城市污水处理厂除臭工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶臭污染控制是环境领域极为关注的一个问题。相对于一般的空气污染控制,恶臭污染控制要求较高,难度较大。生物法除臭具有投资少,运行费用低的优势。相对于常规的技术,如吸收、吸附、焚烧等,生物技术更适宜处理浓度低、流量大的恶臭气体。而且,利用生物技术控制恶臭污染一般不会产生二次污染。生物处理技术主要包括生物滤池、生物滴滤池和生物洗涤塔等。城市污水处理厂的臭气处理是一个急需解决的问题,针对污水处理厂的具体情况,结合不同除臭工艺的特点,本论文利用固废塔与生物塔组合工艺处理污水处理厂产生的臭气。主要研究内容如下:
     1.研究温度对生物塔去除H_2S的影响,得到温度与去除率的关系;
     2.进行固废塔处理H_2S的生产性试验研究;
     3.进行固废塔处理NH_3的生产性试验研究;
     4.利用丙二醇溶液吸收甲硫醇的试验研究,探索其它去除挥发性有机物的方法。
     获得如下主要结论:
     1.在一定的塔内温度范围内,温度越高,生物滤塔对致臭物质的去除率越高,去除率与温度的关系满足η_1=η_2·θ~(T_1-T_2),对致臭物质H_2S而言,θ=1.016。若空塔停留时间t=16.2 s、生物滤塔H_2S容积负荷为2.22g/(m~3填料·h),当塔内温度大于等于13℃时,出气浓度中的H_2S浓度可达到《城镇污水处理厂污染物排放标准》的一级标准;若塔内温度小于13℃,必须加热方可达标。
     2.粉煤灰砖碎块(FABS)对H_2S的去除效果非常显著。在d=2cm、Q=700m~3/h和Q=1000m~3/h与d=4cm,Q=1000m~3/h时,对高浓度进气,大部分去除率在20%以上;对低浓度进气时,FABS对H_2S的去除与释放不明显。通过对FABS去除H_2S的机理研究,分析得出FABS去除H_2S是通过物理吸附与化学作用的共同结果,但主要通过物理吸附,少量H_2S与FABS中组成物质发生化学反应。
     3.FABS去除NH_3效果不明显,释放现象表现很明显。FABS去除高浓度NH_3时,运行初一段时间去除率为正,高达27%,随着高浓度NH_3继续通入,出现部分负去除,去除效果不稳定;FABS去除低浓度NH_3时,去除效果更不稳定,大多数为释放。FABS在吸收部分臭气NH_3后,停止通NH_3,在臭气NH_3进气浓度为1mg/m~3左右时,去除率均在-55%左右波动,释放现象表现很明显。结合固废塔处理H_2S试验研究结果可知,固废塔对生物塔可起到部分去除与缓冲作用。
     4.利用丙二醇吸收液处理甲硫醇的试验结果表明:丙二醇吸收液能吸收部分甲硫醇,但出气未能达到国家一级排放标准。
The need to control and treat Odor pollution has become an urgent environmental concern.Odor control is often more difficult than normal air pollution control.Biological technologies are cost effective and have no secondary pollution.Compared with the current control technologies(e.g,absorption,adsorption and incineration),biological technogies are in favor of treating Odor gases with low concentrations and high flux.The major air-phase biological reactors are biofilters,biotrickling filters and bioscrubbers.There are many problems about Odor pollution of Wastewater Treatment Plants.The odor treatment study has become an urgent subject.This dissertation uses the combined process of solid waste-filter and bio-filter to treat the odor in the sewage treatment,reviews the characteristic about every deodorization technique.We had mainly carried on the below research work:
     1.Studied of temperature on the biological effects of bio-filter to remove H_2S,and got the relationship between temperature and removal;
     2.Carried on full-scale experiment to treat H_2S with solid waste-filter;
     3.Carried on full-scale experiment to treat NH_3 with solid waste-filter;
     4.Carried on experiment to absorb methyl mercaptan with propylene glycol and Explored other methods to remove volatile organic compounds.
     The following main conclusions have been obtained:
     1.In a certain temperature range,the higher the temperature,the higher removal rate with bio-filter.The relationship between removal rate and temperature isη_1=η_2·θ~(T_1-T_2).For H_2S,θ=1.016.If the resident time is great the 16.2 s and remove load of volume is less than 2.22 g/(m~3 filter·h) and the temperature is great 13℃,the H_2S concentration in outlet can meet the first class discharge standard.In the other word,if the temperature is below 13℃,the inlet gas have to be heated so that the outlet gas can meet the discharge standard.
     2.Removing H_2S with silid waster-filter is very obvious.When d=2cm,Q=700 m~3/h and Q=1000m~3/h or d=4cm,Q=1000m~3/h,the mass of removal rate reach to 20% as the inlet concentration is very high.The removal and release of H_2S is not obvious as the inlet concentration is very low.Through the mechanism of removal of H_2S used FABS,we have to come that the removal is partly through physical adsorption and the other through chemical reaction.
