纤维素酶高产菌的诱变选育及其酶学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素类物质是自然界中含量最丰富、最廉价的可再生资源。据测算,地球表面每年因光合作用合成的干物质高达1500亿吨的干物质,其中纤维素、半纤维素的总量约为850亿吨,而纤维素的含量约占总干物质的6%,达220亿吨。可见,纤维素是自然界中取之不尽、用之不竭的可再生资源。纤维素酶是指能催化水解β-1.4葡萄糖苷键生成纤维二糖和葡萄糖的一类酶的总称,纤维素酶不是单一的酶,是由多个水解酶组成的一类复杂酶系。目前,在纤维素的分解转化的研究中,对纤维素的研究主要集中在纤维素水解转化的微生物的诱变、.筛选上,纤维素酶活性的提高。本论文以绿色木霉AS3.3711作为出发株,分别利用紫外线、快中子、γ射线、硫酸二乙酯和亚硝酸钠五种诱变因子,诱变选育纤维素酶高产的菌株,并且对其酶学性质进行了研究,结果如下:
     1.采用五种不同的诱变方法对绿色木霉AS3.3711进行诱变选育,通过诱变致死率在70%~80%范围内作为筛选依据,试验结果如下:
     (1)亚硝酸钠诱变:在菌悬液中分别加入醋酸缓冲液以及0.1mol/L, 0.05 mol/L, 0.03 mol/L, 0.02 mol/L等不同浓度的亚硝酸钠溶液,室温下分别保温5,10,15,20min,稀释涂布在刚果红筛选培养基上初筛,再以摇瓶发酵复筛,得到亚硝酸钠诱变的最佳浓度为0.1mol/L,诱变时间为20min,突变株的CMC酶活是出发菌株酶活的1.74倍。
     (2)硫酸二乙酯诱变处理:在硫酸二乙酯与菌液的体积比为1%,0.5%,0.3%,0.2%,30℃条件下分别振荡处理20,30,40,60min。稀释涂布在刚果红筛选培养基上初筛,再以摇瓶发酵复筛,得到硫酸二乙酯诱变的最佳体积比为1%,诱变时间为40min,突变株的CMC酶活为出发菌株的2.8倍。
     (3)紫外线辐照诱变:分别在256nm和354nm处,垂直距离为20,25,30cm,辐照处理60,120,180,240,300,360,600s,稀释涂布在刚果红筛选培养基上初筛,再以摇瓶发酵复筛,得出紫外线最佳诱变条件:紫外波长为354nm,垂直距离30cm,照射时间240s,突变株的CMC酶活为出发菌株的2.64倍。
     (4)γ-射线诱变:以照射剂量率为0.4Gy/min,照射时间为2.5,3.75,5,6.25,10min,将处理后的菌液稀释涂布在刚果红筛选培养基上初筛,再以摇瓶发酵进行复筛,酶活提高最多的为出发菌株的1.29倍。
     (5)快中子辐照诱变:采用剂量率为0.002Gy/s,分别照射5,10,20,30,40min,即0.6,1.2,2.4,3.6,4.8Gy 5个剂量进行处理,稀释涂布在刚果红筛选培养基上初筛,再以摇瓶发酵复筛,得出当辐照剂量为1.2Gy时,正突变率为14.3%,筛选和连续传代培养,获得了稳定性较好的正突变株Fn10-1。突变株Fn10-1的羧甲基纤维素酶活(CMC酶活)可达914.80 U/mL,比出发菌株提高了30倍,滤纸酶活(FPA酶活)为633.63 U/mL,比出发菌株提高了4倍。
     2.采用不同饱和度硫酸铵溶液对粗酶液进行盐析沉淀,当硫酸铵饱和度为80%时,盐析沉淀获得的纤维素酶的酶活力为原酶活的97.8%,即894.6U/mL。
     3.对突变株Fn10-1所产纤维素酶进行酶学性质研究,包括酶促反应的最适pH值、pH稳定性、最适温度、热稳定性、激活剂和抑制剂。结果如下:纤维素酶的最适pH值为7.6,在pH值5.6-7.6之间有较好的稳定性,剩余酶活为原酶活的91.%;最适温度为70℃,并且在50℃以下,保温400min,剩余酶活为保温前的92%; Mg2+、Co2+、Na+、Mn2+、Fe2+、Al3+对该酶具有明显的激活作用,而Ba2+、Ag2+、Cu2+、K+对该酶具有明显的抑制作用。
Cellulose is rich in nature as the content of renewable resources and cheap. According to estimates, The cellulose material in synthetic substances of photosynthesis accounted for about 6%,that can reach 200 million tons on the earth's surface every year.At the moment,the create capacity of dry matter is reach as high as 15 million tons every year in the world. The amount of cellulose and hemicellulose about 850 million tons.So The cellulose is inexhaustible in nature. In the present for the transformation of the decomposition of cellulose research, mainly involves the development of cellulose microorganism resources, cellulose enzyme activity enhancement and optimization of reaction conditions. Cellulase is a kind of very highly active biological catalyst, it is the hydrolysis of cellulolytic enzymes generated a group of glucose non-functional. It consists of three components enzyme synergy:(])endo-1,4-β-D-glucanases (EQC1orCMC), (2)exo-1,4-β-D-glucanases(CBH or Cx),(3) 1,4-β-D-glucosidases (BG).
