填埋场中铁的迁移转化对脱氮的影响和机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于填埋场能够适应不同的垃圾类型和数量的波动并且经济有效,因此成为了大多数国家生活垃圾处理的主要方式。然而,如何解决填埋场处理垃圾过程中氮的二次污染问题一直是人们关注的热点。为了保护填埋场周边的土壤、地下水及地表水环境,亟待解决填埋场中原位脱氮的理论和技术难题,实现源头消减填埋场氮排放的目的,从而降低渗滤液的处理费用和难度。鉴于此,本文以生活垃圾填埋场和渗滤液中含量最高的变价金属元素铁作为研究对象,展开了以下几个方面的研究。首先,针对总量无法准确评价铁的环境行为的问题,借鉴土壤、海底沉积物、污水处理厂活性污泥的研究方法,研究了盐酸和草酸-草酸铵对垃圾中不同价态铁的提取效果及影响因素,并对提取条件进行了初步优化。在此基础上,研究了不同填埋龄垃圾中不同价态铁的含量。其次,以生物反应器填埋场为模型系统,构建了两种不同运行模式的模拟填埋场反应器,深入系统的研究了两种运行模式下填埋场中铁的总量释放及氧化还原变化规律,揭示了铁的不同价态与不同形态之间的关系。最后,通过研究氮素的去除效果和铁的价态变化规律,初步揭示了铁的氧化还原循环与氮素去除的潜在关系。论文获得如下主要研究成果:
     (1)正交试验结果表明,当盐酸浓度为1 mo1·L-1、液固比为100:1、提取时间为60min、转速为200 rpm和提取温度为35℃,盐酸对垃圾中的亚铁、三价铁和总铁的提取效果较好。当液固比为100:1、提取时间为12 h、转速为175 rpm和提取温度为30℃, Tamm's试剂对垃圾中的亚铁、三价铁和总铁的提取效果较好。在正交试验所确定的最佳提取条件,盐酸和Tamm's试剂二种方法对填埋龄为0-8年的垃圾中亚铁和三价铁均具有较好的提取效果。
     (2)不同填埋龄垃圾的基本理化性质存在较大差异,垃圾的含水率、有机质和BDM的含量随着填埋时间的增加而呈现逐渐下降的趋势。垃圾经过8年的填埋后,垃圾中的有机质和BDM由最初的72.40±1.28%和54.90±0.17%分别下降至15.20±2.93%和3.34±0.74%。盐酸和Tamm's试剂提取态亚铁和总铁均呈现出随着垃圾填埋龄的增加而逐渐增加的趋势,除新鲜垃圾外,四个陈垃圾样品中盐酸提取态和Tamm's试剂提取态亚铁含量之间却存在着明显的差异。
     (3)不同垃圾组分中的含铁量存在显著性差异,灰土和砖瓦类的含铁量最高(>30000mg kg-1),厨余类、纸类垃圾次之(10000-30000 mg kg-1),纺织物、木制品和塑料最低(<10000mg kg-1)。厨余类垃圾占填埋总质量的比例较高,是模拟填埋场反应器中铁的主要来源,对总铁的贡献率达到了45.5%。
     (4)不同运行模式的模拟填埋场反应器渗滤液中总铁浓度变化趋势及累积释放量存在巨大的差异,传统卫生填埋场反应器(CL)渗滤液中总铁的浓度呈现先降低后升高的趋势,而渗滤液回灌型填埋场反应器(RL)渗滤液中总铁的浓度则呈现逐渐下降的趋势。CL中总铁的释放率为1.00%,而RL中总铁的释放率则仅为0.14%。
     (5)两个模拟填埋场反应器渗滤液中总铁与常见的理化指标之间并无显著相关性。两个模拟填埋场反应器渗滤液中亚铁占总铁的百分比均随着反应器的运行而呈现逐渐升高的趋势,反应器RL渗滤液样品中亚铁的比例在63.0%-92.7%内变化(平均值为81.0%),反应器CL渗滤液样品中亚铁的比例在76.0%-98.8%内变化(平均值为90.0%)。两个模拟填埋场反应器渗滤液中溶解态与颗粒态铁占总铁的变化趋势与平均值基本相同,渗滤液中的三价铁与颗粒态铁均呈显著正相关(R2=0.748,RL;R2=0.833,CL)。
     (6)陈垃圾接种并同时加入有机碳源和硝态氮的反应体系中,加入亚铁之后发生了铁的氧化还原循环,并同时伴随着硝态氮的还原过程,还原产物为氮气和铵态氮。未加入任何有机碳源的陈垃圾接种的反应体系中,发生了无机自养型的亚铁厌氧氧化-反硝化过程。然而,由于该体系中缺少有机碳源,因此三价铁无法通过异化铁还原过程再次转化为亚铁,未发现铁的氧化还原循环过程。
Landfills are the predominant form of treatment of municipal solid waste (MSW) in the vast majority of the available case studies, because it is cost-effective and can accommodate different types as well as large fluctuations in the amount of waste. However, it is still a hot topic that how to find a feasible way to solve the secondary pollution of nitrogen during the process of municipal solid waste treatment by landfill. In order to protect the soil, ground water and suface water environment around landfill, achieve the purpose of in situ nitrogen removal and reduce the cost and degree of difficulty for landfill leachate treatment, theoretical and technical problems on in situ nitrogen removal must be resolved as soon as possible. Hereupon, iron, the most abundant element with variable valence in the landfill and leachate, was chosen to carry out the following research. First of all, in view of environmental behavior of iron can not be assessed accurately only by the total content of iron, the extraction conditions for extractable iron speciation (ferric and ferrous) in MSW by hydrochloric acid and acid ammonium oxalate solution (Tamm's reagent) were investigated and optimized. Subsequently, the redox state of iron in municipal solid waste (MSW) with different deposit ages was evaluated. Secondly, two simulated MSW landfill with different operational modes were constructed based on the model of bioreactor landfill, the leaching behavior for the total content of iron and variation of iron in different oxidation state was investigated, and the correlation between particulate bound iron and Fe(Ⅲ) in the leachates of the simulated landfills was obtained. Finally, according to the nitrogen removal efficiency and the variation of iron in different oxidation state in batch experiment, the potential effect and mechanism of iron redox on nitrogen removal in the landfill was presented. The main experiments and conclusions are as follows:
