基于纳米金的类葡萄糖氧化酶活性的自我催化、自我限制系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米颗粒的粒径和形状经常受一些外部因素影响,如反应温度、时间、反应前体或者表面活性剂的浓度。如果不控制这些外部因素最终可能会导致纳米颗粒的生长不受控制,还可能失去其纳米尺度的一些特性。我们发现一种基于纳米金的自我催化、自我限制的系统,并且探究了纳米金的类葡萄糖氧化酶活性。纳米金的米曼二氏常数为6.97mM,高于葡萄糖氧化酶的4.87mM,说明它对葡萄糖的亲和力略低于葡萄糖氧化酶。值得注意的是,这种类葡萄糖氧化酶的活性在其他一些纳米材料中都没有发现,比如纳米银、二氧化钛、碳纳米管、四氧化三铁等。我们又对纳米金的这种活性进行了系统的研究。纳米金展示出对pH、温度的高度耐受性,同时在保存中也具有稳定性。而通过研究不同粒径的纳米金(13、20、30、50nm)的活性发现,其活性随着粒径的增加而减少。我们发现纳米金催化葡萄糖氧化时在原位产生过氧化氢,在氯金酸存在的情况下过氧化氢催化以纳米金为种子的生长。这个生长存在两个反馈因素:纳米金粒径增加后活性降低和产生的葡萄糖酸将纳米金表面钝化,实现其自我限制生长。在这个系统中,纳米金的粒径、形状和催化活性受到控制。我们希望这能提供一个纳米材料的可控合成和纳米药物自我调节的新方法,更深入地研究自然界中的自我限制系统。我们希望这能提供一个纳米材料可控合成和纳米药物自我调节的新方法,纳米金的葡萄糖氧化酶活性还能用于检测葡萄糖,从而应用于微生物发酵产物中葡萄糖含量的测定。
Size and shape of nanoparticles are generally controlled by external influence factors such as reaction temperature, time, precursor, and/or surfactant concentration. Lack of external influence may eventually lead to unregulated growth of nanoparticles and possibly loss of their nanoscale properties. Here we report a gold nanoparticle (AuNPs)-based self-catalyzed and self-limiting system that exploits the glucose oxidase-like catalytic activity of AuNPs. The Michaelis (?) Menten constant (Km) of AuNPs was calculated to be 6.97 mM, which was slightly higher than GOx (4.87 mM) slightly lower affinity. Of note, the GOx-mimicking activity was not oberved in a range of interrogated nanomaterials, such as silver nanoparticles, TiO2 nanoparticles, carbon nanotubes, and Fe3O4 nanoparticles. We investigated the catalytic activity of AuNPs systematically. Interestingly, AuNPs exhibited superior pH, thermal, and storage stability to natural enzyme GOx. By using AuNPs of different size (13,20,30, and 50nm) at the same concentration, we found that the catalytic activity of AuNPs decreased along with their sizes. We find that the AuNP-catalyzed glucose oxidation in situ produces hydrogen peroxide (H2O2) that induces the AuNPs'seeded growth in the presence of chloroauric acid (HAuC14). This crystal growth of AuNPs is internally regulated via two negative feedback factors, size-dependent activity decrease of AuNPs and product (gluconic acid)-induced surface passivation, leading to a rapidly self-limiting system. Interestingly, the size, shape, and catalytic activities of AuNPs are simultaneously controlled in this system. We expect that it provides a new method for controlled synthesis of novel nanomaterials, design of "smart" self-limiting nanomedicine, as well as in-depth understanding of self-limiting systems in nature.
引文
1. Elghanian, R., et al., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997.277(5329):p. 1078.
    2. Taton, T.A., C.A. Mirkin, and R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science,2000.289(5485):p.1757.
    3. Cao, Y.W.C., R. Jin, and C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science,2002.297(5586):p.1536.
    4. Park, S.J., T.A. Taton, and C.A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes. Science,2002.295(5559):p.1503.
    5. Nam, J.M., S.I. Stoeva, and C.A. Mirkin, Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society,2004.126(19):p. 5932-5933.
    6. Cao, Y.C., et al., Raman dye-labeled nanoparticle probes for proteins. Journal of the American Chemical Society,2003.125(48):p.14676-14677.
