低C/N比污水EMBR脱氮工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究将膜生物反应器(MBR)和电极-生物膜反应器(Biofilm-electrode Reactor, BER)技术相结合,形成适用于低C/N比污水脱氮处理的电化学-物化-生化组合脱氮工艺——EMBR (Electrode-membrane Biological Reactor)反应器。利用自制的小型EMBR试验装置进行了低C/N比化粪池污水脱氮工艺试验,对自制EMBR反应器的工艺性能、生物-电化学特性、脱氮机理及其脱氮过程的数学模式进行了系统研究。
     课题研究内容及取得的主要成果如下:
     (1)利用自制的复合式活性炭纤维BER反应器对低C/N比污水进行了强化脱氮的试验。结果表明:当进水有机物浓度和C/N较低时,反应器具有较为明显的强化脱氮作用。当C/N小于3.0时,BER的脱氮效率与C/N基本成正相关;在进水C/N比、有机物浓度和反应器电流密度适宜的条件下,BER的脱氮效率与单纯生物膜反应器相比可提高6-15个百分点;保持C/N不变,提高进水污染物浓度会导致所需电流密度的提高和脱氮效率的下降。
     (2)将自制的活性炭纤维生物膜电极引入A/O型MBR,形成EMBR工艺体系,利用正交试验确定了试验装置处理低C/N比化粪池污水的最佳工艺参数,在此基础上进行了工艺效能试验。结果表明:EMBR具有与MBR类似的污染物高效去除特征,在进水COD平均浓度为138mg/L,COD/TN≈3和最佳工艺参数条件下,EMBR系统对进水中的浊度、COD、NH4+-N和TN的平均去除率可分别达到96.4%,93.1%,84.5%和62.3%,出水可满足回用水水质要求。联合反硝化室在TN去除过程中起着重要作用,其TN去除率约为9.1%。与MBR系统相比,EMBR的TN去除率可提高7.3%左右。EMBR反应器具有较强的抗COD冲击负荷的能力,但对NH4+-N冲击负荷的变化较为敏感。
     (3)在EMBR系统内部,电化学反应是实现生物强化脱氮的前提和条件,生物化学反应是电化学反应产物发挥作用的必要途径。电化学反应过程和生物化学反应过程之间相互作用、相互影响,形成特定的生物-电化学耦合作用体系,共同促进工艺系统脱氮能力的提高。在EMBR系统的联合反硝化室内,反应器电流密度的变化对生物脱氮过程的TN最大比降解速率有显著的影响。在试验进水水质和工艺参数条件下,EMBR系统内TN最大比降解速率发生在电流密度为0.03mA/cm2时。在电流密度过大时,联合反硝化室内有类似“氢抑制效应”现象发生。在电流密度适宜,电极生物膜活性较高的条件下,脱氮微生物的反硝化能力越高,对H的利用能力越强,电化学反应速度提高幅度越大。
     (4)在EMBR工艺体系中,废水的脱氮依赖四种生化反应过程而进行,即氨化反应,硝化反应,异养反硝化反应和自养反硝化反应。氨化反应和硝化反应主要在EMBR的好氧曝气室内进行;异养反硝化反应主要发生在EMBR前端的异养反硝化室内,是EMBR反应器脱氮的主要途径。在EMBR的联合反硝化室内,有自养-异养联合反硝化反应发生。自养-异养联合反硝化反应的发生是EMBR的重要工艺特征。将联合反硝化室内电极生物膜和悬浮型污泥联合脱氮的过程看成一个整体,结合联合反硝化室的构造特征和工艺条件可建立异养-自养联合反硝化过程的半理论半经验模型如下:N=KN·lambertw(1/KN·exp(-MLSS·(9.12j+0.465)/KN·t-MLSS·(9.12j+0.465)/KN·C1))
In this thesis, MBR(Membrane Biological Reactor) technology and BER (Biofilm-electrode Reactor) technology were intergrated to produce a new kind of electrochemical-physicochemical-biochemical denitrogenation process, which is named EMBR(Electrode-Membrane Biological Reactor). Experiments were carried out to dispose the organic wastewater of low C/N ratio from the septic-tank in self-made EMBR experimental device. Technological propoties, biochemical characteristics, denitrifying mechAnism and the denitrification mathematic pattern of EMBR were systematically studied.