     (1) According to the orthogonal experiments results, the optimal extraction conditions for HC1 were determined as follows:the liquid-to-solid ratio was set at 100, and then the samples were extracted at the shaking speed of 200 rpm at 35℃for 60 min by 1mol.L-1 HC1. For Tamm's reagent, the optimal extraction conditions were extracted at the shaking speed of 175 rpm at 30℃for 12 h with the same liquid-to-solid ratio. Under the optimal extraction conditions, both extraction reagents perform very well to evaluate the redox state of iron in MSW with different deposit ages.
     (2) MSW samples with different deposit ages exhibited decidedly different basic physicochemical characteristics, and moisture content, organic matter content determined as LOI and BDM decreased with the increasing of deposit age. After the burial of 2 years, the organic matter content and BDM decreased from 72.40±1.28% and 54.90±0.17% to 15.20±2.93% and 3.34±0.74%, respectively. The results also showed that the yield of extractable iron increased with deposited age. In the fresh refuse, no significant difference of extractable ferrous iron was found extracted with both HC1 and Tamm's reagent, while statistically significant differences were found for the yield extractable ferrous iron extracted by the two extractants in the other four aged refuse samples (SI to S8).
     (3) The results depicted that there was large amount of variability for the iron contents in different MSW. Both the contents of iron in the brick and dust were higer than 30000 mg kg-1, which was significantly higher than that in the fractions of food and fruit waste, papers and residue (10000-30000 mg kg-1) and cellulose textile, wood and plastics (<10000 mg kg-1). The food and fruit waste contributed a large amount of iron (45.5%) due to their high proportion in the MSW on dry weight basis.
     (4) The leaching behavior and accumulated amounts of iron leached out of the refuse by leachate from CL and RL exhibited decidedly different trends except for the initial stage. After 200 days operation, the accumulated amounts of iron leached out from CL increased with the passage of time (from 3710 to 7270 mg), while the iron leached out from RL decresed sharply from 3320 mg to 991 mg. The percentage of iron leached from CL and RL accounted 1.00% and 0.14% for the total amount in landfills, respectively.
     (5) No significant correlations were found between iron leaching and basic physicochemical characteristics of leachate, such as chemical oxygen demand (CODCr), dissolved organic carbon (DOC), volatile fatty acid (VFA), pH, SO42- and S2- concentrations in the leachate of the simulated landfills. Variation of ferrous and ferric iron percentage in the leachate of RL and CL exhibited similar trends during the whole operating period, ferrous iron percentages in the leachate of RL and CL increased with the passage of time. During the succeeding 200 days, the ferrous iron percentages in the leachate of RL and CL kept within the range of 63.0-92.7% with an average of 79.7% and 71.3-98.8% with an average of 89.4%, respectively. Significant positive correlations between particulate bound iron and ferric iron were found in the leachates from RL (R2=0.748) and CL (R2=0.833).
