新型靶向性肽型DNA载体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗给很多疾病的治疗提供了希望,但是目前依然缺乏安全、高效并能靶向性运输基因到相应细胞中的载体。虽然病毒载体可以有效运输基因到细胞中发挥作用,但其也有一系列的缺点,例如:构建和使用较为复杂,只能携带较小分子量的基因,容易引起炎症反应以及潜在的安全性问题等,这些都严重限制其在生物医学以及临床上的应用。所以,研究者们发展了一系列人工合成的非病毒载体,它们对货物分子尺寸的要求更加宽松,免疫原性更低,而且使用也更加方便。在这些非病毒载体中,阳离子脂质体和高聚物由于其使用简便以及具有相对较高的运输效率而得到了广泛的使用和研究。然而,由于它们具有毒性上的局限,发展新型的能够运输DNA到动物细胞内发挥作用的低毒、高效非病毒载体仍然十分必要。
     肽型DNA载体是一种新型非病毒DNA载体,与其它非病毒DNA载体(例如:脂质体或者高聚物)相比,它具有以下优点:易于合成,低免疫原性,生物相容性好,在体内容易被降解等。并且,对肽型DNA载体的结构修饰也较容易进行,从而使其具有不同的功能,因此,有可能具有更广泛的应用前景。然而,已有的肽型DNA载体都对细胞或者组织没有靶向性,而靶向性则是基因治疗的前提需求之一。所以,发展能够靶向性运输DNA到相关细胞的肽型载体对于基因治疗十分有意义。
     细胞穿膜肽是一种被广泛使用的肽型载体。本文从新型细胞穿膜肽的构造和性质分析入手,首先设计并合成了一系列新型含有天然和非天然氨基酸的混合型细胞穿膜肽,对其进入细胞的效率、细胞内分布和抗胰酶降解能力做了检测分析,从中筛选出适合于作为DNA运输载体的性质特征。
     其次,将靶向恶性肿瘤细胞的叶酸分子加入到筛选出的细胞穿膜肽中,并对其与DNA结合的能力、包裹DNA形成颗粒的性质和携带DNA进入细胞的能力进行了研究。结果表明这种叶酸修饰的细胞穿膜肽不能有效运输DNA到细胞中表达,可能是因为空间位阻过大或者包裹DNA所形成的纳米颗粒所带电荷过低。
     然后,将一种靶向特定肿瘤细胞的序列作为靶向基团加入到的细胞穿膜肽中,构建了一种新型的肽型载体,并对它与DNA结合的能力、包裹DNA形成颗粒的尺寸和表面电荷、携带DNA进入各种肿瘤细胞的效率、进入细胞的机制和细胞内分布,以及细胞毒性等方面性质进行了系统研究。结果表明这种新型的肽型载体能够有选择性地携带DNA到特定肿瘤细胞系中表达。它具有易于合成、低毒性、低免疫原性、良好的生物相容性、良好的体内降解能力以及能实现特定肿瘤细胞选择性的DNA运输等优点。
     最后,将一段靶向神经细胞的序列加入到细胞穿膜肽中,构建了另一种新型的肽型载体,并对它与DNA结合的能力、包裹DNA形成颗粒的尺寸和表面电荷、携带DNA进入各种细胞的效率、进入细胞的机制和细胞内分布以及细胞毒性等方面性质进行了系统研究,最终进一步应用到在体运输DNA到鼠脑神经元。结果表明了这种新型的肽型载体不仅能够选择性地运输DNA到神经细胞表达,而且可以有效转染DNA到原代神经元,最重要的是静脉注射后能靶向性运输DNA突破血脑屏障到达小鼠脑部并表达,为构建靶向运输DNA到鼠脑神经元的肽型载体提供了新思路。
DNA therapy shows a promising strategy for treating various diseases but still requires efficient and safe systems that can deliver the therapeutic DNA selectively into targeted cells. Viral vectors have been used to transfer genes into cells successfully. However, these vectors have serious disadvantages, such as limited loading capacity, complexity of production, innate immunogenicity, and the risk of inflammatory responses and toxicity, that limit their clinical applications. To avoid these problems, various non-viral carriers have been developed; these carriers display low immunogenicity, relative safety, ease of production, and no cargo size limitation. Of the existing non-viral vectors, cationic lipids and cationic polymers are the most intensively studied and frequently employed. However, they have dose-dependent toxicities in in vivo applications.