     3.Removing NH_3 with silid waster-filter is not obvious,but releasing is very obvious.When FABS remove high concentration of NH_3,the removal operation for the beginning of a period of time is as high as 27%.With the high concentration of NH_3 to continue to access,There is a negative part of the removal rate and removal efficiency of instability.When FABS is used to remove low concentration of NH_3,The majority of NH_3 is released.When FABS has been used to remove some NH_3 and when the inlet concentration of NH_3 is about 1 mg/m~3,the removal rate is probably around -55%and the phenomenon of release is very obvious.Combination of solid waster-filter to deal with H_2S,we come to the conclusion that solid waster-filter can play some role in the removal and buffer for bio-filter.
     4.The results of absorbing CH_3SH with propylene glycol show that:Propylene glycol can absorb part of CH_3SH.Unsatisfactorily,the outlet concentration fails to meet the national level outlet discharge standards.
引文
[1]张容贤.恶臭的测定与评价[J].化工环保,1996,16(5):10-12.
    [2]王建明,袁武建,陈清.污水处理系统除臭技术综述[J].能源环境保护,2005,19(5):5-8.
    [3]刘锴.城市污水处理厂臭气问题分析与控制[J].上海环境科学,2003,(增刊):4-7.
    [4]GB 18918-2002,城镇污水处理厂污染物排放标准[S].
    [5]GB 14554-93,恶臭污染物排放标准[S].
    [6]胡国华.生物法处理垃圾恶臭气体工艺研究:[硕士学位论文].成都:成都理工大学地质工程,2005.
    [7]石磊.恶臭污染测试与控制技术.北京:化学工业出版社,2004,12:150.
    [8]国家环境保护局和国家技术监督局.GBI4554-93.中华人民共和国国家标准恶臭污染物排放标准.1993-08-06.
    [9]尹军,王晓玲,赵玉鑫等.城市污水处理厂除臭技术.环境污染治理技术与设备,2006,7(8):90.
    [10]刘碧燕.城市污水处理厂除臭国内外技术现状.企业技术开发,2005,24(12):103.
    [11]孙彤,徐彪.除臭方法及展望.辽宁工学院学报,2003,23(6):44.
    [12]孙政,周建忠,王仡等.城市污水处理厂除臭技术.西南给排水,2006,28(5):5.
    [13]李立清,杨建康.恶臭污染及其治理技术.化工环保,1995,15(3):41.
    [14]石黑辰剂.恶臭防治技术开展的现状.国外环境科学技术,1985,23(2):79-81.
    [15]李占华.炼化污水处理场恶臭防治分析.河北化工,2006,29(3):61.
    [16]申屠灵女.催化燃烧法处理炼油污水处理场臭气.广石化科技,2003,90(4):44-47.
    [17]姜安玺,张英民,姜蔚等.催化法在恶臭治理中的应用.哈尔滨商业大学学报(自然科学版),2004,20(2):203-205.
    [18]侯根然,宋艳清.污染水体除臭技术及综合防治对策.黄河水利职业技术学院学报,1999,11(3):24-26.
    [19]Thompson G W,Ockeman L T,Schreyer J M.Preparation and Purification of Potassium Ferrate(Ⅳ).J.Am.Chem.Soc.,1951,73(2):1379-1381.
    [20]朱菊花.湿式氧化法脱除废气中H_2S新技术研究:[硕士学位论文].湘潭:湘潭大学化工学院环境工程,2004,2-6.
    [21]田永豪.气体净化中脱硫方法之我见.贵州化工,1996,3:44-47.
    [22]朱绍芬.硫化氢气体治理方法探悉.石油化工环境保护,1996,1:35-37.
    [23]董群,武显春,单希林等.化学吸收—催化氧化法脱除酸性气中硫化氢的试验研究.石油炼制与化工,2000,31(9):17-19.
    [24]何永纪.炼油厂恶臭污染治理技术研究:[工程硕士学位论文].浙江:浙江工业大学化学工程与材料学院化学工程,2005,18.
    [25]王爱杰,徐潇文,任南琪等.污水厂臭气生物处理技术研究状况与发展趋势.中国沼气,2005,23(3):15-19.
    [26]杨柳燕,肖琳.环境生物技术.北京:高等教育出版社,2003:279-287.
    [27]Gero Leson Biofitration Innovative Air Pollution Control Technnology For VOC Emissions,J Air Manage Assoc.1991,41(8):1045-1054.
    [28]Cho K.S.Zhang L.Hirai M.et al.Characteristics of Gas-born Ammonia Removal and Oxidation by a Biotrickling Filter and a Fern-chip Packed Biofilter.J.Ferment.Bioeng.1991,71(1):44.