     (6) With the addition of organic carbon, nitrate nitrogen, ferrous iron and aged refuse, repeated anaerobic of microbial redox cycling of iron concomitant with nitrate reduction was found. During this process, nitrate was reduced to nitrogen gas and ammonium nitrogen. Without addition of organic carbon, only anaerobic ferrous iron oxidation nitrate reduction was found, redox cycling of iron did not happen and iron was always presented as ferric iron in the system.
引文
Benson, C.H., Barlaz, M.A., Lane, D.T., Rawe, J.M.,2007. Practice review of five bioreactor/recirculation landfills. Waste Management,27,13-297
    Benz, M., Brune, A., Schink, B.,1998. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Archives of Microbiology,169,159-165.
    Berge, N.D., Reinhart, D.R., Batarseh, E.S.,2007. Strategy for complete nitrogen removal in bioreactor landfills. Journal of Environmental Engineering-Asce, 133,1117-1125.
    Berge, N.D., Reinhart, D.R., Dietz, J., Townsend, T.,2006. In situ ammonia removal in bioreactor landfill leachate. Waste Management,26,334-343.
    Berge, N.D., Reinhart, D.R., Townsend, T.G.,2005. The fate of nitrogen in bioreactor landfills. Critical Reviews in Environmental Science and Technology,35, 365-399.
    Bilgili, M.S., Demir, A., Ozkaya, B.,2007. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. Journal of Hazardous Materials,143,177-183.
    Bozkurt, S., Moreno, L., Neretnieks, I.,1999. Long-term fate of organics in waste deposits and its effect on metal release. Science of the Total Environment,228, 135-152.
    Bruce, R.A., Achenbach, L.A., Coates, J.D.,1999. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1,319-329.
    Bulc, T., Vrhovsek, D., Kukanja, V.,1997. The use of constructed wetland for landfill leachate treatment. Water Science and Technology,35,301-306.
    Castrillon, L., Fernandez-Nava, Y., Ulmanu, M., Anger, I., Maranon, E.,2010. Physico-chemical and biological treatment of MSW landfill leachate. Waste Management,30,228-235.
    Chao, T.T., Zhou, L.,1983. Extraction Techniques for Selective Dissolution of Amorphous Iron-Oxides from Soils and Sediments. Soil Science Society of America Journal,47,225-232.
    Chaudhuri, S.K., Lack, J.G., Coates, J.D.,2001. Biogenic magnetite formation through anaerobic biooxidation of Fe(Ⅱ). Applied and Environmental Microbiology,67,2844-2848.
    Chen, S.H., Fang, F., Xu, G.H.,2010. Investigation of Denitrifying Bacteria Communities in Fresh and Aged Municipal Solid Waste Using Nitrite Reductase Genes. Environmental Engineering Science,27,931-938.
    Chen, X.P., Zhu, Y.G., Hong, M.N., Kappler, A., Xu, Y.X.,2008. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environmental Toxicology and Chemistry,27,881-887.
    Cheung, K.C., Chu, L.M., Wong, M.H.,1997. Ammonia stripping as a pretreatment for landfill leachate. Water Air and Soil Pollution,94,209-221.
    Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.J., Heron, C.,2001. Biogeochemistry of landfill leachate plumes. Applied Geochemistry,16,659-718.
    Di Iaconi, C., Pagano, M., Ramadori, R., Lopez, A.,2010. Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology,101, 1732-1736.
    Edwards, K.J., Rogers, D.R., Wirsen, C.O., McCollom, T.M.,2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha-and, gamma-Proteobacteria from the deep sea. Applied and Environmental Microbiology,69,2906-2913.
    Ehrenreich, A., Widdel, F.,1994. Anaerobic Oxidation of Ferrous Iron by Purple Bacteria, a New-Type of Phototrophic Metabolism. Applied and Environmental Microbiology,60,4517-4526.
    Ehrlich, H.L.,2009. Geomicrobiology. CRC Press, New York.
    Emerson, D., Moyer, C.,1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Applied and Environmental Microbiology,63,4784-4792.
    Etchebehere, C., Errazquin, M.I., Dabert, P., Muxi, L.,2002. Community analysis of a denitrifying reactor treating landfill leachate. Fems Microbiology Ecology,40, 97-106.
    Flyhammar, P.,1997. Estimation of heavy metal transformations in municipal solid waste. Science of the Total Environment,198,123-133.
