复杂形状金属表面电泳沉积制备HA/BG复合涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用于替换承受较大载荷的人体硬组织的植入材料,不仅应具有良好的骨结合能力,还应具有高的强度和韧性。但目前的生物活性陶瓷和具有一定生物相容性的金属都不能同时满足这些要求。陶瓷的断裂韧性远低于人的皮质骨,且至今也没有一种金属材料能够与人体骨直接结合。在金属表面涂覆生物活性涂层,可兼顾生物活性陶瓷的骨结合能力与金属材料良好的力学性能。本文从涂层的结构设计出发,探索了一种在钛合金表面制备高稳定性生物活性涂层的新工艺。采用电泳沉积工艺,在非线性形状金属表面成功制备出了羟基磷灰石(HA)—生物玻璃(BG)复合涂层。HA-BG复合涂层底层为致密玻璃层,与钛合金基体紧密结合并防止了体液渗入涂层与金属界面。外层为疏松的HA-BG复合层,能够提供与人体硬组织良好结合的条件。
     本文采用的生物玻璃是以Na_2O-CaO-SiO_2-P_2O_5生物玻璃体系为基础,结合在钛合金表面制备涂层的要求设计的Na_2O-CaO-SiO_2-P_2O_5-B_2O_3-TiO_2-CaF_2系BG。该BG的热膨胀系数在>320℃时稍大于钛合金Ti6Al4V的热膨胀系数,<320℃时稍小于Ti6Al4V的热膨胀系数;熔化温度较低(<700℃);与基体结合强度高且稳定。电泳沉积工艺采用乙醇体系,BG与HA粉料能够用乙醇制得较稳定悬浮体系。采用离子吸附的方法,反转了BG颗粒在乙醇中的荷电性质,使其与HA颗粒带同种电荷,从而实现了二者的电泳共沉积。本文分别研究了离子浓度、沉积电压、沉积时间和悬浮液固体含量对HA和BG电泳沉积的影响,优化了此体系电泳沉积的工艺参数。采用两步电泳沉积法,先后在钛合金表面沉积BG层和HA-BG复合层。热处理制度采用低温快烧法。
     采用粘结拉伸法测定涂层与基体的结合强度,研究了玻璃涂层结合强度与热处理制度的关系和复合涂层结合强度与HA含量的关系,BG涂层结合强度可达35MPa以上,复合涂层结合强度可达25MPa以上。通过测定浸泡玻璃前后溶液离子浓度的变化及不同离子的对比实验,证明了BG颗粒对Ca~(2+)的选择性吸附及其对BGξ-电位的影响。采用SEM,EPMA,EDXA等测试方法,分析了涂层的结构与元素分布情况,证明了涂层具有底层致密,表层疏松的结构。HA颗粒镶嵌于玻璃熔体中,在涂层表层和涂层中孔洞内壁均有HA颗粒露出,增加了HA颗粒与体液的接触面积。实验表明乙醇体系电泳沉积工艺能够实现
    
    复杂形状金属表面复合涂层的制备;该涂层兼顾了其力学稳定性、化学稳定性
    及生物活性,能够解决当前生物涂层稳定性低的问题。
Implant materials to be used as substitutes for high load-bearing bones need to possess not only bone-bonding ability but also high fracture toughness. However, neither the currently available bioactive ceramics nor biocompatible metals fulfill both these requirements. The fracture toughness of ceramics are lower than that of human cortical bone, and none of biometals can directly bonds to living bone. Coating bioactive ceramics onto a tough biometals integrates the bone-bonding ability of bioactive ceramics and the mechanical properties of the biometals. So, in this paper, we developed a new technology to prepare highly stable bioactive coating on titanium alloy. The technology of preparing Hydroxyapatite (HA) - Bioglass (BG) compound coating on a non-line-sight titanium alloy substrate was realized by electrophoretic deposition (EPD). The dense glass layer, as the inner sublayer of the compound coating, which could bond with the substrate by chemical bonding and mechanical locking, prevents the body fluid
    seeping into the interface between the coating and substrate. The outmost sublayer is porous HA-BG compound layer which can provide an excellent environment for bonding with a living bone.
    According to the requirements of coating on T16A14V alloy, the bioglass used in this experiment was designed on the basis of the Na2O-CaO-SiO2-P2O5 bioglass system. The composites of the bioglass are listed as below: Na2O-10. CaO-15, SiO248, P2O5-5, B2O3-10, TiO2-6, CaF2-6 (wt%). The thermal expansion coefficient of the bioglass is slightly higher than that of Ti6A14V alloy at high temperature (>320℃) and slightly lower at low temperature (<320℃). The melting temperature of the bioglass is lower than 700℃. Therefore, the bioglass has high chemical stability and can bond with the substrate after thermal treatment. The preparation process of EPD was carried on in the ethanol system, and the suspensions of BG and HA is stable in this system. Furthermore, the charge of BG particle was reversed through ion absorption, which made both BG and HA charged positively and realized the co-deposition of them in ethanol. The effect of concentration of ions, deposition
    