     Cationic peptides have also been explored as gene delivery systems due to several advantages:biodegradability, biocompatibility, less toxicity, and ease of synthesis compared with polymeric carriers. Moreover, the composition of peptides is easy to control. By altering the composition of a given peptide, various functions can be achieved. However, none of these systems has any selectivity toward cells or tissues, which makes it impossible for them to deliver DNA into targeted cells or tissues in vivo and thus seriously limits their applications in gene therapy.
     Cell-penetrating peptides (CPPs) are one kind of short cationic peptides. In this study, we designed novel CPPs and investigated their characters. A series of heterogeneous oligoarginines consisting of natural and unnatural amino acids were synthesized. Then their uptake efficiencis, intracellular distributions and anti-enzymatic hydrolysis abilities were investigated. From the results we screened out the structure suitable for using as a DNA transport carrier. Then the target motif was added into the CPPs sequence for target DNA delivery.
     Firstly, the folate acid for tumor targeting was added into the chosen CPP to construct a non-viral peptide based DNA delivery system for tumor targeting DNA delivery. The results showed that although this vector could bind and compack DNA, it could not deliver DNA into the cells. This is possibly because of the steric hindrance or the low zeta potential of the peptide/DNA complex.
     Next, a tumor targeting sequence was added into the chosen CPP to construct a non-viral peptide-based DNA delivery system which could mediate efficient DNA expression in only selected tumor cells. The cell uptake efficiencies, intracellular distribution, uptake mechanism and cytotoxicity were analyzed. The advantages of this system include its ease of synthesis, low immunogenicity, biocompatibility, low cytotoxicity and selectivity.
     Finally, a brain targeting sequence was added into the chosen CPP to construct a non-viral peptide-based DNA delivery system which could mediate efficient DNA expression to mice brain after intravenous injection. The cell uptake efficiencies, intracellular distribution, uptake mechanism and cytotoxicity were analyzed. This system could mediate neuronal cell-selective DNA delivery, efficient DNA transfection to primary neurons and targeting DNA delivery into the brain. The advantages of this system include the advantages of peptide carriers mentioned above and brain targeting. The result suggest a new strategy for brain-targeting DNA delivery in vivo.
引文
[1]Verma, Ⅰ. M., Somia, N. Gene therapy-promises, problems and prospects. Nature, 1997,389 (6648):239-242.
    [2]Patil, P., Chaudharie, P., Sahu, M., et al. Review article on gene therapy. Int J Genet, 2012,4 (2):74-79.
    [3]Touchefeu, Y., Harrington, K. J., Galmiche, J. P., et al. Gene therapy, recent developments and future prospects in gastrointestinal oncology. Aliment Pharm Therap,2010,32 (8):953-968.
    [4]Friedmann, T., Roblin, R. Gene therapy for human genetic disease? Science,1972, 175 (4025):949-955.
    [5]Sheridan, C. Gene therapy finds its niche. Nat Biotechnol,2011,29 (2):121-128.
    [6]Waehler, R., Russell, S. J., Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat Rev Genet,2007,8 (8):573-587.
    [7]Thomas, C. E., Ehrhardt, A., Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet,2003,4 (5):346-358.
    [8]Meloni, M., Descamps, B., Caporali, A., et al. Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes,2012,61 (1):229-240.
    [9]Munch, R. C., Janicki, H., Volker, Ⅰ., et al. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther,2012,21 (1):109-118.
    [10]Kiem, H. P., Jerome, K. R., Deeks, S. G, et al. Hematopoietic-Stem-Cell-Based gene therapy for HIV disease. Cell Stem Cell,2012,10 (2):137-147.