     The contents and the main achievements of this research include:
     (1) Denitrifying experiments were carried out with simulated wastewater of low C/N ratio in self-made activated carbon fiber electrode-biofilm experimental device. According to the experiment results, the experimental BER system could evidently strengthen the denitrification process with low C/N ratio and low consentration of the organics of the influents. As the C/N ratio was less than 3.0, the denitrifying efficiency increased with the enhance of the C/N ratio. With appropriate influent C/N ratio, organic concentration and working current density, the denitrification efficiency of the experimental BER could be 6 to 15 percents higher than that of simple biofilm reactor. With the invariable influent C/N ratio, the increase of the concentrations of the influent pollutants would accordingly lead to the increase of the optimum current density of the device, while the denitrification efficiency would decrease simultaneously.
     (2) Self-made activated carbon fiber electrodes were installed in a A/O-MBR to form a experimental EMBR system. An orthogonal experiment was conducted with septic wastewater of low C/N ratio to acquire the optimum working parameters of the experimental EMBR. The technological experiments were carried out to remove the pollutants from the influents afterwards. The experimental results showed that EMBR had similar characteristics of high removal efficiency to MBR. On the optimum technological conditions and with the influent COD concentration of 130mg/L and the C/N ratio of 3.0, the average removal efficiency of the turbidity, COD, NH4+-N and TN of the influents of the experimental EMBR were respectively 96.4%,93.1%,84.5% and 62.3%, and the average concentrations of the turbidity, COD, NH4-N and TN of the efflents were respectively 3.5NTU,8.8mg/L,4.2mg/L and 14.6mg/L, which could successfully meet the quality requirements of water reuse. The multiple denitrifying chamber played an important role in the denitrifying process, with the total nitrogen removal efficiency of 9.1%. The denitrification process in EMBR and MBR was contrasted and discussed by experiments. The TN removing effiency of EMBR was 7.3 % higher than that of MBR. Meanwhile, the experimental EMBR had the same ability of resisting the impact load of COD as MBR, whereras the impact of the NH4+-N loading would apparently decrease the denitrifying efficiency of device, and a interval of about 2 weeks would be necessary for the resume of the denitrifying function of EMBR.
     (3) In the internal of EMBR, electrochemical reaction was the premise of strengthened denitrification, and biochemical reaction was the necessary pathway for electrochemical reaction of denitrification. The interaction and the influence between electrochemical reaction and biochemical reaction existed to form specific biological-chemical coupling system to promote the denitrifying capability of the technology system. In the multiple denitrifying chamber of EMBR, the change of current density influenced degradation rate of TN significantly. With experimental water quality of the effluents and the operating parameters, the maximum degradation rate of TN occurred at the current density of 0.03 mA/cm2.When current density was excessive, "Hytrogen Inhibition" emerged analogously. With appropriate current density and higher activity of electrode-biofilms, the stronger the denitrifying capability and the hytrogen utilization of the microbes were, the faster the electrochemical reaction proceeded.
     (4) In technology system of EMBR, denitrification processes relyed on four kinds of biochemical reactions, which were known as amination, nitration, heterotrophic denitrification and autotrophic denitrification. Amination and nitration occurred mainly in aeration chamber. Heterotrophic denitrification played an important role in denitrogenation process and occurred mainly in the front heterotrophic denitrification chamber of the reactor. Heterotrophic-autotrophic mutiple denitrification took placed in the multiple denitrifying chamber of EMBR, which was the main characteristics of the process. Integrating the denitrification of electrode-biofilms and the suspended sludge, with the specific structure of the mutiple denitrifying chamber and the working conditions of EMBR, an empirical model of heterotrophic-autotrophic mutiple denitrification was constructed as follows:
     N= KN·lambertw(1/KN·exp(-MLSS·(9.12j+0.465)/KN·t-MLSS·(9.12j+0.465)/KN·Cl))
引文
[1]付忠志,邹利安..深圳罗芳污水厂一期工程试运行简评[1].给水排水,2000,26(1):6-10.
    [2]方茜,张可方,张朝升等.SBR法处理低碳城市污水的除磷规律[J].中国给水排水,2004,20(8):43-46.
    [3]杨高华;章北平;杨群等.城郊生活污水脱氮的A/O/N工艺研究.华中科技大学学报(城市科学版),2006,23(5):56-59.
