海洋放线菌氨基酸腺苷化结构域的克隆、表达和酶活性测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非核糖体多肽(NRPs)代表了微生物中大部分具有医药、农业和生物化学研究价值的多肽类天然产物。氨基酸腺苷化结构域(A结构域)是非核糖体多肽合成过程中的关键酶类,它负责结合和激活一个特异性识别的氨基酸底物并掺入其到NRP生物组装线上。Salinispora作为第一个被报道和确证的固有海洋性放线菌属,一直以来备受瞩目,而S.arenicola CNS-205正是该属放线菌中的代表菌株之一,其基因组中蕴含丰富的“沉默”次级代谢产物基因簇。
     为发掘海洋放线菌S arenicola CNS-205中的相关NRPS沉默基因簇,本研究采用PCR技术,从基因组总DNA中扩增出两个假定的氨基酸腺苷化结构域基因——sare0357和sare0718,并对两个基因的特征和可能的功能进行了生物信息学分析。分别构建了sare0357基因的原核重组表达质粒(pET23a-sare0357、 pET28a-sare0357、pET42a-sare0357)及Sare0718基因的原核重组表达质粒(pET23a-sare0718、pET28a-sare0718、pET42a-sare0718和pGEX-2T-sare0718)。将以上原核重组表达质粒转化E. coli BL21(DE3),经IPTG诱导表达后,进行了目的蛋白的亲和层析纯化及Western blotting鉴定。结果显示:在E. coli BL21(DE3)中表达的Sare0357重组蛋白主要以包涵体形式存在;在E. coli BL21(DE3)中表达的Sare0718重组蛋白也主要以包涵体形式存在,但其GST融合蛋白则获得了较明显上清形式的表达。为了进一步鉴定Sare0718-GST融合蛋白的生物化学功能,本文采用Thomas J.McQuade等新近提出的非放射性高通量鉴定A结构域的比色测定法(即无机焦磷酸酶偶联法结合孔雀石绿-钼酸铵化学显色定磷法),以20种常见蛋白质合成氨基酸作测试底物,对其进行了底物筛选和酶动力学参数测定。实验结果表明:Sare0718的确具有氨基酸腺苷化功能,在体外可通过ATP的消耗特异性识别和激活L-丙氨酸,进一步测得的酶动力学参数为Km=0.1164±0.0159(mM),Vmax=3.1484±0.1278(μM/min),kcat=12.5936±0.5112(min-1)。
     本论文首次对海洋放线菌S. arenicola CNS-205的两个未知氨基酸腺苷化结构域基因sare0357和sare0718进行了分子克隆和蛋白表达。对可溶形式表达的Sare0718-GST融合蛋白进行了体外酶活性测定,从而鉴定了一个新的L-丙氨酸腺苷化结构域。该工作为下一步探讨S. areniocola CNS-205中包含sare0718基因的完整未知NRPS基因簇及其“沉默”代谢产物的结构功能阐明奠定了基础。同时,本文也丰富了海洋放线菌来源NRPS腺苷化结构域的底物特异性和密码子领域的研究,为NRP组合生物合成及体外酶系合成预备了一个可用的新组件。
Nonribosomal peptides (NRPs) represent a large group of valuable natural products that are widely applied in medicine, agriculture, and biochemical research. Amino acid adenylation domains (A domains) are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during NRP biosynthesis. Salinispora arenicola CNS-205is a representative strain of the first discovered obligate marine actinomycete genus, whose genome harbors a large number of cryptic secondary metabolite gene clusters.
     In order to investigate cryptic NRP-related metabolites in S. arenicola CNS-205, sareO357and sare0718annotated "putative amino acid adenylation domain", were amplified from the genomic DNA by PCR. Firstly, the general features and possible functions of the two genes were predicted by bioinformatics analysis. Subsequently, a series of prokaryotic expression plasmids were constructed, including pET23a-sare0357, pET2Sa-sare0357and pET42a-sare0357, as well as pE723a-sare0718, pET28a-sare0718, pET42a-sare0718and pGEX-2T-sare0718. E.coli BL21(DE3) competent cells were then transformed with the above recombinant plasmids, respectively. After induction with IPTG, His-tagged recombinant proteins of Sare0357and Sare0718were expressed in E. coli BL21(DE3) mainly as Inclusion body whereas the GST-tagged Sare0718fusion protein was largely in the supernatant. All the recombinant proteins were purified with Affinity chromatography and verified by Western blotting. At the end, enzyme assays were performed to explore the adenylation activity of Sare0718in vitro. By a newly mentioned nonradioactive malachite green colorimetric assay, we found that, among the20proteinogenic amino acids, Sare0718could in vitro specially recognize and activate L-alanine under the consumption of ATP. The basic kinetic parameters of Sare0718for L-alanine are Km=0.1164±0.0159(mM), Vmax=3.1484±0.1278(μM/min), kcat=12.5936±0.5112(min-1).