    [11]Sauer, A. V., Morbach, H., Brigida, Ⅰ., et al. Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy. J Clin Invest,2012,122 (6): 2141-2152.
    [12]Weinberg, M. S., Samulski, R. J., McCown, T. J. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology,2013,69 (0):82-88.
    [13]Gascon, A. R., Pozo-Rodriguez, A. D., Solinis, M. A. Non-viral delivery systems in gene therapy. InTech,2013.
    [14]Fischer, A., Hacein-Bey-Abina, S., Cavazzana-Calvo, M.20 years of gene therapy for SCID. Nat Immunol,2010,11 (6):457-460.
    [15]Miller, D. G, Rutledge, E. A., Russell, D. W. Chromosomal effects of adeno-associated virus vector integration. Nat Genet,2002,30 (2):147-148.
    [16]Mueller, C., Flotte, T. R. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther,2008,15 (11):858-863.
    [17]Carter, B. J. Adeno-associated virus vectors in clinical trials. Human Gene Ther, 2005,16 (5):541-550.
    [18]Siapati, E. K., Bigger, B. W., Miskin, J., et al. Comparison of HIV-and EIAV-based vectors on their efficiency in transducing murine and human hematopoietic repopulating cells. Mol Ther,2005,12 (3):537-546.
    [19]Burton, E. A., Fink, D. J., Glorioso, J. C. Gene delivery using herpes simplex virus vectors. DNA Cell Biol,2002,21 (12):915-936.
    [20]Atkinson, H., Chalmers, R. Delivering the goods:viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica, 2010,138 (5):485-498.
    [21]Herweijer, H., Wolff, J. Progress and prospects:naked DNA gene transfer and therapy. Gene Ther,2003,10 (6):453-458.
    [22]Shimamura, M., Morishita, R. Hot Topic:Naked Plasmid DNA for Gene Therapy. Curr Gene Ther,2011,11 (6):433-433.
    [23]Niidome, T., Huang, L. Gene therapy progress and prospects:nonviral vectors. Gene Ther,2002,9 (24):1647-1652.
    [24]Templeton, N. S., Lasic, D. D., Frederik, P. M., et al. Improved DNA:liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol, 1997,15 (7):647-652.
    [25]Gascon, A. R., Pedraz, J. L. Cationic lipids as gene transfer agents:a patent review. Expert Opin Ther Pat,2008,18 (5):515-524.
    [26]Zhou, M., Wang, L., Su, W., et al. Assessment of Therapeutic Efficacy of Liposomal Nanoparticles Mediated Gene Delivery by Molecular Imaging for Cancer Therapy. J Biomed Nanotechnol,2012,8 (5):742-750.
    [27]Allon, N., Saxena, A., Chambers, C, et al. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. J Control Release, 2012,160 (2):217-224.
    [28]Kamimura, K., Suda, T., Zhang, G, et al. Advances in gene delivery systems. Pharm Med,2011,25 (5):293-306.
    [29]Biswas, S., Dodwadkar, N. S., Deshpande, P. P., et al. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release,2012,159 (3):393-402.
    [30]Cheng, W., Yang, C., Hedrick, J. L., et al. Delivery of a granzyme B inhibitor gene using carbamate-mannose modified PEI protects against cytotoxic lymphocyte killing. Biomaterials,2013,34 (14):3697-3705.
    [31]Shen, J., Zhao, D. J., Li, W., et al. A polyethylenimine-mimetic biodegradable polycation gene vector and the effect of amine composition in transfection efficiency. Biomaterials,2013,34 (18):4520-4531.
    [32]Osorio, F. G., DelaRosa, J., Freije, J. M. Luminescence-based in vivo monitoring of NF-kappaB activity through a gene delivery approach. Cell Comm Signal,2013,11 (1):19-24.