    [4]杨群;章北平;张杰.景观旅游区公厕污水处理的A/O/N工艺研究.华中科技大学学报(城市科学版),2005,22(4):21-24.
    [5]唐璐,刘慕凡.高速公路服务区污水处理回用工程实践.环境科学与技术,2011,34(6):220-222.
    [6]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002,第373-382页.
    [7]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002,第383-389页.
    [8]Voets J.P., Vanstaen H.,Verstraete W. Removal of nitrogen from highly nitrogenous waste water. JWPCF,1975,47:394-398.
    [9]Southerson S., Ganczarczyk J J. Inhibition of nitrite oxidation during nitrification: Some observations. Water Pollution Research,1986,21:257-266.
    [10]Hao X., Heijnen J.J. Sensitivity analysis of a biofilm model describing a one stage comp letely autorophic nitrogen removal (CANON) process. Biotechnol. Bioeng.,2002,77:266-277.
    [11]Hao X., Heijnen J.J. Sensitivity analysis of a biofilm model describing a one stage comp letely autorophic nitrogen removal (CANON) process. Biotechnol. Bioeng.,2002,77:266-277.
    [12]Pynaert K., Wyffels S., Sprengers R., et al. Oxygen limited nitrogen removal in a lab scale rotating biological contactor treating an ammonium rich wastewater. Water Science and Technology,2002,45 (10):357-363.
    [13]Van Dongen U., Jetten M.S.M., Van Loosdrecht M.C.M. The sharon anammox process for treatment of ammonium rich wastewater. Water Science and Technology,2001,44:153-160.
    [14]Hellinga C. The SHARON process:An innovative method for nitrogen removal from ammonium-rich wastewater. Water Science and Technology,1998,37 (9): 135-142.
    [15]Van Benthum W. A. J., Derissen B. P., Van Loosdrecht M C M, et al. Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat. Water Research, 1998,32(7):2009-2018.
    [16]Hanaki K, Wantawin C, Ohgaki S.et al. Nitrification at low levels of dissolved oxygen wit h and without organic loading in a suspended growth reactor Wat.Res,1990,24 (3):297-302.
    [17]Ruiz G, Jeison D, Chamy R. Nitrification with high nit rite accumulation for t he treatment of wastewater wit h high ammonia concent ration. Wat.Res,2003,37: 1371-1377.
    [18]Van de Graaf A.A., Mulder A., et al. Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology,1996, 61 (4):1246-1251.
    [19]Dapena Mora A., Compos J. L.,MosqueralCorral Al, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR1Journal of Biotechnology, 2004,110:159-170.
    [20]Third K. A., Sliekers A.O., Kuenen J.G., et al. The CANON system under ammonium limitation:Interaction and competition between three group s of bacteria. System Appl.Microbiol.,2001,24:588-596.
    [21]Olav Sliekers A., Third K. A., Abma W., et all CANON and anammox in a gas-lift reactor FEMS. Microbiology Letters,2003,218:339-344.
    [22]Hippen A., Rosenwinkel K.H., Baumgarten G., et al. Aerobic deammonification——A new experience in the treatment of wastewaters. Water Science and Technology,1997,35 (10):111-120.
    [23]王莉萍,曹国平,周小虹.氨氮废水处理技术研究进展[J].化学推进剂与高分子材料,2009,7(3):26-32.
    [24]钟理,詹怀宇,Hill D O.化学沉淀法除去废水中的氨氮及其反应的探讨[J].重庆环境科学,2000,22(6):54-56.
    [25]张道斌,吕玉娟,张晖.化学沉淀法去除垃圾渗滤液中氨氮的试验研究[J].环境化学,2007(1):62-65.
    [26]方建章,黄少斌.化学沉淀法去除水中氨氮的试验研究[J].环境科学与技术,2002,25(5):34-35.
    [27]张文成,安立超.焦化废水脱氮处理技术进展[J].环境污染治理技术与设备,2004,5(3):23-27.
    [28]宋卫峰,骆定法,王孝武,等.折点氯化法处理高NH3-N含钴废水试验与工程实践[J].环境工程,2006,24(5):12-14.
    [29]钟理,Kuo C H.臭氧湿式氧化氨氮的降解过程研究[J].中国给水排水,2000,16(1):14-17.