     In summary, this dissertation reported the molecular cloning and protein expression of sare0357and sare0718. By revealing the biochemical role of sare0718gene, we identified an alanine-activating adenylation domain in marine actinomycete Salinispora arenicola CNS-205, which would provide useful information for next isolation and function elucidation of the whole cryptic NRPS-related gene cluster covering sare0718. And meanwhile, this work also enriched the biochemical data of A domain substrate specificity in newly discovered marine actinomycete NRPS system, which bioinformatics prediction will largely depend on.
引文
[1]Berdy J. Bioactive microbial metabolites[J]. JAntibiot (Tokyo),2005,58(1):1-26.
    [2]Demain AL. Small bugs, big business:The economic power of the microbe[J]. Biotechnol Adv,2000,18(6):499-514.
    [3]Kingston W. Irish contributions to the origins of antibiotics [J]. Ir J Med Sci,2008, 177 (2):87-92.
    [4]Sykes R. Penicillin: from discovery to product[J]. Bull World Health Organ,2001, 79 (8):778-779.
    [5]Lefevre F, Robe P, Jarrin C, et al. Drugs from hidden bugs:their discovery via untapped resources[J]. Res Microbiol,2008,159(3):153-161.
    [6]Umezawa H, Aoyagi T, Suda H, et al. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes[J]. JAntibiot (Tokyo),1976,29(1):97-99.
    [7]张华,姜成林,徐丽华等.药用微生物资源[J].微生物学通报,2004,31:152-153.
    [8]韩文瑜,孙长江.抗菌肽的研究现状与展望[J].中国兽药杂志,2009,43:11-19.
    [9]French G. Safety and tolerability of linezolid[J]. J Antimicrob Chemother,2003, 51:45-53.
    [10]No authors listed. A call to arms[J]. Nat Rev Drug Discov,2007,6(1):8-12.
    [11]Hopwood, DA. Streptomyces in nature and medicine:the antibiotic makers[M]. Oxford University Press,2007,452-460.
    [12]Christopher W. Molecular mechanisms that confer antibacterial drug resistance [J]. Nature,2000,406(6797):775-781.
    [13]Alekshun MN, Levy SB. Commensals upon us[J]. Biochem Pharmacol,2006, 71(7):893-900.
    [14]Wright, GD. The antibiotic resistome:the nexus of chemical and genetic diversity[J]. Nat Rev Microbiol,2007,5(3):175-186.
    [15]Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs:no ESKAPE! An update from the Infectious Diseases Society of America[J]. Clin Infect Dis,2009, 48(1):1-12.
    [16]Fortman JL, Sherman DH. Utilizing the power of microbial genetics to bridge the gap between the promise and the application of marine natural products[J]. ChemBioChem,2005,6(6):960-978
    [17]Menzella HG, Reeves CD. Combinatorial biosynthesis for drug development[J]. Curr Opin Microbiol,2007,10(3):238-245.
    [18]Sattely ES, Fischbach MA, Walsh CT. Total biosynthesis:in vitro reconstitution of polyketide and nonribosomal peptide pathways[J]. Nat Prod Rep,2008, 25(4):757-793.
    [19]Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002[J]. J Nat Prod,2003,66(7):1022-1037.
    [20]Goodfellow M, Haynes J. Actinomycetes in marine sediments, In L.Ortiz-Ortiz, L. Bojalil, and V. Yakoleff (ed.), Biological, Biochemical, and Biomedical Aspects of Actinomycetes[M]. Academic Press Inc,1984,453-472.
    [21]Maldonado LA, Stach JE, Pathomaree W, et al. Diversity of cultivable actinobacteria in geographically widespread marine sediments[J]. Antonie Van Leeuwenhoek,2005,87(1):11-18.
    [22]Weyland H. Actinomycetes in North Sea and Atlantic Ocean sediments[J]. Nature, 1969,5208:223-858.