     1. This study is using a hot issue in allusion to cellulose. To Trichoderma viride as the research object, Using physical and chemical respectively method for high-yielding cellulose enzyme activity mutagenesis breeding the degradation bacterium. Optimize enzyme production conditions, and study for enzymology character. Use five different mutation methods ,which is including fast neutron, ultraviolet rays, y-rays, diethyl sulfate, sodium nitrite, to Trichoderma viride AS3.3711 for mutagenesis breeding. Usually, after the mutation processing, the lethality and the radiation dosage has a linear positive correlation within the scope of certain. Through the test results:
     (1) Sodium nitrite mutagenesis:During the fungus levitation liquid join acetic acid buffer fluid,and different concentrations of sodium nitrite solution with 0.1mol/L,0.05 mol/L,0.03 mol/L,0.02 mol/L. Respectively at room temperature heat preservation for 5,10,15,20min. The optimal concentration was 0.1mol/L and the optimal time is 20 min. The enzyme activity of CMC of mutations increased to 1.74 times.
     (2) Diethyl sulfate mutagensis:The volume ratio of diethyl sulfate and mycete was 1%,0.5%,0.3%,0.2%. In 30℃conditions oscillation processing for 20,30,40,60min. The optimal volume ratio was 1% and the optimal time is 40 min. The enzyme activity of CMC of mutations increased to 2.8 times.
     (3) Ultraviolet rays mutagensis:In 256nm and 354nm place respectively, the vertical distance to 20,25,30 cm, with irradiation treatment 60,120,180,240,300,360,600 s, The optimal wavelength was 354 nm, the optimal vertical distance was 30 cm and the optimal time was 240s. The enzyme activity of CMC of mutations increased to 2.64 times.
     (4)γ-rays mutagensis:Use the Radiation dose rate 0.4 Gy/min and the irradiation time with 2.5,3.75,5,6.25, 10min, The enzyme activity of CMC of mutations only increased to 1.29 times.
     (5) Fast neutron mutagensis:Use the Radiation dose rate 0.002 Gy/s and the irradiation time with 5,10,20, 30,40min, it meant 0.6,1.2,2.4,3.6,4.8Gy, The enzyme activity of carboxymethyl cellulose of Fn10-1 can reach 914.80 U/mL,that increased to 30 times than the primitive strain.
     Use of Trichoderma viride AS3.3711 for fast neutron irradiation processing, to the hydrolysis circle of mutant strain on the congo red medium, whose diameter of the ratio of the colony, and cellulose enzyme as the basis, to obtain high mutation strain. Through the experiments found that low doses of fast neutron irradiation can greatly improve cellulose enzyme activity. The mutation rate is 14.3% when the irradiation dose for 1.2 Gy. We got the stability good of mutation Fn10-1 by means of screening and genetic stability experiment. The enzyme activity of carboxymethyl cellulose (enzyme activity of CMC) of Fn 10-1 can reach 914.80 U/mL,that increased to 30 times than the primitive strain. The enzyme activity of filter paper (enzyme activity of FPA) of Fn10-1 can reach 633.63 U/mL, that increased to 4 times than the primitive strain.