    [30]王枫,蔡江,安广辉,等.甘氨酸厂废液综合治理的工艺及实验研究[J].环境污染治理技术与设备,2005(12):9093.
    [31]付迎春,钱仁渊,金鸣林.催化湿式氧化法处理氨氮废水的研究[J].煤炭转化,2004,27(2):72-75.
    [32]邵刚.膜法水处理技术及工程实例[M].北京:化学工业出版社,环境科学与工程出版中心,2002.
    [33]Ozturki,Altinbas M,Koyuncu I,et al.Advanced physico-chemical treatment experiences on young municipal landfillleachates[J]. Waste Management,2003,23(5):441-446.
    [34]Moraes P B,Berazzol I R.Electrodegradation of landfill leachate in a flow electrochemical reactor[J].Chemosphere,2005,58(1):41-46.
    [35]Awadalla F T,Striez C,Lamb K.Removal of ammonium and nitrate ions from mine effluents by membrane technology[J].Separation Science and Technology,1994,29(4):483-495.
    [36]Kurama H,Poetzschke J,Haseneder R.The application of membrane filtration for the removal of ammonium ions from potable water[J].Wat Res,2002,36:2905-2 909.
    [37]刘玉亮,罗固源,阙添进,等.斜发沸石对氨氮吸附性能的试验分析[J].重庆大学学报,2004,27(1):62-65.
    [38]李晔,王建兵,肖文浚,等.沸石去除水源中低浓度氨氮的实验研究[J].武汉理工大学学报,2003(2):4-6.
    [39]王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究[J].环境污染治理技术与设备,2004,5(6):51-53.
    [40]刘国文.有色金属冶炼氨氮废水处理方法研究[J].湖南有色金属,2004,20(3):37-40.
    [41]李瑞华,韦朝海,吴超飞,等.吹脱法预处理焦化废水中氨氮的条件试验与工程应用[J].环境工程,2007(3):38-44.
    [42]何晨燕,赵玉新.焦化废水处理技术探讨[J].北方环境,2004,29(1):51-53.
    [43]徐晓宇,杨殿海.短程生物脱氮与同步除磷的中试研究[J].给水排水,2006,32(11):38-41.
    [44]李勇智.短程生物脱氮和反硝化除磷的基础研究[D].北京工业大学,2003.
    [45]张小玲,王志盈,彭党聪,等.低溶解氧下活性污泥法的短程硝化研究.中国给水排水,2003,19(7):7-11.
    [46]R.B.Mellor, J Ronnenberg, W H Campbell, et al. Reduction of nitrate and nitrite in water by immobilized enzymes[J].Nature,1992,355:717-719.
    [47]Y. Sakakibara, M.Kroda, et al. Electric prompting and control of denitrification[J]. Biotech. Bioeng.,1993; 42:535-537.
    [48]Y. Sakakibara, et al. Modeling of electrochemically-activated denitrifying biofilms[J]. Wat. Res.,1994; 28(5):1077-1086.
    [49]J.R. V Flora, et al. Numerical modeling of a biofilm-electrode reactor used for enhanced denitrification[J]. Wat. Sci. Tech.,1994; 29(10-11):4517-4524.
    [50]Shahnaz, Islam, et al. Electrolytic denitrification:long term mance and effect of current intensity[J]. Wat.,Res.,1998;528-536.
    [51]Sakakibara Y, Araki K, Watanabe T, et al. The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater[J]. Wat.Sci.Tech.,1997,36(2):61-68.
    [52]Z.Feleke, et al. Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor[J]. Wat. Res.,1998; 32(9):2728-2734;
    [53]Kuroda M, Watanabe T, Umedu Y. Simultaneous oxidation and reduction trea-tments of polluted water by a bio-electro reactor[J]. Wat. Sci. Tech., 1996,34(9):101-108.
    [54]Y Sakakibara, et al. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification[J]. Wat.Res.2001;35(3):768-778.
    [55]Michal Prosnansky, et al. High-rate denitrification and SS rejection by biofilm-electrode reactor(BER) combined with microfiltration[J]. Wat.Res., 2002;36:4801-4810.
    [56]Z.Feleke, YSakakibara. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide[J]. Wat. Res.,2002,36:3092-3102.
    [57]Tomohide Watanabe, Hisashi Motoyama, Masao Kuroda. Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process[J]. Wat. Res.,2001;35(17):4102-4110.