    
    
    voltage, deposition time and solid concentration of the suspension to the EPD was also studied in this paper. Through two-step electrophoretic deposition, a BG layer and a HA-BG compound layer were successively deposited on the titanium alloy substrate. The thermal treatment of the coating employed the low-temperature-fast-firing technology.
    The relationship between the bonding strength of the BG coating and the thermal treatment system and that between the bonding strength of the compound coating and the amount of HA were studied in this paper. It is shown that the bonding strength of the BG coating was higher then 35 MPa. and that of the compound coating was higher then 25 MPa. The concentration of Ca2+ in ethanol solution before and after the BG was immersed by the solution was tested and the control experiment with other ions was carried out. The results presented that Ca + was absorbed onto the BG particles selectively and changed the zeta potential of BG in ethanol. The microstructure and the element distribution of the coating were analyzed by Scanning Electron Microscope (SEM), Electron Probe Micro-Analysis (EPMA) and Energy Dispersion X-ray fluorescence analysis (EDXA). The results revealed the structure of inner dense sub-layer and outmost porous sub-layer. The HA particles embedded in the bioglass could be seen from both the surface o
    f the coating and the wall of the inner pore of the coating, which enlarged the contact area of the HA with the body fluid. The results showed that the HA-BG compound coating could be prepared by EPD in ethanol system. Integrating the mechanical, chemical stability and the bioactivity, the coating could resolve the problem of low stability in the current Ca-P bioactive coatings.
引文
[1] 张亚平,高家城,王勇.人工关节材料的研究与展望.科学前沿与学术评论.Vol.22,No.1(2001):47-51
    [2] 龙迎祥,王迎军.羟基磷灰石生物陶瓷涂层的制备方法.材料开发与应用,1999年第14卷第6期:41-44
    [3] J. A. C. Liu, M. L. Liu, C. P. Ju, et al. Structure and properties of hydroxyapatite glass composites plasma sprayed on Ti6A14V, Material Science, Vol.5, No.5, 1995:279-283
    [4] De Groot K., Geesink R. G. T., Serekian P., et al. Plasma sprayed coatings of hydroxyapatite coating. J. Biomed. Mater. Res., Vol.21, 1987:1375
    [5] Wolke J. G. Plasma—sprayed hydroxyapatite coating for biomaterial application. Proceeding of the third national thermal spray conference. 1990:413-417
    [6] Cross K.A. In vitro testing of plasma—sprayed hydroxyapatite coating. J. Mater. Sci.: Mater. in Med. Vol.5, 1994:219-224
    [7] Chen J., Tong W., Cao Y., et al. Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. J. Biomed. Mater. Res., Vol.34, 1997:15
    [8] 常程康,朱然怡,毛大立等.等离子喷涂羟基磷灰石涂层的材料学特征..无机材料学报.Vol.15,No.5,2000:952-956
    [9] 陈学定,韩文政.表面涂层技术.北京:机械工业出版社.1993:40-94
    [10] 赵文轸.超音速火焰喷涂工艺及特点.材料保护.1997(12):19-21
    [11] 王迎军,李尚周,卢国辉等.生物活性陶瓷涂层制备工艺的比较研究.生物医学工程学杂志(增刊).Vol.16(1999):7-9
    [12] 梅金秀,张庆瑜,王煜明等.离子束辅助沉积制备TiN薄膜研究.98中国材料研讨会论文摘要集:600
    [13] Ektessabi A.M. Surface modification of biomedical implants using ion-beam-assisted sputter deposition. Nucl. Instru. & Meth. In Phy. Res. B., 1997, 127/128:1008
    [14] H. M. Kim, F.Miyaji, T.Kokubo, et al. Adhesive strength of bone like apatite to chemically treated titanium, Bioceramics, Volume 9, Proceeding of the 9th International Symposium on Ceramics in Medicine, Japan, 1996:301-304
    [15] H. -M. Kim, F. Miyaji, T. Kokubo, et al. Graded surface structure of bioactive titanium prepared by chemical treatment. CCC 0021-9304/99/020100-08:100-106
    [16] H. M. KIM, P. MIYAJI, T. KOKUBO. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci.: Mater. in Med. Vol.8, 1997: 341-347
    