    [23]Helmke E, Weyland H. Rhodococcus marinonascens sp. nov., an actinomycete from the sea[J]. Int JSyst Bacteriol,1984,34:127-138.
    [24]Jensen PR, Dwight R, Fenical W. Distribution of actinomycetes in near-shore tropical marine sediments[J]. Appl Environ Microbiol,1991,57(4):1102-1108.
    [25]Mincer TJ, Jensen PR, Kauffman CA, et al. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments [J]. Appl Environ Microbiol,2002,68(10):5005-5011.
    [26]Maldonado LA, Fenical W, Jensen PR, et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae[J]. Int J Syst Evol Microbiol,2005,55(Pt 5):1759-1766.
    [27]Gross H. Strategies to unravel the function of orphan biosynthesis pathways:recent examples and future prospects[J]. Appl Microbiol Biotechnol,2007,75(2):267-277.
    [28]Bowers AA, Acker MG, Koglin A, et al. Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants[J]. J Am Chem Soc,2010,132(21):7519-7527.
    [29]Pathom-Aree W, Stach JE, Ward AC, et al. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench[J]. Extremophiles, 2006,10(3):181-189.
    [30]Gulder TA, Moore BS. Chasing the treasures of the sea-bacterial marine natural products[J]. Curr Opin Microbiol,2009,12(3):252-260.
    [31]Ward AC, Bora N. Diversity and biogeography of marine actinobacteria[J]. Curr Opin Microbiol,2006,9(3):279-286.
    [32]Lam KS. Discovery of novel metabolites from marine actinomycetes[J]. Curr Opin Microbiol,2006,9(3):245-251.
    [33]Fenical W, Jensen PR. Developing a new resource for drug discovery: marine actinomycete bacteria[J]. Nat Chem Biol,2006,2(12):666-673.
    [34]Reed KA, Manam RR, Mitchell SS, et al. Salinosporamides D-J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome[J]. JNat Prod,2007,70(2):269-276.
    [35]Riedlinger J, Reicke A, Zahner H, et al. Abyssomicins, inhibitors of the paraaminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032[J]. JAntibiot (Tokyo),2004,57(4):271-279.
    [36]Fiedler HP, Bruntner C, Riedlinger J, et al. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora[J]. JAntibiot (Tokyo),2008,61(3):158-163.
    [37]Zotchev SB. Marine actinomycetes as an emerging resource for the drug development pipelines[J]. JBiotechnol,2012,158(4):168-175.
    [38]Jensen PR, Gontang E, Mafnas C,et al. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments[J]. Environ Microbiol,2005,7(7):1039-1048.
    [39]Jensen PR, Mafnas C. Biography of the marine actinomycete Salinispora[J]. Environ Microbiol,2006,8(11):1881-1888.
    [40]Jensen PR, Williams PG, Oh DC, et al. Species-specific secondary metabolite production in marine Actinomycetes of the genus Salinispora[J]. Appl Environ Microbiol,2007,73(4):1146-1152.
    [41]Feling RH, Buchanan GO, Mincer TJ, et al. Salinosporamide A:a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora[5]. Angew Chem Int Ed Engl,2003,42(3):355-357.
    [42]Penn K, Jenkins C, Nett M, et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria[J]. ISME J,2009,3(10):1193-1203.
    [43]Chatterjee C, Paul M, Xie L, et al. Biosynthesis and mode of action of lantibiotics[J]. Chem Rev,2005,105(2):633-684.
    [44]Fan C, Park IS, Walsh CT, et al. D-alanine ligase:phosphonate and phosphinate intermediates with wild type and the Y216F mutant[J]. Biochemistry,1997, 36(9):2531-2538.
    [45]Grunewald J, Marahiel MA. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides[J]. Microbiol Mol Biol Rev,2006,70(1):121-146.
    [46]Sieber SA, Marahiel MA. Learning from nature's drug factories:nonribosomal synthesis of macrocyclic peptides[J]. J Bacteriol,2003,185(24):7036-7043.
    [47]Challis GL, Naismith JH. Structural aspects of nonribosomal peptide biosynthesis[J]. Curr Opin Struct Biol,2004,14(6):748-756.
    [48]Weber G, Schorgendorfer K, Schneider-Scherzer E, et al. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame[J]. Curr Genet,1994,26(2):120-125.