    [58]黄民生,高廷耀.电极生物膜法反硝化的试验研究[J].上海环境科学,1996;15(6):2527.
    [59]黄民生,景有海,王水华.具有反硝化能力的氢细菌特及其应用[J].上海环境科学,1997,16(1):36-37,43.
    [60]彭永臻等.生物电极脱氮工艺的在线模糊控制研究(一)[J].中国给水排水,1999,15(2),5-9.
    [61]彭永臻等.生物电极脱氮工艺的在线模糊控制研究(二)[J].中国给水排水,1999,15(4),5-10.
    [62]邱凌峰等.电极生物膜法应用于微污染源水预处理反硝化环节的试验研究[J],福州大学学报,2000;28(2),116-119.
    [63]范彬等.异养-电极-生物膜联合反应器脱除地下水中硝酸盐的研究[J],环境科学学报,2001;21(3):257-262.
    [64]曲久辉,范彬,刘锁祥等.电解产氢自养反硝化去除地水中硝酸盐氮的研究 [J].环境科学,2001,22(6):49-52.
    [65]王五洲,汤兵等.电解-生物滤床反应器反硝化作用初探[J],环境科学与技术,2004;27(8):117-119.
    [66]张乐华,朱又春等.电化学反应提高生物滤池的城市污水脱氮效果[J],环境污染与防治,2005;27(2):91-93.
    [67]邓俊.电极-生物法除磷脱氮效果研究[D].广州:广东工业大学,2003.
    [68]余川江,张乐华等.电极-生物复合反应器处理城市污水的初步研究[J].环境污染治理技术与设备,2005;6(11):85-88.
    [69]郭一令,王铮,薛梅等.旋转电极型生物反应器的脱氮研究[J].中国给水排水,2003;19(2):9-12.
    [70]范彬等.异养-电极-生物膜联合反应器脱除地下水中硝酸盐的研究[J],环境科学学报,2001;21(3):257-262.
    [71]余川江,张乐华等.电极-生物复合反应器处理城市污水的初步研究[J].环境污染治理技术与设备,2005;6(11):85-88.
    [72]谭佑铭,王萌,罗启芳,等.固定化反硝化菌涂层电极及模拟脱氮装置的研制[J].卫生研究,2004;33(4),407-409.
    [73]张颖,顾平,邓晓饮.膜生物反应器在污水处理中的应用进展[J].中国给水排水,2002,18(4):90-92.
    [74]Gnirss R.and Dittrieh J.Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal:results from trials with different small-scale pilot plants[J].Wat.Env iron.Res.,2002,72(5):602-609.
    [75]Tom Stephenson, Simon Judd, Bruce Jefferson and Keith Brindle. Membrane bioreactor for treatment [M].IWA publishing,2000.
    [76]顾国维,何义亮编著.膜生物反应器在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [77]彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用[J].水处理技术,1999,25(2):63-69.
    [78]Yamamoto K, Hiasa M, Mahmood T, et al. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank [J]. Wat.Sei.Technol., 1989,21:43-54.
    [79]Brockmann M, Seyfried C F. Sludge activity under the conditions of crossflow microfiltration[J].Wat.Sei.Tech.,1997,35(10):173-181.
    [80]杨小丽.膜生物反应器处理城市污水的微环境特征及膜污染控制[D].东南大学,2006.
    [81]陆晓峰,梁国明,陈洁等.MBR与CAS法处理市政污水的比较[JJ.水处理技术,2006,32(9):56-59.
    [82]Suwa Y, Suzuki T, Toyohara H, et al. Single-sludge nitrogen removal by an activated sludge process with cross-flow filtration[J].Wat.Res.,1992, 26(9):1149-1157.
    [83]Chiemchaisri C, Wong Y K., Urase T, etal.Organic stabilization and nitrogen removal in membrane separation bioreactor fo rdomestic wastewater treatment[J]. Wat.Sei.Tech.,1992,25(10):231-240.
    [84]Cote P., Buisson H., Pound C. and Aiakaki G. immersed membrane activated sludge for the reuse o fmunicipal wastewater[J]. Desalination,1997,113(2-3): 189-196.