    Fowle, D.A., Crowe, S.A., Jones, C., Katsev, S., Magen, C., O'Neill, A.H., Sturm, A., Canfield, D.E., Haffner, G.D., Mucci, A., Sundby, B.,2008. Photoferrotrophs thrive in an Archean Ocean analogue. Proceedings of the National Academy of Sciences of the United States of America,105,15938-15943.
    Haaijer, S.C.M., Lamers, L.P.M., Smolders, A.J.P., Jetten, M.S.M., den Camp, H., 2007. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiology Journal,24,391-401.
    Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Rossnagel, P., Burggraf, S., Huber, H., Stetter, K.O.,1996. Ferroglobus placidus gen nov, sp nov, a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Archives of Microbiology,166,308-314.
    Han, Z.Y., Liu, D., Li, Q.B., Li, G.Z., Yin, Z.Y., Chen, X., Chen, J.N.,2011. A novel technique of semi-aerobic aged refuse biofilter for leachate treatment. Waste Management,31,1827-1832.
    Hansen, H.C.B., Koch, C.B., NanckeKrogh, H., Borggaard, O.K., Sorensen, J.,1996. Abiotic nitrate reduction to ammonium:Key role of green rust. Environmental Science & Technology,30,2053-2056.
    Hauck, S., Benz, M., Brune, A., Schink, B.,2001. Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). Fems Microbiology Ecology,37,127-134.
    He, P.J., Shao, L.M., Guo, H.D., Li, G.J., Lee, D.J.,2005. Nitrogen removal from landfill leachate using single or combined processes. Environmental Technology,26,373-380.
    He, P.J., Shao, L.M., Guo, H.D., Li, G.J., Lee, D.J.,2006. Nitrogen removal from recycled landfill leachate by ex situ nitrification and in situ denitrification. Waste Management,26,838-845.
    He, P.J., Shao, L.M., Li, G.J.,2008. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration. Waste Management,28,1000-1007.
    He, P.J., Xiao, Z., Shao, L.M., Yu, J.Y., Lee, D.J.,2006. In situ distributions and characteristics of heavy metals in full-scale landfill layers. Journal of Hazardous Materials,137,1385-1394.
    He, R., Shen, D.S., Wang, J.Q., He, Y.H., Zhu, Y.M.,2005. Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation. Process Biochemistry,40,3660-3666.
    He, R., Xia, F.F., Wang, J., Pan, C.L., Fang, C.R.,2011. Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover. Journal of Hazardous Materials,186,773-778.
    Heising, S., Richter, L., Ludwig, W., Schink, B.,1999. Chlorobium ferrooxidans sp nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp strain. Archives of Microbiology,172, 116-124.
    Henry Lutz Ehrlich, D.K.N.,2009. Geomicrobiology. Fifth ed. Taylor and Francis Group, London.
    Heron, G., Crouzet, C., Bourg, A.C.M., Christensen, T.H.,1994. Speciation of Fe(Ii) and Fe(Iii) in Contaminated Aquifer Sediments Using Chemical-Extraction Techniques. Environmental Science & Technology,28,1698-1705.
    Huang, L.N., Zhou, H., Zhu, S., Qu, L.H.,2004. Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. Fems Microbiology Ecology, 50,175-183.
    Huang, L.N., Zhu, S., Zhou, H., Qu, L.H.,2005. Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. Fems Microbiology Letters,242,297-303.
    Huliselan, E.K., Bijaksana, S., Srigutomo, W., Kardena, E.,2010. Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. Journal of Hazardous Materials,179,701-708.
    Huo, S.L., Xi, B.D., Yu, H.C., Fan, S.L., Su, J., Liu, H.L.,2008. In situ simultaneous organics and nitrogen removal from recycled landfill leachate using an anaerobic-aerobic process. Bioresource Technology,99,6456-6463.
    Hyacinthe, C., Bonneville, S., Van Cappellen, P.,2006. Reactive iron(Ⅲ) in sediments: Chemical versus microbial extractions. Geochimica Et Cosmochimica Acta,70, 4166-4180.
    Inanc, B., Inoue, Y., Yamada, M., Ono, Y., Nagamori, M.,2007. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues. Journal of Hazardous Materials,141,793-802.
    Jiang, J.G., Yang, G.D., Deng, Z., Huang, Y.F., Huang, Z.L., Feng, X.M., Zhou, S.Y., Zhang, C.P.,2007. Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Management,27,893-901.
    Jiao, Y.Y.Q., Kappler, A., Croal, L.R., Newman, D.K.,2005. Isolation and characterization of a genetically tractable photo autotrophic Fe(Ⅱ)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Applied and Environmental Microbiology,71,4487-4496.