    [33]Jiang, H.-L., Kim, Y.-K., Lee, S.-M., et al. Galactosylated chitosan-g-PEI/DNA complexes-loaded poly (organophosphazene) hydrogel as a hepatocyte targeting gene delivery system. Arch Pharm Res,2010,33 (4):551-556.
    [34]Sirsi, S. R., Hernandez, S. L., Zielinski, L., et al. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release,2012, 157 (2):224-234.
    [35]Dunlap, D. D., Maggi, A., Soria, M. R., et al. Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res,1997,25 (15):3095-3101.
    [36]Boussif, O., Lezoualc'h, F., Zanta, M. A., et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine. Proc Natl Acad Sci U S A,1995,92 (16):7297-7301.
    [37]Moghimi, S. M., Symonds, P., Murray, J. C., et al. A two-stage poly (ethylenimine)-mediated cytotoxicity:implications for gene transfer/therapy. Mol Ther,2005,11 (6):990-995.
    [38]Park, M. R., Han, K. O., Han, Ⅰ. K., et al. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release,2005,105 (3):367-380.
    [39]Kursa, M., Walker, G. F., Roessler, V., et al. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjugate Chem,2003,14 (1):222-231.
    [40]Saccardo, P., Villaverde, A., Gonzalez-Montalban, N. Peptide-mediated DNA condensation for non-viral gene therapy. Biotechnol Adv,2009,27 (4):432-438.
    [41]Wadhwa, M. S., Collard, W. T., Adami, R. C., et al. Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjugate Chem,1997,8 (1): 81-88.
    [42]Oba, M., Vachutinsky, Y., Miyata, K., et al. Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid DNA encoding soluble Flt-1. Mol Pharm,2010,7 (2):501-509.
    [43]Heitz, F., Morris, M. C., Divita, G. Twenty years of cell-penetrating peptides:from molecular mechanisms to therapeutics. Brit J Pharmacol,2009,157 (2):195-206.
    [44]Lehto, T., Kurrikoff, K., Langel, U. Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv,2012,9 (7):823-836.
    [45]Frankel, A. D., Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell,1988,55 (6):1189-1193.
    [46]Fonseca, S. B., Pereira, M. P., Kelley, S. O. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev,2009,61 (11) 953-964.
    [47]Wender, P. A., Mitchell, D. J., Pattabiraman, K., et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake:peptoid molecular transporters. Proc Natl Acad Sci U S A,2000,97 (24):13003-13008.
    [48]Futaki, S., Ohashi, W., Suzuki, T., et al. Stearylated arginine-rich peptides:a new class of transfection systems. Bioconjugate Chem,2001,12 (6):1005-1011.
    [49]Leamon, C. P., Low, P. S. Receptor-mediated drug delivery. In Drug Delivery, John Wiley & Sons, Inc.:2005; 167-187.
    [50]Mohanty, C., Das, M., Kanwar, J., et al. Receptor mediated tumor targeting:an emerging approach for cancer therapy. Curr Drug Deliv,2011,8 (1):45-58.
    [51]Grosse, S. M., Tagalakis, A. D., Mustapa, M. F. M., et al. Tumor-specific gene transfer with receptor-mediated nanocomplexes modified by polyethylene glycol shielding and endosomally cleavable lipid and peptide linkers. FASEB J,2010,24 (7):2301-2313.
    [52]Martin, I., Dohmen, C., Mas-Moruno, C., et al. Solid-phase-assisted synthesis of targeting peptide-PEG-oligo (ethane amino) amides for receptor-mediated gene delivery. Org Biomol Chem,2012,10 (16):3258-3268.
    [53]Zhou, Y., Wang, H., Wang, C., et al. Receptor-mediated, tumor-targeted gene delivery ssing folate-terminated polyrotaxanes. Mol Pharm,2012,9 (5):1067-1076.
    [54]Molas, M., Gomez-Valades, A., Vidal-Alabro, A., et al. Receptor-mediated gene transfer vectors:progress towards genetic pharmaceuticals. Curr Gene Ther,2003,3 (5):468-485.