     2. Through the ammonium sulfate grading precipitation method, the paper obtained the cellulose enzyme of Fn10-1 and measured this cellulose enzyme characteriztion. The enzymology character experiment including optimal pH value, stability, optimal temperature, thermal stability, activator and inhibitor. The results showed that determined 30% and 80% two saturation for grading precipitation gradient. First, joined solid ammonium sulphate to 30%, static overnighted, got the supernate after the centrifugation. And then joined solid ammonium sulphate to 80% again, static overnighted, got the precipitate after the centrifugation.
     3.The precipitate was dissolved by phosphate buffer, namely for coarse enzyme liquid, to the enzymology character experiment subsequent. After the enzymology character experiment we got the results showed that its optimal pH value was 7.6, between 5.6 to 7.6, it had higer stability. Its optimal temperature was 70℃, And it had high stability when the temperrature was under 50℃. For this enzyme, Mg2+、Co2+、Na+、Mn2+、Fe2+ and Al3+ had obvious activation function, well, Ba2+、Ag2+、Cu2+ and K+ had inhibitory action on it.
引文
[1]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005,5:1~2.
    [2]胡寅,莫建初.国内外纤维素酶研究概况[J].城市害虫防治,2003,2:19~24
    [3]于斌,齐鲁.木质纤维素生产燃料乙醇的研究现状[J].化工进展,2006,25(3):244~249.
    [4]陈侠甫,王景林.纤维素酶高产菌株的选育和在养殖业中的应用研究[J].饲料工业,1994,15(3):10~11
    [5]Sprey B, Lambert C.Titration curbes of cellulases from Trichoderma reesei:demonstration of cellulase-xylanase-β-glucosidase containing complex.FEMS Microbiol.,1983,18:219~222
    [6]Wood T M, Crae S I, Wilson C A. Aerobic and anaerobic fungal cellulases with special reference to their mode of attack on crystalline cellulose.In:Aubert J P.Beguln P, Millet J(Eds).Biochemistry and Genetics of Cellulose Degradation, FEMS Symp., London:Academic Press.1988,43:31~52
    [7]John R, Whitaker.Principles of Enzymology for the Food Sciences (Second Edition).New York:Marcel Dekker.1994,415~416
    [8]Linder M. Linderber G, Reinikainen T, et al.The difference in affinity between two fungal cellulose-binding domains is dominated by a single amine acid substitution.FEBS Lett.,1995, 3721):96~98
    [9]Marx-Figioni M.The control of molecular weight and molecular weight distribution in the biogenesis of cellulose[A].Jrced cellulose and other natural polymer systems:biogenesis.Structure and degradation.Ple-num[Z].New york,1982.243~268.
    [10]L.D.Arnold,N.Michael,J.H.David Wu.Cellulase Clostridia and Ethanol.Microbio-Logy and Molecular Biology Reviews.2005,69 (1):125~126
    [11]阎伯旭,齐飞,张颖舒等.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展[J].1999,26(3):233~237
    [12]王津红,王德培,夏兰英等.里氏木霉侧DWC1纤维素酶的研究.天津轻工业学院学报[J].1998,14(1):1~6
    [13]N.Z.Bernd,et al.Hydroly is of Cellooligosaccharides by Trichoderma Reeseicellobiohydrolases:Experimental Data and Kinetic Modeling.Enzyme Micro-Technol.1994,16(2):43
    [14]陈洪章.纤维素生物技术.化学工业出版社,2005,1~2
    [15]刘德,高培基.半纤维素的分子生物学.纤维素科学与技术,1998,6(1):9~16.
    [16]马登波,刘紫娟,高培基,王祖农.木素的生物降解的研究进展,纤维素科学与技术,1996,4(1):32~38.
    [17]田中三勇.纤维素类资源的再利用.发酵工学杂志,1980,158(3):145~155
    [18]M.P.Coughlan著,吴克谦译.细菌和真菌降解纤维素的机理.国外畜牧学,1991,18(6),28~31
    [19]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J]生物加工过程,2004,2(4):11~16.