    Jokela, J.P.Y., Kettunen, R.H., Sormunen, K.M., Rintala, J.A.,2002. Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Research,36, 4079-4087.
    Kappler, A., Straub, K.L.,2005. Geomicrobiological cycling of iron Molecular Geomicrobiology, pp.85-108.
    Kietlinska, A., Renman, G., Jannes, S., Tham, G.,2005. Nitrogen removal from landfill leachate using a compact constructed wetland and the effect of chemical pretreatment. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,40,1493-1506.
    Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H.,2002. Present and long-term composition of MSW landfill leachate:A review. Critical Reviews in Environmental Science and Technology,32,297-336.
    Kumaraswamy, R., Sjollema, K., Kuenen, G., van Loosdrecht, M., Muyzer, G.,2006. Nitrate-dependent [Fe(Ⅱ)EDTA](2-) oxidation by Paracoccus ferrooxidans sp nov., isolated from a denitrifying bioreactor. Systematic and Applied Microbiology,29,276-286.
    Lack, J.G., Chaudhuri, S.K., Chakraborty, R., Achenbach, L.A., Coates, J.D.,2002. Anaerobic biooxidation of Fe(Ⅱ) by Dechlorosoma suillum. Microbial Ecology,43,424-431.
    Lack, J.G., Chaudhuri, S.K., Kelly, S.D., Kemner, K.M., O'Connor, S.M., Coates, J.D., 2002. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(Ⅱ). Applied and Environmental Microbiology,68, 2704-2710.
    Lay, J.Y., Li, Y.Y., Noike, T.,1998. Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor. Water Research, 32,3673-3679.
    Li, D.P., Zhong, Q., Tao, Y., Wang, X.M., He, X.H., Zhang, J., Zhang, J.L., Guo, W.Q., Wang, L.,2009. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification. Waste Management,29, 1347-1353.
    Li, W.B., Yao, J., Tao, P.P., Guo, M.T., Feng, X.Y., He, Y.N., Fang, C.R., Shen, D.S., 2010. A comparative study on two extraction procedures in speciation of iron in municipal solid waste. Journal of Hazardous Materials,182,640-648.
    Li, W.B., Yao, J., Tao, P.P., Hu, H., Fang, C.R., Shen, D.S.,2011. An innovative combined on-site process for the remote rural solid waste treatment-a pilot scale case study in China. Bioresource Technology.
    Li, W.B., Yao, J., Xia, F.F., Feng, H.J., Feng, H., Jiang, C.J., Fang, C.R., Shen, D.S., 2011. Leaching behavior of iron from simulated landfills with different operational modes. Bioresource Technology.
    Li, X.Z., Zhao, Q.L.,2001. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment. Chemosphere,44,37-43.
    Li, X.Z., Zhao, Q.L.,2003. Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering,20,171-181.
    Li, X.Z., Zhao, Q.L., Hao, X.D.,1999. Ammonium removal from landfill leachate by chemical precipitation. Waste Management,19,409-415.
    Long, Y., Guo, Q.W., Fang, C.R., Zhu, Y.M., Shen, D.S.,2008. In situ nitrogen removal in phase-separate bioreactor landfill. Bioresource Technology,99, 5352-5361.
    Long, Y., Lao, H.M., Hu, L.F., Shen, D.S.,2008. Effects of in situ nitrogen removal on degradation/stabilization of MSW in bioreactor landfill. Bioresource Technology,99,2787-2794.
    Long, Y.Y., Hu, L.F., Wang, J., Fang, C.R., He, R., Hu, H., Shen, D.S.,2009. Effect of sample pretreatment on speciation of copper and zinc in MSW. Journal of Hazardous Materials,168,770-776.
    Lovley, D.R., Coates, J.D., BluntHarris, E.L., Phillips, E.J.P., Woodward, J.C.,1996. Humic substances as electron acceptors for microbial respiration. Nature,382, 445-448.
    Lovley, D.R., Phillips, E.J.P.,1986. Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Fresh-Water Tidal Potomac River. Applied and Environmental Microbiology,52,751-757.
    Lovley, D.R., Phillips, E.J.P.,1986. Organic-Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments. Applied and Environmental Microbiology, 51,683-689.
    Lovley, D.R., Phillips, E.J.P.,1987. Rapid Assay for Microbially Reducible Ferric Iron in Aquatic Sediments. Applied and Environmental Microbiology,53, 1536-1540.
    Marttinen, S.K., Kettunen, R.H., Sormunen, K.M., Soimasuo, R.M., Rintala, J.A., 2002. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere,46, 851-858.