    
    [17] H. M. KIM, H. TAKADAMA, F. MIYAJI, et al. Formation of bioactive functionally graded structure on Ti-6A1-4V alloy by chemical surface treatment. J. Mater. Sci.: Mater. in Med. Vol.11, 2000:555-559
    [18] H. B. Wen. Calcium Phosphate Coating Based on Mineralization in Natural Hard Tissues. PhD thesis, Leiden University, The Netherlands, 1998:71-97
    [19] H. B. WEN, Q. LIU, J. R. DE WIJN, et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. J. Mater. Sci.: Mater. in Med. Vol.9, 1998:121-128
    [20] Ohtsuki C., Iida H., Hayakawa S., et al. Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J. Biomed. Mater. Res., 35, 1997:39-47
    [21] Osaka A., Ohtsuki C., Iida H., et al. Bioactivity of H_2O_2—treated Ti and Ti alloys. In Program and Transactions of Fifth World Biomaterials Congress. Vol.2, University of Toronto Press, Toronto, 1996:557
    [22] M. T. PHAM, H. REUTHER, W. MATZ, et al. Surface indued reactivity for titanium by ion implantation. J. Mater. Sci.: Mater. in Med., No.11, 2000:383-391
    [23] Pham M. T., Renther H., Muller R., et al. Biocompatibility reactive titanium surface endowed by ion implantation. Annual report of institute of ion beam physics and materials research, forschungsentrum rossendorf, Germany, 1997:44
    [24] A. Deptula, W.Lada, T.Olczak, et al. Preparation of calcium phosphate coatings by complex sol-gel process. Bioceramics. Vol. 9, Proceedings of the 9~(th) International Symposium on Ceramics in Medicine, Japan, 1996:313-317
    [25] Li P. J., De Groot K. Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo. J. Biomed. Mater. Res. 1993, 27:1495
    [26] L. -D. PIVETEAU, M. I. GIRONA, L. SCHLAPBACH. Thin films of calcium phosphate and titanium dioxide by a sol-gel route: an new method for coating medical implants. J. Mater. Sci.: Mater. in Med. Vol.10, 1999:161-167
    [27] H.Ishizawa, M.Fujino, M.Ogino. Histomorphometric evakyation of thin hydroxyapatite layer formed through anodization followed by hydrothermai treatment. Bioceramics, Volume 9, Proceeding of the 9~(th) International Symposium on Ceramics in Medicine, Japan, 1996: 329-332
    [28] Ishizawa H., Fujino M., Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J. Biomed. Mater. Res. 1995, 29:1459
    [29] 王家伟,程祥荣,王贻宁.纯钛阳极氧化及表面薄层羟基磷灰石形成技术的研究.中国口腔种植学杂志.2001年9月第6卷第3期,101-123,128
    
    
    [30] 张建民,冯祖德,林昌健等.电沉积功能陶瓷技术.功能材料.Vol.29,No.2,1998:128-131
    [31] 黄立业,憨勇,徐可为.电化学沉积—水热合成法制备羟基磷灰石生物涂层的工艺研究,硅酸盐学报.Vol.26,No.1,1998:87-91
    [32] Redepenning J. Characterization of electrolytically prepared brushite and hydroxyapatite coating on orthopedic alloy. J. Biomed. Mater. Res. Vol.30, 1996:287-294
    [33] Shirkhanzadeh M. Calcium phosphate coating prepared by electro-crystallization from aqueous electrolytes. J. Mater. Sci.: Material in Medicine. Vol.6, 1995:90
    [34] Fujishiro Y. Coating of hydroxyapatite coating for biomedical applications. Proceeding of the third national thermal spray conference, 1990:433-438
    [35] 张亚平.激光熔覆生物陶瓷复合涂层.材料研究学报.1994,8(1):93-96
    [36] Partho Sarkar, Patrick S. Nicholson. Electrophoretic deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics. J. Am. Ceram. Soc. 79[8] (1996): 1987-2002
    [37] A. Borner, R. Herbig, M. Mangler, et al. Forming of a Gradient Ceramic Material by Electrophoretic Deposition. Materials Science forum Vols. 308-311(1999):89-94
    [38] S. Ban, S. Maruno, J. Hasegawa. Effect of etching condition on the formation of bioactive surface of hydroxyapatite-glass-titanium composite. Japanese Journal of Applied Physics. Vol.30, No.7B 1333-1336.
    [39] S. Maruno, H. Iwata, S. Ban, et al. Bone bonding studies and implant application of HA-G-Ti functionally gradient composites. Mater. Sci. Forum, Vols. 308-311(1999), 344-349
    [40] Toshihiro Kasuga, Takeshi Mizuno, Mikio Watanabe, et al. Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. Biomaterials, 22(2001) 577-582.
    [41] J.M. Gomez-Vega, E. Saiz, A.P. Tomsia, et al. Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing. Biomaterials, 21 (2000) 105-111.
    [42] 诸陪南.生物玻璃.现代玻璃科学技术(下册),干福熹主编.上海:上海科学技术出版社.1990,8:281
    [43] 陈晓明.电泳共沉积—烧结法制备钛合金表面生物活性梯度陶瓷涂层的研究.武汉理工大学博士学位论文.2001,10:
    [44] M.Goldman, E.Saiz, J.M. Gomez-Vega and A.RTomsia. In Vitro Behavior of Glass Coatings on Ti6AI4V. Sixth World Biomaterials Congress Transactions. 980
    [45] 卢进标.中国搪瓷手册.北京:中国轻工业出版社,2000
    [46] 邵规贤,苟文彬,闻瑞昌等.搪瓷学.北京:中国轻工业出版社.1983,2:101-107,434
    [47] 许传波.冰醋酸介质中电泳共沉积制备BG/HA梯度涂层.武汉理工大学硕士论文.
    