    7. Nam, J.M., C.S. Thaxton, and C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003.301(5641):p.1884.
    8. Wang, L., et al., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical communications,2006(36):p.3780-3782.
    9. Lee, J.H., et al., Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO22+):Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems. Journal of the American Chemical Society,2008.130(43):p. 14217-14226.
    10. Wang, Z., J.H. Lee, and Y. Lu, Label-Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by using Gold Nanoparticles and DNAzyme. Advanced Materials,2008.20(17):p.3263-3267.
    11. Liu, J. and Y. Lu, Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Analytical chemistry,2004. 76(6):p.1627-1632.
    12. Lee, J.S., et al., A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano letters,2008.8(2):p.529-533.
    13. Zhang, J., et al., Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small,2008.4(8):p.1196-1200.
    14. Niemeyer, C.M. and C.A. Mirkin, Nanobiotechnology:Concepts, Applications and Perspectives.2004:Wiley-VCH, Weinheim.
    15.汪尔康,生命分析化学.科学出版社.2006.
    16. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature,1973.241(105):p.20-22.
    17. Sun, Y. and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002.298(5601):p.2176.
    18. C.A., R.N.L.a.M., Nanostructures in biodiagnostics. Chem Rev,2005.105:p. 1547-1562.
    19.蔡强,吴维明,陈裕泉,纳米金颗粒的生物组装与光学检测技术研究.传感技术学报,2003(1):p.21-23.
    20. Rao, C.N.R., Metal nanoparticles and their assemblies. Chem. Soc. Rev,2000.29:p. 27-35.
    21. Mafun"|, F., et al.. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. The Journal of Physical Chemistry B,2001.105(22):p.5114-5120.
    22. Faraday, M., On the color of colloidal gold. Phil. Trans. R. Soc. London,1857.147:p. 145-181.
    23. Turkevich, J., P.C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc.,1951.11:p.55-75.
    24. Jana, N.R., L. Gearheart, and C.J. Murphy, Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir,2001.17(22):p.6782-6786.
    25. Brown, K.R. and M.J. Natan, Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir,1998.14(4):p.726-728.
    26.杨立平and涂伟霞,微波法合成纳米金胶体颗粒的调控研究.物理化学学报,2006.22(004):p.513-516.
    27.黄德欢,纳米技术与应用.上海:中国纺织大学出版社,2001.
    28. Prabhakaran, K., et al., Selective activation and passivation of nanoparticle catalysts through substrate mediation. Langmuir,2003.19(26):p.10629-10631.
    29. Ramakrishna, G., et al., Slow back electron transfer in surface-modified TiO2 nanoparticles sensitized by alizarin. The Journal of Physical Chemistry B,2004.108(5):p. 1701-1707.
    30.李玲and向航,功能材料与纳米技术.2002:化学工业出版社.
    31.张立德,and牟季美,纳米结构自组装和分子自组装体系.物理化学学报,1999.28:p.22-26.
    32. Haruta, M., et al., Low-Temperature Oxidation of CO over Gold Supported on TiO2, [alpha]-Fe2O3, and Co304. Journal of Catalysis,1993.144(1):p.175-192.
    33. Niemeyer, C.M., Nanoparticles, proteins, and nucleic acids:biotechnology meets materials science. Angew. Chem. Int. Ed,2001.40(22):p.4128-4158.
    34. Donbrow, M., Microcapsules and nanoparticles in medicine and pharmacy.1991:CRC Press, Boca Raton.
    35. Ghosh, S.S., et al., Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjugate Chemistry,1990.1(1): p.71-76.
    36. Li, Z., et al., Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic acids research,2002.30(7):p.1558.
    37. Gestwicki, J.E., L.E. Strong, and L.L. Kiessling, Visualization of Single Multivalent Receptor-Ligand Complexes by Transmission Electron Microscopy. Angewandte Chemie International Edition,2000.39(24):p.4567-4570.
    38. Natan-M.J., K.C. Grabar, and J.E. Deutsch, Polymer-supported gold colloid monolayers:a new approach to biocompatible metal surfaces. American Chemical Society, Polym. Prepr.(USA),1995.36(1):p.69-70.