    [85]Cote P., Buisson H.and Praderie M. Immersed membrane activated sludge proeess applied to the treatment of municipal wastewater[J]. Wat.Sei.Tech.,1998, 38(4-5):437-442.
    [86]Samer Adham, P Gagliardo, L.Boulos, J.Oppenheimer and R.Trussell. Feasibility of the membrane bioreactor proeess for water reclamation[J]. Wat.Sei.Tech.,2001,43(10):203-209.
    [87]B.Zhang, K.Yamamoto.Seasonal change of microbial population and activities in a building wastewater reuse system using a membrane separation activated sludge process[J]. Wat.Sei.Tech,1996,34(5-6):295-302.
    [88]刘锐,黄霞等.膜生物反应器和传统活性污泥工艺的比较[J].环境科学,2001,22(3):20-24.
    [89]郑祥,魏源送,樊耀波,刘俊新.膜生物反应器在我国的研究进展[J].给水排水,2002,28(2):105-110.
    [90]孟耀斌等.分置式膜生物反应器处理生活污水的抗冲击负荷能力[J].环境科学,2000,21(5):22-26.
    [91]A vanBentem, D Lawrence, F Horjus, etal. MBR pilot researeh in Beverwijk: side studies[J]. H2O MBR Special,2001:16-21.
    [92]Simon Judd. The development in MBR technology[J]. H2O MBR Special, 2001:56-57.
    [93]Renze van Houten, Herman Evenblij, Mischa Keijmel. Membrane bioreactors hit the big time-ten years of research in the Netherlands[J]. H2O MBR Special, 2001:26-29.
    [94]El I Iani Bouhabila, Roger Ben Aim and Herve Buisson. Fouling characterization in membrane bioreactors[J]. Separation and Purification Technology,2001,22-23:123-132.
    [95]Gunther Gehlert, Mariati Abdulkadir, Jan Fuhrmann and Jobst Hapke.Dynamic modeling of an ultrafiltration module for use in a membrane bioreactor[J] Journal of Membrane Science,2005,248(1-2):63-71.
    [96]C Smith, D Di Gregorio, R M Talcott.The use of ultraflltration membranes for activated sludge separation[C].Proc 24rd Ind. Waste Conf., Purdue University, Ann Arbor Science, Ann Arbor, U.S.A.,1969,1300-1310.
    [97]Gander M, Jefferson B, Judd S. Aerobic MBRs for domestic Wastewater treatment:a review with cost considerations[J]. Sep.Pur.Tech.,2000,15:119-130.
    [98]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [99]丁毅,张传义,袁丽梅.MBR在污水处理中的应用与研究进展[J].给水排水,2007,33(11):170-173.
    [100]岑运华.日本水综合再生利用系统90计划的进展概要[J].环境科学研究,1990,3(2):50-55.
    [101]林晶,赵庆祥,陆美红等.膜分离活性污泥法的研究[J].城市环境和城市生态,1994,7(1):6-11.
    [102]吴开芬等.超滤法处理印钞厂擦板液的研究[J].环境科学,1994,14(4):34-37.
    [103]蒋燕,陶冠红.膜生物反应器短程硝化脱氮处理生活污水的研究[J].环境科学与技术,2007,30(11):95-97.
    [104]杨琦,尚海涛,杨春等A/O-MBR工艺处理城市污水的研究[J].中国给水排 水,2006,22(7):1-4.
    [105]全攀瑞,朱振亚,王琼瑶.MBR处理印染废水的膜污染及清洗研究[J].中国给水排水,2006,22(5):106-105.
    [106]韩怀芬,金漫彤.膜生物反应技术处理造纸废水试验[J].水处理技术,2001,27(2):96-98.
    [107]封莉,张立秋,吕炳南等.淹没式MBR处理啤酒废水的净化效能研究[J].水处理技术,2005,31(5):46-50.
    [108]鲍建国,卢学实.一体式膜生物反应器处理港口污水及回用[J].中国给水排水,2002,18(9):37-38.
    [109]李志东,李娜,张洪林等.一体式膜生物反应器处理屠宰废水[J].环境工程,2007,25(3):27-28.
    [110]减倩,孙宝盛,魏青.膜生物反应器用于医院废水处理[J].水处理技术,2006,32(9):85-87.
    [111]Adham S, Gagliardo P. Membrane bioteactors for water repurification. Final technical report, U.S. Departement of Interior, Bureau of Reclamation, Nov,1998.