    [55]Wender, P. A., Galliher, W. C., Goun, E. A., et al. The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev,2008,60 (4-5):452-472.
    [56]Manceur, A., Wu, A., Audet, J. Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells. Anal Biochem,2007, 364(1):51-59.
    [57]Massodi, I., Bidwell Iii, G L., Raucher, D. Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery. J Control Release,2005,108 (2-3):396-408.
    [58]马严.可在体实现胞内直接投递的新型细胞穿膜肽的构建、筛选和穿膜机制研究[D].武汉:华中科技大学图书馆2013.
    [59]Richard, J. P., Melikov, K., Vives, E., et al. Cell-penetrating peptides a reevaluation of the mechanism of cellular uptake. J Biol Chem,2003,278 (1):585-590.
    [60]Tunnemann, G., Ter-Avetisyan, G., Martin, R. M., et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci,2008,14 (4):469-476.
    [61]Tanaka, G., Nakase, I., Fukuda, Y, et al. CXCR4 Stimulates Macropinocytosis: Implications for Cellular Uptake of Arginine-Rich Cell-Penetrating Peptides and HIV. Chem Biol,2012,19 (11):1437-1446.
    [62]Lorents, A., Kodavali, P. K., Oskolkov, N., et al. Cell-penetrating Peptides Split into Two Groups Based on Modulation of Intracellular Calcium Concentration. J Biol Chem,2012,287 (20):16880-16889.
    [63]Verdurmen, Wouter P. R., Bovee-Geurts, Petra H., Wadhwani, P., et al. Preferential Uptake of L-versus D-Amino Acid Cell-Penetrating Peptides in a Cell Type-Dependent Manner. Chem Biol,2011,18 (8):1000-1010.
    [64]Sudimack, J., Lee, R. J. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev,2000,41 (2):147-162.
    [65]Lu, Y., Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev,2002,54 (0):675-693.
    [66]Nakase, Ⅰ., Akita, H., Kogure, K., et al. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Accounts Chem Res,2012,45 (7):1132-1139.
    [67]Wang, H. Y., Chen, J. X., Sun, Y. X., et al. Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release,2010,155 (1):26-33.
    [68]Khalil, I., Futaki, S., Niwa, M., et al. Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine:enhanced cellular association by hydrophobic core formation. Gene Ther,2004,11 (7):636-644.
    [69]Seow, W. Y., Yang, Y. Y. A class of cationic triblock amphiphilic oligopeptides as efficient fene-delivery vectors. Adv Mater,2009,21 (1):86-90.
    [70]Liu, L., Zheng, M., Renette, T., et al. Modular synthesis of folate conjugated ternary copolymers:Polyethylenimine-graft-Polycaprolactone-block-Poly (ethylene glycol)-Folate for targeted gene delivery. Bioconjugate Chem,2012,23 (6): 1211-1220.
    [71]Tugyi, R., Uray, K., Ivan, D., et al. Partial D-amino acid substitution:Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci U S A,2005,102 (2):413-418.
    [72]Bharali, D. J., Lucey, D. W., Jayakumar, H., et al. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc,2005,127 (32):11364-11371.
    [73]Siu, M. K. Y, Kong, D. S. H., Chan, H. Y, et al. Paradoxical impact of two folate receptors, FRa and RFC, in ovarian cancer:Effect on cell proliferation, invasion and clinical outcome. PLoS ONE,2012,7 (11):e47201.
    [74]Majd, M. H., Barar, J., Asgari, D., et al. Targeted fluoromagnetic nanoparticles for imaging of breast cancer MCF-7 cells. Adv Pharm Bull,2013,3 (1):189-195.
    [75]Du, C, Deng, D., Shan, L., et al. A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials,2013,34 (12): 3087-3097.
    [76]Heidari Majd, M., Asgari, D., Barar, J., et al. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloid Surface B,2013,106 (0):117-125.
    [77]Song, Y, Shi, W., Chen, W., et al. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem,2012,22 (25):12568-12573.