    39. Yang, X., et al., Ligation of DNA triangles containing double crossover molecules. Journal of the American Chemical Society,1998.120(38):p.9779-9786.
    40. Faulk, W.P. and G.M. Taylor, An immunocolloid method for the electron microscope. Immunochemistry,1971.8(11):p.1081.
    41. Bardea, A., et al., Amplified microgravimetric quartz-crystal-microbalance analyses of oligonucleotide complexes:a route to a Tay-Sachs biosensor device. Chem. Commun., 1998(7):p.839-840.
    42. Letsinger, R.L., et al., Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjugate Chemistry,2000.11(2):p.289-291.
    43. Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials.1996.
    44. Demers, L.M., et al., A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Analytical chemistry,2000.72(22):p.5535-5541.
    45. M, B., Worth its weight in gold. Science,2001.291:p.1363-1365.
    46. Leuvering J.H.W., T.P.J.H.M.a.S.A.H.W.M., Optimization of a Sandwich Sol Particle Immunoassay for Human Chorionic-Gonadotropin. J Immunol Methods,1983.62:p. 175-184.
    47. Storhoff, J.J., et al., One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998.120(9):p.1959-1964.
    48. Li, H. and L.J. Rothberg, Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society,2004.126(35):p.10958-10961.
    49. He, S.J., et al., Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. Chemical Communications,2008(40):p.4885-4887.
    50. Li, H. and L. Rothberg, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A,2004.101(39):p. 14036-9.
    51. Li, H. and L.J. Rothberg, Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc,2004.126(35):p. 10958-61.
    52. Li, H., et al., Nanoparticle PCR:nanogold-assisted PCR with enhanced specificity. Angewandte Chemie International Edition,2005.44(32):p.5100-3.
    53. Zhang, J., et al., Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small,2008.4(8):p.1196-1200.
    54. Wang, L.H., et al., Gold nanoparticle-based optical probes for target-responsive DNA structures. Gold Bulletin,2008.41(1):p.37-41.
    55. Wang, L., et al., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun (Camb),2006(36):p.3780-2.
    56. Buckle, P.E., et al., The resonant mirror:a novel optical sensor for direct sensing of biomolecular interactions. Ⅱ:Applications. Biosens Bioelectron,1993.8:p.355-363.
    57. Lyon, L.A., M.D. Musick, and M.J. Natan, Colloidal Au-enhanced surface plasmon resonance immunosensing. Analytical chemistry,1998.70(24):p.5177-5183.
    58. He, L., et al., Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. Journal of the American Chemical Society,2000.122(38):p. 9071-9077.
    59. Ni, J., et al., Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Analytical chemistry,1999.71(21):p.4903-4908.
    60. Cao, Y.W.C., R.C. Jin, and C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science,2002.297(5586):p.1536-1540.
    61. Cao, Y.C., et al., Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc, 2003.125(48):p.14676-7.
    62. Maxwell, D.J., J.R. Taylor, and S.M. Nie, Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society,2002. 124(32):p.9606-9612.
    63. Holgate, C.S., et al., Immunogold-silver staining:new method of immunostaining with enhanced sensitivity. Journal of Histochemistry & Cytochemistry,1983.31(7):p.938.
    64. Taton, T.A., C.A. Mirkin, and R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science,2000.289(5485):p.1757-1760.
    65. Zhang, J., et al., Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS):Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. Journal of the American Chemical Society, 2006.128(26):p.8575-8580.
    66. Li, D., et al., Amplified electrochemical detection of DNA through Au nanoparticles on electrodes and the incorporation into the DNA-crosslinked structure. Chemical Communications,2007(34):p.3544-3546.
    67. Hussain, M.A., A. Agnihotri, and C.A. Siedlecki, AFM imaging of ligand binding to platelet integrin αⅡbβ3 receptors reconstituted into planar lipid bilayers. Langmuir,2005. 21(15):p.6979-6986.
    68. Kneipp, K., et al., Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy,2002.56(2):p.150-154.
    69. Kneipp, J., et al., Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Analytical chemistry,2005. 77(8):p.2381-2385.
