限氧污水处理系统中总氮损失的微生物学机理[J].应用与环境生物学报,2009,15(3):399-404
    [85]Wen Y., Ren Y., Wei C.H., et al. A study on nitrogen removal efficiency of Pseudomonas stutzeri strains isolated from an anaerobic/anoxic/oxic wastewater treatment process[J]. African Journal of Biotechnology,2010,9(6):869-873
    [86]Christian F, Marc B, Philipp H, et al. Biological treatment of ammonium rich wastewater by partial nitrification and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J]. Journal of Biotechnology,2002,99:295-306
    [87]马文漪.环境微生物工程[M].江苏:南京大学出版社,1998
    [88]Zhang T.C. Evaluation of substrate and pH effects in a nitrifying biofilm[J]. Water Environment Research,1996,68(7):1107-1115
    [89]Zhang T.C., Fu Y.C., Bishop P.L. Competition for substrate and space in biofilms[J]. Water Environment Res.,1995,67(6):992-1003
    [90]靳茂霞,刘桂林.提高焦化废水生物处理效果的途径[J].上海环境科学,1997, 16(2):13-14,18
    [91]陈凤岗,刘俊新,金承基,等.薛城焦化废水的A/O处理工艺[J].给水排水,1994,1:27-30
    [92]李平.聚合物载体流化床反应器生物颗粒特性及焦化废水流化床系统生物脱氮研究[D].四川大学,2002:128
    [93]赵义.A2-O2生物膜法处理焦化废水中试研究[D].太原理工大学,2007:37
    [94]Garrido J.M. Simultaneous urea hydrolysis, formal-dehyde removal and denitrification in a multifid up flow filte runder anoxic and anaerobic conditions[J]. Wat. Res.,2001, 35(3):691-698
    [95]Pujol R., Hamon M., Kandel X. Biofilters:flexibl, reliable biological reactors. Wat. Sei. Tech.,1994,29(10-11):33-38
    [96]马俊,张永祥,刘亮,等.A2/O脱氮工艺效果研究[J].哈尔滨商业大学学报,2006,22(1):28-31
    [97]郭大陆.焦化废水NH3-N, COD降解技术研究[J].环境工程,1993,11(3):6-11
    [98]邵林广,陈斌.水解酸化-缺氧-好氧固定床生物膜系统处理焦化废水的试验研究[J].环境科学,1994,15(6):51-53
    [99]马雁林.焦化废水生物脱氮处理开工调试[J].给水排水,2000(12):51-56
    [100]李娟英,赵庆祥,江敏.氨氮硝化过程中苯酚的抑制研究[J].水处理技术,2007,33(2):46-49
    [101]Jeong Y.S.,Chung J.S. Biodegradation of thiocyanate in biofilm reactor using fluidized carriers[J]. Process Biochem,2006,41(3):701-707
    [102]何苗,张晓健,瞿福平,等.难降解有机物生物抑制特性的研究[J].环境科学,1997,18(1):21-23
    [103]赵宗升,冯娟.高铵氮废水生物硝化过程抑制现象初探[J].环境科学学报,2007,27(8):1238-1244
    [104]Cecen F., Gonenc I.E. Nitrogen removal characteristics of nitrification and denitrification filters [J]. Wat. Sci. Tech,1994,29(10-11):409-416
    [105]Carrera J,. Jubany I., Carena Carvallo L., et al. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilized biomass systems [J]. Process Biochemistry,2004,39:1159-1165.
    [106]李娟英,彭自然,赵庆祥.苯酚对废水生物硝化过程的抑制[J].上海水产大学学报,2007,16(2):192-195
    [107]徐美燕,赵庆祥,刘颖.苯酚对硝化过程的抑制[J].安全与环境学报,2005,5(1):43-46
    [108]Denyer S.P., Stewart G.S. A.B. Mechanism s of action of disinfectants[J]. International Biodeterioration and Biodegradation,1998,41:261-268
    [109]Keener W.K., Arp D.J.. Kinetic studies of ammonia monooxygenase inhibition in nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole cell assay[J]. Appl. Envir. Microbiol.,1993,59(8):2501-2510
    [110]V'azquez I., Rodriguez J., Maranon E. Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process[J]. Journal of Hazardous Materials.2006, B137:1681-1688
    [111]Kim Y.M., Park D., Jeon C.O, et al. Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater[J]. Bioresource technology,2008,99(18):8824-8830
    [112]张晓健,雷晓玲,何苗,等.好氧生物处理对焦化废水中有机物的去除[J].环境保护,1994,8:7-10
    [113]李咏梅,顾国维,赵建夫.焦化废水中几种含氮杂环化合物缺氧降解机理[J].同济大学学报,2001,29(6):720-723
    [114]何苗,张晓建,雷晓玲,等.厌氧-缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较[J].给水排水,1997,23(6):31-33
    [115]何苗,张晓健,瞿福平,等.杂环化合物好氧生物降解性能与其化学结构相关性的研究[J].中国环境科学,1997,17(3):199-202
    [116]徐忠东,施荣华,耿明,等.含氮杂环化合物对四膜虫的毒性作用研究[J].中国农业大学学报,2008,13(3):57-62
    [117]江敏,李咏梅,顾国维.含氮杂环化合物对水生生物的毒性作用研究[J].环境科学学报,2005,25(9):1253-1258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700