    [112]Buisson H, Cote P, Praderie H. The use of immersed membranes for upgrading wastewater treatment plants[J]. Water Science and Technology,1998, 37(9):89-95.
    [113]B.Lesjean, R.Gnirss, H.Buisson, S.Keller, et al. Out comes of a 2-year investigation on enhanced biological nutrients removal and trace organics elimination in membran bioreactor(MBR) [J]. Water Science and Technology, 2005,52(10-11):453-460.
    [114]K.H.Ahn, K.G.Song, E.S.Cho, J.W.Cho, et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreaetor (SAM) Proeess[J].Desalination,2003,157(1-3):345-352.
    [115]B.Lesjean, R.Gnirss, C.Adam, et al. Enhanced biological phosphorus removal Process implemented in membrane bioreactors to improve phosphorous recovery and recyeling[J]. Water Science and Technology,2003,48(1):87-94.
    [116]H.M.Zhang, J.N.Xiao, Y.J.Cheng, L.F.Liu et al. Comparison between a sequencing batch membrane bioreactor and a conventional membrane bioreaetor[J]. Process Bioehemistry,2006,41(1):87-95.
    [117]李剑锋,一体式A/O膜生物反应器脱氮性能及在船舶污水处理中的应用研究[D],大连理工大学,2008.
    [118]黄霞,左名景,薛涛等.膜生物反应器脱氮除磷工艺处理城市污水的工程应用[J].膜科学与技术,2011,31(3):223-227.
    [119]曹斌,黄霞,北中敦等.A2/O-膜生物反应器强化生物脱氮除磷中试研究[J].中国给水排水,2007,23(3):22-26
    [120]王晓东,钱轶超,曹朝霞等.膜生物反应器在污水脱氮中的研究进展[J].杭州师范学院学报(自然科学版),2007,6(1):51-55.
    [121]曾一鸣.膜生物反应器技术[M].北京:国防工业出版社,2007,第215页.
    [122]郭海燕.曝气动力循环一体化同时硝化反硝化生物膜反应器及其特性研究[D].大连理工大学,2005.
    [123]周德庆.微生物学教程(第二版)[M].北京:高等教育出版社,2004.
    [124]鲍立宁,洪桂云,黄显怀等.电极生物膜脱氮工艺中反硝化菌相分析[J].安徽建筑工业学院学报,2004;12(5),1-4.
    [125]鲍立宁,黄显怀,樊美珍等.电极-生物膜反应器中反硝化菌的初步研究[J].生物学杂志,2005;22(6),32-34.
    [126]Yang Qun, Yin Yong, Zhang Beiping, et al. Primary research on the disposal of organic wastewater of low C/N ratio with electrode-membrane biological reactor.EPPH2009国际会议论文集,2009,Beijing.
    [127]曾一鸣.膜生物反应器技术[M].北京:国防工业出版社,2007,第195-214页.
    [128]胡传侠,杨昌柱,杨群等.固定化三维电极-生物膜法去除污水中硝酸盐氮[J].环境科学与技术,2008,31(2):83-87.11
    [129]刘宏波.好氧颗粒污泥及颗粒化动态膜生物反应器的研究[D].华中科技大学,2009.
    [130]郑经堂.活性炭纤维[J].新型炭材料,2000,15(2):80.
    [131]黄强,潘鼎,黄永秋.活性炭纤维在治理水和大气污染中的应用[J].化工新材料,2002,30(8):32-34.
    [132]周娟娟,胡中华,吴海芳.活性炭纤维及其在水处理中的应用[J].环境污染与防治,2003,25(2):80-82.
    [133]叶德宁,应迪文,贾金平.活性炭纤维电极在水处理中的应用及进展[J].中国给水排水,2007,23(18):20-23.
    [134]陈建平.三维电极-生物膜反应器脱除低C/N值废水中硝酸盐氮和COD[D].华中科技大学,2008.
    [135]杨群,杨昌柱, 陈建平.电极-生物膜前后置条件下的反硝化脱氮性能比较[J].水处理技术,2007,33(11):31-34.
    [136]陈永言.电化学基础[M].天津科学技术出版社,1999,第30-31页.
    [137]杨群,章北平,杨高华等.离散型住宅小区污水深度处理与中水回用系统的优化设计[J].环境工程,2007,25(3):24-27.