    [20]Badal C.Saha.Hemicellulose bioconversion[J].Journal of Industrial Microbiology and Biotechnology, 2003,30(5):279~291.
    [21]Ye Sun, Jiayang Cheng.Hydrolysis of lignocellulosic matericals for ethanol production:a review[J].Bioresource Technology,2002,(83):1~11.
    [22]于斌,齐鲁.木质纤维素生产燃料乙醇的研究现状[J].北工进展,2006,25(3):244~249.
    [23]Sun Y. Enzymatic hydrolysis of ryc straw and bermudagrass for ethanol production[D].North Carolina University,2002
    [24]李稳宏,吴大雄,高新,等.麦秸纤维素酶解法产糖预处理过程工艺条件[J].西北大学学(自然科学版),1997,27(3):227~230.
    [25]李松哗,刘晓非,庄旭品,等.棉籽粕纤维素的超声波处理[J].应用化学,2003,20(11):1030~1034.
    [26]文新亚,李燕松,张志鹏,等.酶解木质纤维素的预处理技术研究进展[J].酿酒科技,2006,8:97~100.
    [27]Laser M.Hydrothermal pretreatment of cellulosic biomass for bioconversion to ethanol[D]. Thayer School of Engineering,Dartmouth College,2001
    [28]夏黎明.植物纤维素原料酶法水解研究.林产化学工业[J],1998,18(4):23~26
    [29]Esteghlalian A,Hashimoto A G,Fenske J J,etc.Modeling and optimization of the dilute surlfuric acid pretreatment of corn stover,poplar and switchgrass[J].Bioressour Technol,1997(59):129~136
    [30]李稳宏,吴大雄,李宝璋.麦秸在纤维素酶解法制糖研究[J].化学工程,1998,26(1):54~61
    [31]Bjerre A B,Olesen A B,Fernqvist T.Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose[J].Biotechnol Bioeng, 1996(49):568~577
    [32]Nathan Mosier, Charles Wyman, Bruce Dale, et al.Features of promising technologies for pretreatment of lignocellulosic biomass[J].Bioresource Technology,2005,96:673~686
    [33]Vidal P F,Molinier J.Ozonolysis of ligin improvement of in vitro digestibility of polor sawdust[J].Biomass,1998(16):1~17
    [34]文新亚,李燕松,张志鹏,等。酶解木质纤维素的预处理技术研究进展[J].酿酒科技,2006,8:97~100
    [35]Holtzapple MT,Jun JH,Ashok G,Patibandla SL,Dale BE.The ammonia freeze explosion(AFEX) process:a practical lignocellulose pretreatment.ApplBiochem Biotechnol 1991,28-29:59~74
    [36]Zheng,Y.Z,Lin,H.M,Tsao,G.T.Pretreatment for cellulose hydrolysis by carbon dioxide explosion.Biotechnol.Prog.1998,14,890~896
    [37]王宏勋,杜甫佑.白腐菌选择性降解秸秆木质纤维素研究[J].华中科技大学学报,2006,34(3):97~100
    [38]刘桂荣,·张鑫,郑明珠.纤维素的生产及应用前景.食品研究与开发.2004,1(25):14~16
    [39]孙祖莉,郭明恩,刘玉田.提取蜗牛内脏废弃物中纤维素酶的工艺条件研究[J].烟台大学学报,2006,19(4):268~272.
    [40]Ljungdahl L.G, Eriksson K.E., Ecology of micorbial cellulose degradation.Adv.Micorb.Ecology, 1985(8):237~299.
    [41]肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志,2002,22(2):33~35
    [42]阎伯旭,齐飞,张颖舒,等.纤维素酶分子结果和功能研究进展[J].生物化学与生物物理进展,1999,26(3):233~237
    [43]Bhat M.K., Bhat S..Cellulose degdaring enzymes and their Ptotential industrial applications Biotcehnol Adv.,1997(15):583~620.
    [44]Yanhong-Li,Fukun Zhao. Advances in cellulase research[J].Chinese Bulletin of Life sciences, 2005,17(5):392~397.