    Mellendorf, M., Huber-Humer, M., Gamperling, O., Huber, P., Gerzabek, M.H., Watzinger, A.,2010. Characterisation of microbial communities in relation to physical-chemical parameters during in situ aeration of waste material. Waste Management,30,2177-2184.
    Mertoglu, B., Calli, B., Inane, B., Ozturk, I.,2006. Evaluation of in situ ammonia removal in an aerated landfill bioreactor. Process Biochemistry,41, 2359-2366.
    Miot, J., Benzerara, K., Morin, G., Bernard, S., Beyssac, O., Larquet, E., Kappler, A., Guyot, F.,2009. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology,7,373-384.
    Muehe, E.M., Gerhardt, S., Schink, B., Kappler, A.,2009. Ecophysiology and the energetic benefit of mixotrophicFe(II) oxidation by various strains of nitrate-reducing bacteria. Fems Microbiology Ecology,70,335-343.
    Nielsen, J.L., Nielsen, P.H.,1998. Microbial nitrate-dependent oxidation of ferrous iron in activated sludge. Environmental Science & Technology,32,3556-3561.
    Nikolaou, A., Giannis, A., Gidarakos, E.,2010. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors. Environmental Technology,31,1381-1389.
    Oman, C.B., Junestedt, C.,2008. Chemical characterization of landfill leachates-400 parameters and compounds. Waste Management,28,1876-1891.
    Onay, T.T., Pohland, F.G.,1998. In situ nitrogen management in controlled bioreactor landfills. Water Research,32,1383-1392.
    Onay, T.T., Pohland, F.G.,2001. Nitrogen and sulfate attenuation in simulated landfill bioreactors. Water Science and Technology,44,367-372.
    Oygard, J.K., Gjengedal, E., Royset, O.,2007. Size charge fractionation of metals in municipal solid waste landfill leachate. Water Research,41,47-54.
    Oygard, J.K., Mage, A., Gjengedal, E.,2004. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate. Water Research,38,2851-2858.
    Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O., Gomec-Yangin, C.,2003. Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management,23,441-446.
    Philippot, L., Hallin, S., Schloter, M.,2007. Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy, Vol 96,96,249-305.
    Phillips, E.J.P., Lovley, D.R.,1987. Determination of Fe(Iii) and Fe(Ii) in Oxalate Extracts of Sediment. Soil Science Society of America Journal,51,938-941.
    Polprasert, C., Sawaittayothin, V.,2007. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresource Technology,98,565-570.
    Porsch, K., Kappler, A.,2011. Fe-Ⅱ oxidation by molecular O-2 during HC1 extraction. Environmental Chemistry,8,190-197.
    Poulain, A.J., Newman, D.K.,2009. Rhodobacter capsulatus Catalyzes Light-Dependent Fe(Ⅱ) Oxidation under Anaerobic Conditions as a Potential Detoxification Mechanism. Applied and Environmental Microbiology,75, 6639-6646.
    Qu, M., He, P.J., Shao, L.M., Lee, D.J.,2008. Heavy metals mobility in full-scale bioreactor landfill:Initial stage. Chemosphere,70,769-777.
    Raiswell, R., Canfield, D.E., Berner, R.A.,1994. A Comparison of Iron Extraction Methods for the Determination of Degree of Pyritisation and the Recognition of Iron-Limited Pyrite Formation. Chemical Geology,111,101-110.
    Rasmussen, H., Nielsen, P.H.,1996. Iron reduction in activated sludge measured with different extraction techniques. Water Research,30,551-558.
    Ratering, S., Schnell, S.,2001. Nitrate-dependent iron(Ⅱ) oxidation in paddy soil. Environmental Microbiology,3,100-109.
    Ren, H.Q., Zhang, T., Ding, L.L.,2009. Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 166,911-915.
    Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P.,2008. Landfill leachate treatment:Review and opportunity. Journal of Hazardous Materials, 150,468-493.
    Roden, E.E., Coby, A.J., Picardal, F., Shelobolina, E., Xu, H.F.,2011. Repeated Anaerobic Microbial Redox Cycling of Iron. Applied and Environmental Microbiology,11,6036-6042.
    Schink, B., Heising, S.,1998. Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology-Uk,144,2263-2269.
    Schnell, S., Ratering, S., Jansen, K.H.,1998. Simultaneous Determination of Iron(Ⅲ), Iron(Ⅱ), and Manganese(Ⅱ) in Environmental Samples by Ion Chromatography. Environmental Science & Technology,32,1530-1537.