    [138]杨昌柱,章北平,杨群等.景观水治理与中水回用技术研究与工程示范.武汉市十五科技攻关项目技术研究报告.2010.
    [139]丁永伟.活性污泥和生物膜复合工艺的特性及运行效能研究[D].哈尔滨工业大学,2006.
    [140]陈旭东.膜生物反应器处理生活污水运行控制优化研究[D].武汉理工大学,2004.
    [141]李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活污水的特性[J].环境科学,1999,(02).
    [142]仲衍伟.一体式膜生物反应器处理城市污水的研究[D].山东大学,2005.
    [143]温青,李旭辉,李凯峰等.电极生物法强化A/O工艺反硝化及动力学研究.中国环境科学,2007,27(6):797-800.
    [144]刘雨,赵庆良等.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000年3月,第3页.
    [145]Characklis W.G.. Biofilm process. In:Characklis W. G. and Marshall C.G.(ed), Biofilm, John Wiley and Sons Inc.,1990:195-231.
    [146]Liu Y.,Capdeville B. Kinetic behaviours of nitrifying biofilm growth in waste-water nitrification process[J]. Envitonmental Technol.,1994,15(11): 1001-1013.
    [147]Mozes N., Roaxhet P.G. Influence of surface on microbial activity. In:Melo L.F.et al(ed), Biofilm, Kluwer Academic publishers,1992:125-136.
    [148]Messing R.A., Oppermann R.A., Pore dimension for a accumulating biomass[J]. Biotechnol. Boeng.,1979(21):49-58.
    [149]Verrier D., Mortier B.,etal. Initial adheresion of methanogenic bacteria to polymers[J]. Biotechnol.Lett.,1987(9):735-740.
    [150]Changui Q.C.,Doren A.,Mozes N.,et al. Surface properties of polycabonate and promotion of feast cell adhesion[J]. J.Chem.Phys,1987(84):276-281.
    [151]Bryers J.D., Characklis W.G..Early fouling biofilm formation in a tirbulent flow system:overall kinetics[J]. Water Research,1981(15):483-491.
    [152]Liu Y..Adhesion kinetics of nitrifying bacteria on various thermoplastic supports[J]. Colloids and Surfaces B:Biointerfaces,1995(5)213-219.
    [153]Liu Y.,Capdeville B. Growth dynatics of nitrifying biofilm in biological nitrogen removal process[J]. Wat.Sci.Technol.,1994(29):377-380.
    [154]陈永言.电化学基础[M].天津科学技术出版社,1999,第155页.
    [155]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004,第44-54页.
    [156]吴浩青,李永舫.电化学动力学[M].高等教育出版社,1998,第30-41页.
    [157]张乐华.内循环式电极生物反应器处理城市污水的初步研究[D].上海交通大学,2005.
    [158]Frankenthal R P,Milner P C. Hydrogen evolution kinetics on a high carbon steel and on tin in seawater. Corrsion,1986,42:51-53.
    [159]Gennero M R,Chialvo A C. Analysis of an unusual behavior of the hydrogen evolution reaction:Two Tafelian regions with equal slope. International Journal of Hydrogen Energy,2002,27:871-877.
    [160]Bruce E R, Perry L M.Environmental biotechnology. Principles and Applications, McCarty Hill Education (Asia) Co.,2001:498-503.
    [161](脱氢的步骤)
    [162]顾夏声.废水生物处理数学模式(第二版)[M].北京:清华大学出版社,1993.
    [163]李文未.废水生物电极反硝化模型研究[D].湖南大学,2005年.
    [164]FADIGEBARA. ActivatedSludgeBiofilmWastewaterTreatmentSystem. Wat.Res. 1999,33(1):230-23.
    [165]Sriwiriyarat C.W.RandallandD.Sen.Computer program develoPment of the design of integrate fixed film activated sludge wastewater treatment processes[J]. Journal of Environmental Engineering.2005,131(11):1540-1549.
    [166]D.Sen. CODRemoval, Nitrification and denitrification kinetics and mathematical modeling of an integrated fixed film activated sludge system [D]. DePt. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Va.1995.
    [167]温青,李旭辉,李凯峰等.电极生物法强化A/O工艺反硝化及动力学研究[J].中国环境科学,2007,27(6):797-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700