    70. Renjis, T., et al., Ciprofloxacin-protected gold nanoparticles. Langmuir,2004.20:p. 1909-1914.
    71. Joshi, H.M., et al., Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir,2006.22(1):p.300-305.
    72. Willner, I., R. Baron, and B. Willner, Growing metal nanoparticles by enzymes. Advanced Materials,2006.18(9):p.1109-1120.
    73. Basnar, B., et al., Synthesis of Nanowires Using Dip-Pen Nanolithography and Biocatalytic Inks. Advanced Materials,2006.18(6):p.713-718.
    74. Wang, Z.G., O.I. Wilner, and I. Willner, Self-Assembly of Aptamer-Circular DNA Nanostructures for Controlled Biocatalysis. Nano letters,2009.9(12):p.4098-4102.
    1. Feynman, R.P., There's plenty of room at the bottom. Engineering and Science,1960. 23(5):p.22-36.
    2.张立德,牟季美,纳米材料和纳米结构.北京:科学出版社,2001.51.
    3. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature,1973.241(105):p.20-22.
    4. Turkevich, J., G. Garton, and P.C. Stevenson, The color of colloidal gold. Journal of Colloid Science,1954.9:p.26-35.
    5. Schmitt, J., et al., Preparation and optical properties of colloidal gold monolayers. Langmuir,1999.15(9):p.3256-3266.
    6. Faulk, W.P. and G.M. Taylor, An immunocolloid method for the electron microscope. Immunochemistry,1971.8(11):p.1081.
    7. Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials.1996.
    8. Cao, Y.W.C., R. Jin, and C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science,2002.297(5586):p.1536.
    9. Storhoff, J.J., et al., Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature biotechnology,2004.22(7): p.883-887.
    10. Storhoff, J.J.,-et al., Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosensors and Bioelectronics,2004. 19(8):p.875-883.
    11. Xiao, Y., et al., " Plugging into Enzymes":Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science,2003.299(5614):p.1877.
    12. Daniel, M.C. and D. Astruc, Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004.104(1):p.293-346.
    13. Li, H., et al., Nanoparticle PCR:Nanogold-Assisted PCR with Enhanced Specificity. Angewandte Chemie,2005.117(32):p.5230-5233.
    14. Rosi, N.L. and C.A. Mirkin, Nanostructures in biodiagnostics. Chemical Reviews,2005. 105(4):p.1547-1562.
    15. Zhang, J., et al., Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor (CDS):(?)?Effects of Nanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly at Electrodes. Journal of the American Chemical Society,2006.128(26):p.8575-8580.
    16. Edwards, P.P. and J.M. Thomas, Gold in a Metallic Divided StateiaFrom Faraday to Present(?)\Day Nanoscience. Angewandte Chemie International Edition,2007.46(29):p. 5480-5486.
    17. Zhang, J., et al., Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science,2007.315(5809):p.220.
    18. Zhang, J., etal., A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nature protocols,2007.2(11):p.2888-2895.
    19. Chen, T., et al., Controlled assembly of eccentrically encapsulated gold nanoparticles. Journal of the American Chemical Society,2008.130(36):p.11858-11859.
    20. Zhao, W., M.A. Brook, and Y. Li, Design of Gold Nanoparticle(?)\Based Colorimetric Biosensing Assays. ChemBioChem,2008.9(15):p.2363-2371.
    21. Giljohann, D.A. and C.A. Mirkin, Drivers of biodiagnostic development. Nature,2009. 462(7272):p.461-464.
    22. Sharma, J., et al., Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science,2009.323(5910):p.112.
    23. Song, S., et al., Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. Angewandte Chemie International Edition,2009.48(46): p.8670-8674.
    24. Pandey, P., et al., Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir,2007.23(6):p.3333-3337.
    25. Li, D., et al., Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochemical and biophysical research communications,2007.355(2):p. 488-493.
    26. He, C., et al., Activity and Thermal Stability Improvements of Glucose Oxidase upon Adsorption on Core-Shell PMMA-BSA Nanoparticles. Langmuir,2009.25(23):p. 13456-13460.
    27. Gao, L.,-et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology,2007.2(9):p.577-583.
    1. Xiao, Y., et al., " Plugging into Enzymes":Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science,2003.299(5614):p.1877.