    [29]Cho K.S.Hirai M.Shoda M.Development of Odor Destruction Technology on Sulfides.J.Ferment.Bioeng.1991,71(6):384.
    [30]Zhang L.Hirai M.Shoda M.Destruction of dimethyl disulfide in a gas flow system with dielectric barrier discharge.J.Ferment.Bioeng.1991,72(5):392.
    [31]Cho K.S.Hirai M.Shoda M.Isolation of a carbon disulfide utilizing Thiomonas sp and its application in a biotrickling filter.J.Ferment.Bioeng.1992,58(4):1183.
    [32]Cho K.S.Hirai M.Shoda M.Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44.J.Ferment.Bioeng.1992,73(1):46.
    [33]Park S.J.Cho K.S.Hirai M.et al.Removal of hydrogen sulphide by immobilized Acidithiobacillus thiooxidans in a Biotrickling filter packed with polyurethane foam.J.Ferment.Bioeng.1993,76(1):55.
    [34]P.Baltrenas and R.Vaaiskunaite.A biofilter containing a biologically active layer of Pine bark for removing volatile hydrocarbons from air.Chemical and Petroleum Engineering,2004,40:7-8.
    [35]周群英,高延耀.环境工程微生物学(第二版)[M].高等教育出版社,2000,7.
    [36]国家环境保护局.空气和废气监测分析方法[M].中国环境科学出版社,1997.
    [37]国家环境保护局.水和废水监测分析方法(第四版)[M].中国环境科学出版社,1997.
    [38]奚亘立,孙裕生,刘秀英.环境监测(修订版)[M].高等教育出版社,1995,4.
    [39]赵鹏高等编著.粉煤灰综合利用.沈阳辽宁科学技术出版社,1993.5-25.
    [40]吕梁,侯浩波编.粉煤灰性能与利用.北京中国电力出版社,1997.9-43.
    [41]Sanders et al.Heated Fly Ash/Hydrated Lime Slurries of Importance to Sulfur Dioxide Reactivity Potential.Environ.Science and Technology.1995,18: 548-552.
    [42]W.jozewicz,G.T.Rochelle.Fly Ash Recycle in Dry Scrubbing,Environ.Progress,1986,5(4):28-32.
    [43]中国建材研究院水泥所.水泥性能及其检验.北京:中国建材工业出版社,1994,7:127.
    [44]王智.石灰对粉煤灰活性激发作用的研究进展.粉煤灰综合利用,1999,13(1):27-30.
    [45]于水军.粉煤灰物理化学激活新方法研究.粉煤灰综合利用,1998,12(2):54-55.
    [46]Jozewicz W,Chang C S,Sedman C B.Bench-Scale Evaluation of Calcium Sorbents for Acid Gas Emission Control,Environ.Progress,1990,9(3):137-142.
    [47]Jozewicz W,Chang C S,Brna T G et al.Reaction of Solids from Furnace Injection of Limestone for SO_2 Control,Environ.Sci.Technol.1987,21(7):664-670.
    [48]Ho C S,Shim S M.Ca(OH)_2/Fly Aly Sorbents for SO_2 Removal,Ind.Eng.Chem.Res.1992,31:1130-1135.
    [49]赵毅,马双忱,李燕中等.利用粉煤灰吸收剂对烟气脱硫脱氮的实验研究,中国电机工程学报,2002,22(3):108-112.
    [63]孙佩石,杨显万.生物法净化低浓度挥发性有机废气的动力学问题探讨[J].环境科学学报,1999,19(2):153-158.
    [64]Kazuhiro S,Satosi O,Takashi O et al.Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system[J].Biochemical Engineering Journal 2000.(5):209-217.
    [65]羌宁.城市空气质量管理与控制[M].北京:科学出版社,2003.
    [66]余迎新,赵博,杨红健.用含甲硫醇的废气合成甲基磺酰氯[J].化工环保,2004,24(增刊):318-320.
    [67]刘波,姜安玺等.两级滴滤去除硫化氢和甲硫醇混合恶臭气体[J].中国环境科学,2003,23(6):618-621.
    [68]林琳.生物法去除含甲硫醇恶臭气体的机理[J].辽宁城乡环境科技,2000,20(4):7-8.
    [69]李少辉,姜安玺等.生物滴滤塔降解甲硫醇乙硫醇的速率研究[J].黑龙江大学自然科学学报,2005,22(6):724-728.
    [70]袁志文,何平晶,邵立明.固定化微生物法处理含甲硫醇恶臭气体[J].上海环境科学,2000,19(3):108-111.
    [71]牟桂芝,郭兵兵,何凤友.活性炭吸附法治理含甲硫醇恶臭气体[J].石油化工环境保护,2004,27(3):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700