    [78]Naldini, L. Viral vectors for gene therapy:the art of turning infectious agents into vehicles of therapeutics. Nat Med,2001,7 (1):33-39.
    [79]Huang, S., Kamihira, M. Development of hybrid viral vectors for gene therapy. BiotechnolAdv,2012,31 (2):208-223.
    [80]Jang, J.-H., Schaffer, D. V., Shea, L. D. Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther,2011,19 (8):1407-1415.
    [81]Lehrman, S. Virus treatment questioned after gene therapy death. Nature,1999,401 (6753):517-518.
    [82]Kim, P. H., Kim, T., Yockman, J. W., et al. The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy. Biomaterials,2010,31 (7):1865-1874.
    [83]Lv, H., Zhang, S., Wang, B., et al. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release,2006,114 (1):100-109.
    [84]Zhang, Y, Satterlee, A., Huang, L. In vivo gene delivery by nonviral vectors: overcoming hurdles&quest. Mol Ther,2012,20 (7):1298-1304.
    [85]Sadatmousavi, P., Soltani, M., Nazarian, R., et al. Self-assembling peptides: potential role in tumor targeting. Curr Pharm Biotechnol,2011,12 (8):1089-1100.
    [86]Standley, S. M., Toft, D. J., Cheng, H., et al. Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res,2010, 70 (8):3020-3026.
    [87]Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater,2012,24 (28):3747-3756.
    [88]Minko, T. Receptor mediated delivery systems for cancer therapeutics. In Fundamentals and Applications of Controlled Release Drug Delivery, Springer US, 2012; 329-355.
    [89]Dacosta, R. S., Tang, Y., Kalliomaki, T., et al. In vivo near-infrared fluorescence imaging of human colon adenocarcinoma by specific immunotargeting of a tumor-associated mucin. J Innov Opt Health Sci,2009,02 (04):407-422.
    [90]Shadidi, M., Sioud, M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J,2003,17 (2):256-258.
    [91]Luo, H., Yang, J., Jin, H., et al. Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo. FASEB J,2011,25 (6):1865-1873.
    [92]Seow, W. Y., Yang, Y. Y, George, A. J. T. Oligopeptide-mediated gene transfer into mouse corneal endothelial cells:expression, design optimization, uptake mechanism and nuclear localization. Nucleic Acids Res,2009,37 (18):6276-6289.
    [93]Serikawa, T., Suzuki, N., Kikuchi, H., et al. A new cationic liposome for efficient gene delivery with serum into cultured human cells:a quantitative analysis using two independent fluorescent probes. BBA-Biomembranes,2000,1467 (2):419-430.
    [94]Gong, C, Li, X., Xu, L., et al. Target delivery of a gene into the brain using the RVG29-oligoarginine peptide. Biomaterials,2012,33 3456-3463.
    [95]Mitchell, D. J., Steinman, L., Kim, D. T., et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res,2000,56 (5): 318-325.
    [96]Kumar, P., Wu, H., McBride, J. L., et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature,2007,448 (7149):39-43.
    [97]Wang, X.-F., Birringer, M., Dong, L.-F., et al. A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res,2007, 67 (7):3337-3344.
    [98]Won, Y. W., Kim, H. A., Lee, M., et al. Reducible poly (oligo-D-arginine) for enhanced gene expression in mouse lung by intratracheal injection. Mol Ther,2009, 18 (4):734-742.
    [99]Jiang, W., Kim, B. Y. S., Rutka, J. T., et al. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol,2008,3 (3):145-150.
    [100]Choi, H. S., Liu, W., Misra, P., et al. Renal clearance of quantum dots. Nat Biotechnol,2007,25 (10):1165-1170.
    [101]Wang, S., Song, H., Ong, W. Y, et al. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability. Nanotechnology,2009,20 (42):425102-425109.
    [102]Chi, E. Y, Krishnan, S., Randolph, T. W., et al. Physical stability of proteins in aqueous solution:mechanism and driving forces in nonnative protein aggregation. Pharm Res,2003,20 (9):1325-1336.