    [45]Sasithorn Kongruang, Michelle K.Bothwell,Joseph Mcguire,et al.Assaying the activities of Thermomonospora fusca E5 and Trichoderma reesei CBH I cellulase bound to polystyrene[J]. Enzyme and Microbial Technology,2003(32)539-545.
    [46]吴显荣.纤维素酶分子生物学研究进展及趋向[J].生物工程进展,1994,14(4):25~27.
    [47]戴四发,金光明,王立克等.纤维素酶研究现状及其在畜牧业中的应用.安徽技术师范学院学报,2001,15(3):32~38.
    [48]Gilkes N, R., Henrissat B Kilburn D.G, Miller R.C.Warren R.A.J.Domains in microbial β-1, 4-glycanases:sequence conservation, function and enzyme families.[J] microbiol.Rev,1991,55:303~315.
    [49]洪洞等.纤维素酶的应用[J].生物学通报,1997,32(12):18~19.
    [50]Tomme P. Warren RAJ, Gilkes NR.Cellulose hydrolysis by bacteria and fungi.In:Poole RK(ed)Advances in microbial physiology.Academic Press.London.1995.2
    [51]汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能[J].生物工程进展,2000,20(2):37~40.
    [52]Kataeva IA et al.Properties and mutation analysis of the CelK cellose-binding domain from the Clostridium thermocellum cellulosome.J Bacteriol,2001 Mar,183(5):1552~1559.
    [53]洪洞等.纤维素酶的应用[J].生物学通报,1997,32(12):18~19.
    [54]刘树立,王华,王春艳,盛占武。纤维素酶分子结构及作用机理的研究进展[J]。食品科技。2007,7:12~15。
    [55]Meinke A.Damude H G, Tomme P, et.al Enhandement of the Endo-beta-1,4-glucanase of an exocellobiodrolase by deletion of a surface loop.J Bio Chem.,1995,270:4383~4386.
    [56]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展J[.]自然科学进展.2003,13(1):21~29
    [57]Irwin DC, Zhang S, Wilson D B.Cloning, expression and characterization of a falllily 48 exocellulase, Ce148A, from Thermobifida fusca[J].Eur J Biochem.2000,267:4988~4997.
    [58]刘树立,王华,王春艳等.纤维素酶分子结构及作用机理的研究进展.食品科技,2007,7:12~15.
    [59]宋贤良,温其标,朱江.纤维素酶法水解的研究进展[J].郑州工程学院学报,2001,24(4):67~72
    [60]NIDETZKY B,STEINER S,HAYN M,et al.Cellulose hydrolysis by the cellulases from Trichoderma reese:a new model for synergistic interaction[J].Biochem,1994,29(8):705~710.
    [61]林风.纤维素酶的生物化学和分子生物学的研究进展.生命科学,1994,6(1):18~23.
    [62]Faterstam L T et al.FEBS Lett[J].1980(119):97~100
    [63]潘锋,扬树林.宇左美曲霉Y-26纤维素酶的纯化及酶学性质.南京理工大学学报.2001,254:424~427
    [64]Jacob F,Monod J.Genetic regulatory mechanisms in the synthesis of proteins[J].J Mol Biol, 1987(3):318~326
    [65]Parde A B,Prestidge L S.The initial kinetics of enzyme induction[J].Biochem Biophys Acta, 1981(6):49-77
    [66]Nisizawa J,Suzuki H,Nakayama,etc.Inductive Formation of Cellulase by sophorose in Trichoderma viride[J].Biochem,1971,70(3):375~381
    [67]Gupta J K, Das N B,Gupta Y P;Effect of cultural conditional on cellulose formation by Trichoderma virid[J].Agricultural and Biological Chemistry.1972,36(11):1961~1967
    [68]Jose Carlose, Carle~Urioste, Jorge Escobar-Vera Cellulase Induction in Trichoderma reesei by Cellulose Requires Its Own Basal Expression[J].The Journal of Biological Chemistry,1997, 272(15),10169~10174
    [69]Vaheri,M.P. J.Appl.Microbiol.Biotechnol[J],1979,8,73~79
    [70]S.E-Gogary,A.Leite.Mechanism by which cellulose triggers cellobiohydrolae Ⅰ gene Expression in Trichoderma reesei[J].Biochchemistry,1989,86,6138~6141
    [71]Nisizawa T..Catabolite repression of cellulase formation in Trichoderma viride[J]. J.Biochem,1972,71,999~1007
    [72]Messner, R.Carbon Source Control of Cellobiohydrolase Ⅰ and Ⅱ Formation by Trichoderma reesei[J].Appl.Envir.Microbtcl,1991,57,630~635
    [73]Nikolay A Spiridonov. Regulation of Biosynthesis of Individual Cellulases in Thermonospora fusca[J].J Bact.,1998,180(14),3529~3532
    [74]Kubocek.CP.et al.The Trichoderma reesei cellulase regulatory puzzle:from the interior life of a secretory organism[J]. Ensyme Microb Techol,1993,15,90~99
    [75]KUBICEK CP, MESSNER R.GRUBER F, et al.The Trichoderma reesei cellulase regulatory puzzle:from the interior life of a secretory organism.Enzume Mierob Technol.,1993,15:90~99.