    2002.5:41-42
    [48] 张巨先,高陇桥,李发.包覆型陶瓷纷体的研究进展.硅酸盐通报.2000年第2期:53-56
    [49] KOICHI HASEGAWA, SHUNSUKE KUNUGI, MASAHIRO TATSUMISAGO, et al. Preparation of Thick Films by Electrophoretic Deposition Using Surface Modified Silica Particles Derived from Sol-Gel Method. J. Sol-Gel. Sci. and Tec. 15(1999): 243-249
    [50] B.CABOT, A. FOISSY. Reversal of the surface charge of a mineral powder: application to electrophoretic deposition of silica for anticorrosion coatings. J. Mater. Sci. 33(1998):3945-3952
    [51] Mitsuyoshi Okamoto, Kazunori Nobuhara, Daibo Ishii. Effect of calcium-modified silica on retention and selectivity in normal-phase liquid chromatography. J. Chromatography A. 697(1995):153-158.
    [52] Griselda C. Cabilla, Adrian L. Bonivardi, Miguel A. Baltanas. FTIR Study of the Adsorption of Methanol on Clean and Ca-Promoted Pd/SiO2 Catalysts. J. Catalysis. 201, 213-220 (2001)
    [53] William E. Windes, Jeramy Zimmerman, Ivar E. Reimanis. Electrophoretic deposition applied to thick metal-ceramic coatings. Surface and Coating Technology 157(2002):267-273
    [54] 王承遇,陶瑛.玻璃表面和表面处理.中国建材工业出版社.1993,11:98-99
    [55] I. ZHITOMIRSKY, L. GAL-OR, A. KOHN. Electrodeposition of ceramic films from non-aqueous and mixed solutions. J. Mater. Sci. 30(1995):5307-5312
    [56] E. De Beer, J. Duval, E. A. Meulenkamp. Electrophoretic Deposition: A Quantitative Model for Particle Deposition and Binder Formation from Alcohol-Based Suspensions. J. Coll. Inter. Sci. 222, 117-124 (2000)
    [57] JAU-HO JEAN. Electrophoretic deposition of AI203-SiC composite. Mater Chem Phys. 1995, 40: 285—290.
    [58] 周义.电泳涂装新工艺.北京:地质出版社,1999.1:65-66
    [59] Paul Ducheyne, W. Van Raemdonck, J. C. Heughebaet, et al. Structural analysis of hydroxyapatite coating on titanium. Biomaterials. 1986, Vol 7(3)
    [60] T.OKU, K.SUGANUMA, L.R.WALLENBERG. Structural characterization of the metal/glass interface in bioactive glass coatings on Ti6A14V. JOURNAL OF MATERIALS SCIENCE: MATERIALS MEDICINE 12(2001) 413-417
    [61] DEBNATH DE, PATRICK S NICHOLSON. Role of ionic depletion in deposition during electrophoretic deposition. J Am Ceram Soc, 1999, 82(11): 3031—36.
    [62] B CABOT, A FOISSY. Reversal of the surface charge of a mineral powder: application to electrophoretic deposition of silica for anticorrosion coatings. J Mater Sci, 1998, 33: 3945—
    
    3952.
    [63] 侯万国,孙德军,张春光.应用胶体化学.科学出版社.1998.11:43-44
    [64] 郑忠.胶体科学导论.高等教育出版社.1989.3:323-324
    [65] I. Zhitomirsky. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Advances in Col. Interface Sci. 97 (2002): 279-317
    [66] Alessandra Formento, Laura Montanaro, Michael V. Swain. Micromechanical Characterization of Electrophoretic-Deposited Green Films. J. Am. Soc. 82(12):3521-28(1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700