    Senko, J.M., Dewers, T.A., Krumholz, L.R.,2005. Effect of oxidation rate and Fe(Ⅱ) state on microbial nitrate-dependent Fe(Ⅲ) mineral formation. Applied and Environmental Microbiology,71,1112-1117.
    Senn, D.B., Hemond, H.F.,2002. Nitrate controls on iron and arsenic in an urban lake. Science,296,2373-2376.
    Silva, A.C., Dezotti, M., Sant'Anna, G.L.,2004. Treatment and detoxification of a sanitary landfill leachate. Chemosphere,55,207-214.
    Skogerboe, R.K., Wilson, S.A.,1981. Reduction of Ionic Species by Fulvic-Acid. Analytical Chemistry,53,228-232.
    Snape, I., Scouller, R.C., Stark, S.C., Stark, J., Riddle, M.J., Gore, D.B.,2004. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere,57, 491-504.
    Sorensen, J.,1982. Reduction of Ferric Iron in Anaerobic, Marine Sediment and Interaction with Reduction of Nitrate and Sulfate. Applied and Environmental Microbiology,43,319-324.
    Straub, K.L., Benz, M., Schink, B.,2001. Iron metabolism in anoxic environments at near neutral pH. Fems Microbiology Ecology,34,181-186.
    Straub, K.L., Benz, M., Schink, B., Widdel, F.,1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62,1458-1460.
    Straub, K.L., Buchholz-Cleven, B.E.E.,1998. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Applied and Environmental Microbiology,64,4846-4856.
    Straub, K.L., Rainey, F.A., Widdel, F.,19997.Rhodovulum iodosum sp. nov,and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. International Journal of Systematic Bacteriology,49,729-735.
    Straub, K.L., Schonhuber, W.A., Buchholz-Cleven, B.E.E., Schink, B.,2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiology Journal, 21,371-378.
    Sun, G.Z., Connolly, R., Zhao, Y.Q., Allen, S.,2004. Removal of ammoniacal-nitrogen from an artificial landfill leachate in downflow reed beds. Process Biochemistry,39,1971-1976.
    Tessier, A., Campbell, P.G.C., Bisson, M.,1979. Sequential Extraction Procedure for the Speciation of Particulate Trace-Metals. Analytical Chemistry,51,844-851.
    Tyrrel, S.F., Leeds-Harrison, P.B., Harrison, K.S.,2002. Removal of ammoniacal nitrogen from landfill leachate by irrigation onto vegetated treatment planes. Water Research,36,291-299.
    Visvanthan, C., Yin, N.H., Karthikeyan, O.P.,2010. Co-disposal of electronic waste with municipal solid waste in bioreactor landfills. Waste Management,30, 2608-2614.
    Wang, H.T., Zhao, Y., Lu, W.J., Damgaard, A., Christensen, T.H.,2009. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Management & Research,27,399-406.
    Wang, J., Xia, F.F., Bai, Y., Fang, C.R., Shen, D.S., He, R.,2011. Methane oxidation in landfill waste biocover soil:Kinetics and sensitivity to ambient conditions. Waste Management,31,864-870.
    Wang, Q., Matsufuji, Y., Dong, L., Huang, Q.F., Hirano, F., Tanaka, A.,2006. Research on leachate recirculation from different types of landfills. Waste Management,26,815-824.
    Wang, T., Muller, D.B., Graedel, T.E.,2007. Forging the anthropogenic iron cycle. Environmental Science & Technology,41,5120-5129.
    Weber, K.A., Achenbach, L.A., Coates, J.D.,2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology,4,752-764.
    Weber, K.A., Picardal, F.W., Roden, E.E.,2001. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(Ⅱ) compounds. Environmental Science & Technology,35,1644-1650.
    Weber, K.A., Pollock, J., Cole, K.A., O'Connor, S.M., Achenbach, L.A., Coates, J.D., 2006. Anaerobic nitrate-dependent iron(Ⅱ) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Applied and Environmental Microbiology,72,686-694.
    Weber, K.A., Urrutia, M.M., Churchill, P.F., Kukkadapu, R.K., Roden, E.E.,2006. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environmental Microbiology,8,100-113.
    Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., Schink, B.,1993. Ferrous Iron Oxidation by Anoxygenic Phototrophic Bacteria. Nature,362, 834-836.
    Wong, M.H.L., K C,1989. Decontamination of landfill leachate by soil infiltration. Biomedical and environmental sciences 2,341-357.