    [103]Henriques, S. T., Melo, M. N., Castanho, M. A. R. B. Cell-penetrating peptides and antimicrobial peptides:how different are they? BioChem J,2006,399 (Pt 1):1-7.
    [104]Ma, Y., Gong, C., Ma, Y, et al. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D-and L-arginine residues. J Control Release,2012,162 (2): 286-294.
    [105]E1-Sayed, A., Khalil, I. A., Kogure, K., et al. Octaarginine-and octalysine-modified nanoparticles have different modes of endosomal escape. J Biol Chem,2008,283 (34):23450-23461.
    [106]Schlachetzki, F., Zhang, Y, Boado, R. J., et al. Gene therapy of the brain. Neurology, 2004,62(8):1275-1281.
    [107]Teixido, M., Giralt, E. The role of peptides in blood-brain barrier nanotechnology. J Pept Sci,2008,14 (2):163-173.
    [108]Mochizuki, H., Yasuda, T., Mouradian, M. M. Advances in gene therapy for movement disorders. Neurotherapeutics,2008,5 (2):260-269.
    [109]Pardridge, W. M. Drug and gene delivery to the brain:the vascular route. Neuron, 2002,36 (4):555-558.
    [110]Liu, Y, Huang, R., Jiang, C. Non-viral gene delivery and therapeutics targeting to brain. Curr Nanosci,2011,7 (1):55-70.
    [111]Pardridge, W. M. Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Release,2007,122 (3): 345-348.
    [112]Breakefield, X. O., Sena-Esteves, M. Healing genes in the nervous system. Neuron, 2010,68(2):178-181.
    [113]Chen, S. H., Shine, H. D., Goodman, J. C., et al. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci U S A,1994,91 (8):3054-3057.
    [114]Anliker, B., Abel, T., Kneissl, S., et al. Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat Methods,2010,7 (11):929-935.
    [115]Mintzer, M. A., Simanek, E. E. Nonviral vectors for gene delivery. Chem Rev,2008, 109 (2):259-302.
    [116]Zhang, H., Vinogradov, S. V. Short biodegradable polyamines for gene delivery and transfection of brain capillary endothelial cells. J Control Release,2010,143 (3): 359-366.
    [117]Karra, D., Dahm, R. Transfection techniques for neuronal cells. J Neurosci,2010, 30 (18):6171-6177.
    [118]Bergen, J. M.,Park, I. K.,Horner, P. J., et al. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res,2008,25 (5):983-998.
    [119]Ke, W., Shao, K., Huang, R., et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials,2009,30 (36):6976-6985.
    [120]Oliveira, H., Fernandez, R., Pires, L. R., et al. Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly (ethylene imine) and tetanus toxin fragment c. J Control Release,2010,143 (3):350-358.
    [121]Liu, Y., Li, J., Shao, K., et al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials, 2010,31 (19):5246-5257.
    [122]Kwon, E. J., Lasiene, J., Jacobson, B. E., et al. Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone. Biomaterials,2010,31 (8):2417-2424.
    [123]Liu, Y, Huang, R., Han, L., et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials,2009,30 (25):4195-4202.
    [124]Son, S., Hwang, D. W., Singha, K., et al. RVG peptide tethered bioreducible polyethylenimine for gene delivery to brain. J Control Release,2011,155 (1): 18-25.
    [125]Lentz, T. L., Burrage, T. G., Smith, A. L., et al. Is the acetylcholine receptor a rabies virus receptor? Science,1982,215 (4529):182-184.
    [126]Lafon, M. Rabies virus receptors. J Neurovirol,2005,11 (1):82-87.
    [127]Zou, S., Scarfo, K., Nantz, M. H., et al. Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. Int J Pharm,2010,389 (1-2): 232-243.
    [128]Huang, R. Q., Qu, Y. H., Ke, W. L., et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J,2007,21 (4):1117-1125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700