    [76]王冬,曲音波.L-山梨糖提高木霉纤维素酶合成速率机制的研究[J].真菌学报,1995,14(2):143~144
    [77]L.Olsson, T.M.I.E.Christensen, K.P.Hansen and E.A.Palmqvist.Influence of the Carbon Source on Production of Cellulases, Hemicellulases and Pectinases by Trichoderma reesei.Rut C-30.Enzyme and Microbial Technology.2003,33(5):612~619
    [78]L.M.Xia, X.L.Shen.High-yield Cellulase Production by Trichoderma reesei ZU-02 on Corn Cob Residue.Bioresource Technology.2004,91(3):259~262
    [79]崔福绵,那安,马建华等.不同真菌纤维素酶一些生物化学性质的比较.真菌学报,1984,3(1):59~64.
    [80]张启先.纤维素和纤维素酶.微生物学通报,1976,3(2):31~34
    [81]Yan T R Lin CL.purification and chatacterization of a glueose-toleant beta-glucosidase from Aspergillus niger CCRC31494.Biosci Biotechnol Biochem.,1997,61:965~970.
    [82]Gerrit B, Pettersson B.Extracellular enzyme system utilized by the fungus for the breakdown of cellulose [J].Eur J.Biochem,1985,146:301~305
    [83]Ghose T K.Stodies on the mechanism of enzymatic hydrolysis of cellulosic[J]. Biotechnol Bioeng,1979, 21:131~146
    [84]高培基.纤维素酶活力测定方法及研究进展[J].工业微生物,1985,6(5):5~8.
    [85]Miller G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Anal Chem,1959,313:426~428
    [86]Somogyi M.A new reagent for the determination of redueing sugar.[J].Biolchem,1952,195:119~121
    [87]Child. J S.Determination of cellulose activity using hydroxyethyl cellulose as substrates can[J]..Biochem,1973,51:39
    [88]粱如玉,杨婉身,冯明镜.纤维素酶水解研究[J],微生物学通报,1998,24(3)145~148
    [89]邱雁临,孙宪迅,蔡俊,王伟平。纤维素酶耐高温高产菌株的选育。中国酿造,2004,2:15~19。
    [90]陈福建,陈洪章,李佐虎.纤维素酶气相双动态固态发酵.环境科学.2002,23(3):53~58
    [91]农向,伍红,秦天莺,向会耀。纤维素酶的研究进展。西南民族大学学报,2005,增刊:29~33
    [92]周德庆著.微生物学教程[M].北京:高等教育出版社,2002.