    Wong, M.H.L., M M; Leung, C K; Lan, C Y,1990. Decontamination of landfill leachate by soils with different textures. Biomedical and environmental sciences,3,329-342.
    Wu, G.Y., Zhang, D.Y., Pan, X.L.,2010. Anaerobic Oxidation of Ferrous Iron by Microbial Mixture and its potential to remove Mercury and Nitrate from the Groundwater. Research Journal of Chemistry and Environment,14,36-39.
    Wu, G.Y., Zhang, D.Y., Pan, X.L.,2011. Anaerobic Oxidation of Ferrous Iron by Microbial Mixture and its Potential to remove Mercury and Nitrate from the Groundwater. Research Journal of Chemistry and Environment,15,47-51.
    Xi, B.D., Huo, S.L., Yu, H.C., Fan, S.L., Su, J., Liu, H.L.,2008. In situ simultaneous organics and nitrogen removal from recycled landfill leachate using an anaerobic-aerobic process. Bioresource Technology,99,6456-6463.
    Xie, L., Shang, C.,2005. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environmental Science & Technology, 39,1092-1100.
    Yang, F.L., Fu, Z.M., An, Y.Y., Xue, Y,2009. Characteristics of nitrite and nitrate in situ denitrification in landfill bioreactors. Bioresource Technology,100, 3015-3021.
    Yang, M., He, S.L., Zhang, Y, Du, W.L., Harada, H.,2007. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate. Chemosphere,66,2233-2238.
    Ye, M.Y., Shen, Y., West, C.C., Lyon, W.G.,1998. Analysis of ferric and ferrous ions in soil extracts by ion chromatography. Journal of Liquid Chromatography & Related Technologies,21,551-565.
    Zanker, H., Richter, W., Huttig, G.,2003. Scavenging and immobilization of trace contaminants by colloids in the waters of abandoned ore mines. Colloids and Surfaces a-Physicochemical and Engineering Aspects,217,21-31.
    Zhang, D.Q., Tan, S.K., Gersberg, R.M.,2010. Municipal solid waste management in China:Status, problems and challenges. Journal of Environmental Management,91,1623-1633.
    Zhao, Y.C., Li, H., Wu, J., Gu, G.W.,2002. Treatment of leachate by aged-refuse-based biofilter. Journal of Environmental Engineering-Asce,128, 662-668.
    Zhao, Y.C., Li, H.J., Gu, Y.Y., Wen, Z.P.,2010. Leachate treatment using a demonstration aged refuse biofilter. Journal of Environmental Sciences-China, 22,1116-1122.
    Zhao, Y.C., Li, H.J., Shi, L., Gu, Y.Y.,2009. Three-stage aged refuse biofilter for the treatment of landfill leachate. Journal of Environmental Sciences-China,21, 70-75.
    Zhu, B.N., Zhang, R.H., Gikas, P., Rapport, J., Jenkins, B., Li, X.J.,2010. Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresource Technology,101, 6374-6380.
    龙焰,沈东升,劳慧敏,胡立芳,朱荫湄,2007.生活垃圾填埋场不同粒径陈垃圾中微生物的分布特征.环境科学学报,27,1485-1490.
    姜必亮,王伯荪,2000.不同质地土壤对填埋场渗滤液的吸收净化效能.环境科学,21,32-37.
    沈东升,李文兵,姚俊,陶萍萍,唐梦龄,2011.亚铁厌氧微生物氧化及其在环境污染修复中的作用机制.浙江大学学报(农业与生命科学版),37,112-118.
    武攀峰,2005.经济发达地区农村生活垃圾的组成及管理与处置技术研究南京农业大学.
    夏立江,温小乐,林征峰,李轶伦,贺志坚,2001.城市垃圾渗沥液引起地下水氮污染的研究.农业环境保护,20,108-110.
    姚俊,2011.生活垃圾焚烧炉渣与生活垃圾混合填埋的重金属溶出行为及生态风险研究.浙江大学.
    赵树青,刘晶昊,蒲志红,2011.我国生活垃圾焚烧二恶英污染现状及减排建议.环境工程,29,86-88.
    赵由才,2002.生活垃圾资源化原理与技术.化学工业出版社,北京.
    郑平,徐向阳,胡宝兰,2004.新型生物脱氮理论与技术.科学出版社,北京
    中国环境保护产业协会城市生活垃圾处理委员会,2011.我国城市生活垃圾处理行业2010年发展综述.中国环保产业,4,32-37.
    中国科学院地球化学研究所,1981.铁的地球化学.科学出版社,北京.
    中华人民共和国国家统计局,2010.中国统计年鉴(2010).中国统计出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700