    2. Daniel, M.C. and D. Astruc, Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004.104(1):p.293-346.
    3. Li, H., et al., Nanoparticle PCR:Nanogold-Assisted PCR with Enhanced Specificity. Angewandte Chemie,2005.117(32):p.5230-5233.
    4. Rosi, N.L. and C.A. Mirkin, Nanostructures in biodiagnostics. Chemical Reviews,2005. 105(4):p.1547-1562.
    5. Zhang, J., et al., Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor (CDS):(?)?Effects of Nanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly at Electrodes. Journal of the American Chemical Society,2006.128(26):p.8575-8580.
    6. Edwards, P.P. and J.M. Thomas, Gold in a Metallic Divided StateiaFrom Faraday to Present(?)\Day Nanoscience. Angewandte Chemie International Edition,2007.46(29):p. 5480-5486.
    7. Zhang, J., et al., Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science,2007.315(5809):p.220.
    8. Zhang, J., et al., A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nature protocols,2007.2(11):p.2888-2895.
    9. Chen, T., et al., Controlled assembly of eccentrically encapsulated gold nanoparticles. Journal of the American Chemical Society,2008.130(36):p.11858-11859.
    10. Zhao, W., M.A. Brook, and Y. Li, Design of Gold Nanoparticle(?)\Based Colorimetric Biosensing Assays. ChemBioChem,2008.9(15):p.2363-2371.
    11. Giljohann, D.A. and C.A. Mirkin, Drivers of biodiagnostic development. Nature,2009. 462(7272):p.461-464.
    12. Sharma, J., et al., Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science,2009.323(5910):p.112.
    13. Song, S., et al., Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. Angewandte Chemie International Edition,2009.48(46): p.8670-8674.
    14. Crumbliss, A., et al., Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnology and bioengineering,1992.40(4):p.483-490.
    15. Park, S.J., T.A. Taton, and C.A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes. Science,2002.295(5559):p.1503.
    16. Xi, D., et al., The detection of HBV DNA with gold nanoparticle gene probes. Journal of Nanjing Medical University,2007.21(4):p.207-212.
    17. Comotti, M., et al., The Catalytic Activity of i°Nakedi± Gold Particles. Angewandte Chemie International Edition,2004.43(43):p.5812-5815.
    18. Stonehuerner, J., et al., Comparison of colloidal gold electrode fabrication methods:the preparation of a horseradish peroxidase enzyme electrode. Biosensors and Bioelectronics, 1992.7(6):p.421-428.
    19. Johnson, J.D., et al., Insulin protects islets from apoptosis via Pdxl and specific changes in the human islet proteome. Proceedings of the National Academy of Sciences,2006. 103(51):p.19575.
    20. Cancer Nanotechnology:Small, but Heading for the Big Time. Nat. Rev. Drug Discovery, 2007.6:p.174-175.
    21. Davis, M.E., Nanoparticle therapeutics:an emerging treatment modality for cancer. Nature Reviews Drug Discovery,2008.7(9):p.771-782.
    22. K stner, M. and B. Voigtl nder, Kinetically self-limiting growth of Ge islands on Si (001). Physical review letters,1999.82(13):p.2745-2748.
    23. Madey, T.E., et al., Nanoscale surface chemistry. Proceedings of the National Academy of Sciences of the United States of America,2002.99(Suppl 2):p.6503.
    24. Gwo, S., et al., Self-limiting size distribution of supported cobalt nanoclusters at room temperature. Physical review letters,2003.90(18):p.185506.
    25. Takakusagi, S., et al., Self-Limiting Growth of Pt Nanoparticles from MeCpPtMe_{3} Adsorbed on TiO_{2}(110) Studied by Scanning Tunneling Microscopy. Physical review letters,2003.91(6):p.66102.
    26. Beltrame, P., et al., Aerobic oxidation of glucose::Ⅱ. Catalysis by colloidal gold. Applied Catalysis A:General,2006.297(1):p.1-7.-
    27. Baron, R., et al., Elementary arithmetic operations by enzymes:A model for metabolic pathway based computing. Angewandte Chemie,2006.118(10):p.1602-1606.
    28. Taton, T.A., C.A. Mirkin, and R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science,2000.289(5485):p.1757.
    29. Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials.1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700