    [93]袁汉路等.中子源及其应用.科学出版社,1978:33~34
    [94]李永华,吴季兰.辐射技术基础.原子能出版社,1988:100
    [95]Ehrenberg.L.,Acta Agric.Scand.,1954,4:391~418
    [96]许耀奎等.作物诱变育种.上海科学技术出版社,1985,66~74
    [97]章明春.工业微生物诱变育种.北京:科学出版社,1984
    [98]Thomas L.Crawford D.L., Cloning of clustered streptomyces viridosporus T7A lignocellulose catabolism genes encoding peroxidase and endoglucanase and their extracellular expression in Pichia pastoris Can.[J].Microbiol.1998,44:364~372
    [99]P.G. Murray, C.M.Collins, A.Grassick and M.G. Tuohy. Molecular Cloning, Transcriptional, and Expression Analysis of the First Cellulase Gene (cbh2), Eneoding Cellobiohydrolase Ⅱ, from the Moderately Thermophilic Fungus Talaromyces Emersonii and Structure Prediction of the Gene Produet.Biochemical and Biophysical Research Cornrnunications.2003,301(2):280~286
    [100]S W Nazareth, J.D Sampy.Production and Characterisation of Lignocellulases of Panus Tighnus and Their Applieation.Intemational Biodeterioration & Biodegradation.2003,52(4):207~214
    [101]谷海先,王建.纤维素酶生产菌的选育研究[J],中国酿造2004,1:11~12
    [102]李燕红,赵辅昆.纤维素酶的研究进展[J].生命科学,2005,17(5):392~397.
    [103]周正红,高孔荣.纤维素酶在食品发酵工业中的应用及前景[J].暨南大学学报,1998,19(5):125~130
    [104]高培基,曲音波,干祖农.绿色木霉产生的葡萄糖苷酶类[J].生物化学杂志,1992,8(6):13~17.
    [105]王兰芬.纤维素酶的作用机理及开发应用[J].酿酒技术,1997(6):16~17
    [106]冯群策.浅谈酶在非接触印刷废纸脱墨中的应用.黑龙江造纸.2002(4):18~20
    [107]马田田.纤维素酶用于中药提取的初步研究.中草药,1994,25(3):223
    [108]高红亮.洗涤剂用碱性纤维素酶的研究进展.微生物学通报,2002,29(6):90~94
    [109]张瑞萍.棉织物的生物煮练.南通工学院学报自然学版,20,1(2):41~43
    [110]林建国,王常高,王伟平,胡瑛,蔡俊.不同诱变方法提高绿色木霉产纤维素酶的研究[J]安徽农学通报,2008,(14).
    [111]张继泉,王瑞明.绿色木霉生产纤维素酶的进展.山东食品发酵,2001,4:12~15.
    [112]杨友坤,朱凤香,王卫平,陈晓旸,洪春来,吴传珍,薛智勇.纤维素酶及其应用现状[J].安徽农学通报,2009,(13)59~62.
    [113]宋安东,苏丽娟,谢慧,曲音波,杨铭.Y射线对斜卧青霉的诱变筛选及产酶条件优化[J].核农学报,2008,(03)280~285.
    [114]刘德海,王红云,安明理,等.纤维素酶高产菌株的选育及其生物学性状的研究[J].饲料工业,2005,26(18):24~26.
    [115]邱雁临,孙宪迅,蔡俊,等.纤维素酶耐高温高产菌株的选育[J].中国酿造,2004(2):15~17.
    [116]董志扬,祝令香,于巍,等.纤维素酶高产菌株的诱变选育及产酶条件研究[J].核农学报,2001,15(1)26-31.
    [117]高鸿健.纤维素降解菌青霉DS-04的筛选、产酶条件优化及其CMC酶性质研究[D].长春:东北师范大学,2006.
    [118]王中兴.产木聚糖酶菌株的诱变及酶学特性的研究,吉林农业大学硕士论文,2007
    [119]潘锋,杨树林,史小丽等.宇佐美曲霉Y-26纤维素酶的纯化及酶学性质.南京理工大学学报,2001,25(4):424~427.
    [120]潘锋,杨树林,史小丽等.黑曲霉纤维素酶的纯化及酶学性质研究.生物技术,2001,11(3):7~9.
    [121]田新玉,王欣.嗜碱芽抱杆菌N6-27碱性纤维素酶的纯化及性质.微生物学报,1998,38(4):310~312.
    [122]沈雪亮,夏黎明.产纤维素酶细菌的筛选及酶学特性研究.林产化学与工业,2002,22(1):47~51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700