    [49]Mootz HD, Marahiel MA. The tyrocidine biosynthesis operon of Bacillus brevis: Complete nucleotide sequence and biochemical characterization of functional internal adenylation domains[J]. JBacteriol,1997,179(21):6843-6850.
    [50]Mootz HD, Marahiel MA. Biosynthetic systems for nonribosomal peptide antibiotic assembly[J]. Curr Opin Chem Biol,1997,1(4):543-551.
    [51]Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular monribosomal peptide synthetases[J]. Chembiochem,2002, 3(6):490-504.
    [52]Schmelz S, Naismith JH. Adenylate-forming enzymes[J]. Curr Opin Struct Biol, 2009,19(6):666-671.
    [53]Gulick AM. Conformational Dynamics in the Acyl-CoA Synthetases, Adenylation Domains of Non-Ribosomal Peptide Synthetases, and Firefly Luciferase[J]. ACS Chem Biol,2009,4(10):811-827.
    [54]Conti E, Franks NP, Brick P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes[J]. Structure,1996,4(3):287-298.
    [55]Conti E, Stachelhaus T, Marahiel MA, et al. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S[J]. EMBO J,1997, 16(14):4174-4183.
    [56]May JJ, Kessler N, Marahiel MA, et al. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases[J]. Proc NatlAcad Sci USA,2002,99(19):12120-12125.
    [57]Gulick AM, Starai VJ, Horswill AR, et al. The 1.75 A Crystal Structure of Acetyl-CoA Synthetase Bound to Adenosine-5'-propylphosphate and Coenzyme A[J]. Biochemistry,2003,42(10):2866-2873.
    [58]Gulick AM, Lu X, Dunaway-Mariano D. Crystal Structure of 4-Chlorobenzoate:CoA Ligase/Synthetase in the Unliganded and Aryl Substrate-Bound States[J]. Biochemistry,2004,43(27):8670-8679.
    [59]Stachelhaus T, Mootz HD, Marahiel MA. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases[J]. Chem Biol,1999, 6(8):493-505.
    [60]Challis GL, Ravel J, Townsend CA. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains[J]. Chem Biol, 2000,7(3):211-224.
    [61]Ueki M, Galonic DP, Vaillancourt FH, et al. Enzymatic generation of the antimetabolite gamma,gamma-dichloroaminobutyrate by NRPS and mononuclear iron halogenase action in a streptomycete[J]. Chem Biol,2006,13(11):1183-1191.
    [62]McQuade TJ, Shallop AD, Sheoran A, et al. A nonradioactive high-throughput assay for screening and characterization of adenylation domains for nonribosomal peptide combinatorial bio synthesis [J]. Anal Biochem,2009,386(2):244-250.
    [63]Udwary DW, Zeigler L, Asolkar RN, et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica[J]. Proc Natl Acad Sci USA,2007,104(25):10376-10381.
    [64]Schultz AW, Oh DC, Carney JR, et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin[J]. J Am Chem Soc,2008,130(13):4507-4516.
    [65]Challis GL. Mining microbial genomes for new natural products and biosynthetic pathways[J]. Microbiology,2008,154(6):1555-1569.
    [66]Ayuso-Sacido A, Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes:detection and distribution of these biosynthetic gene sequences in major taxonomic groups [J]. Microb Ecol,2005,49(1):10-24.
    [67]王振东,孙仓,王惠.不同方法从大豆不同组织中提取基因组DNA效果的比较[J].大豆科学,2008,27(1):42-46.
    [68]Santi DV, Webster RW, Cleland WW. Kinetics of aminoacyl-tRNA synthetases catalyzed ATP-PPi exchange[J]. Methods Enzymol,1974,29(0):620-627.
    [69]Lombo F, Velasco A, Castro A, et al. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two streptomyces species[J]. Chembiochem,2006,7(2):366-376.
    [70]Li J, Jensen SE. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid[J]. Chem Biol,2008, 15(2):118-127.
    [71]Bachmann BO, Ravel J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data[J]. Methods Enzymol,2009,458:181-217.
    [72]Du L, Sanchez C, Chen M, et al. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase[J]. Chem Biol,2000,7(8):623-642.
    [73]Keating TA, Marshall CG, Walsh CT. Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains[J]. Biochemistry,2000,39(50):15513-15521.
    [74]Steffensky M, Li SM, Heide L. Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroides NCIMB 11891 [J]. J Biol Chem,2000,275(28):21754-21760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700