海绵共栖细菌Pseudoalteromonas sp. NJ6-3-1中群体感应系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于复杂和特殊的生存环境,海洋微生物在海洋环境中通常与其他生物形成共附生的关系,并形成一套化学防御系统以利于自身或宿主的生存,而所形成的化学防御物质大多具有生物活性,所以越来越多的科学家认为化学防御是海洋微生物产生活性物质的主要诱因。但海洋微生物化学防御是如何启动,即它的启动机制是什么,还鲜有研究。随着微生物学的发展,群体感应机制逐渐被揭示,有学者提出微生物,尤其是细菌中的化学防御机制是受到群体感应调控的假设。群体感应(quorum sensing)是细菌细胞根据自身和外源细菌所释放的特定信号分子浓度,以感知细胞数量变化,并进行基因表达的代谢调控现象。群体感应最重要的一个特点是密度依赖性,即当细菌密度较高时,细胞产生的自诱导信号分子(AI)浓度会积累到一个临界阈值,细菌感应到自诱导信号分子,从而表现出某些独特的生理特性,包括生物发光、抗生素的生物合成、毒性基因的表达及生物膜的形成等等。本论文所要解决的问题是探明海洋细菌化学防御物质的产生是否受到群体感应的调控。
     本文通过天然产物化学和化学生态学的方法,以一株具有显著抗菌活性且具有群体感应现象的海绵共栖细菌Pseudoalteromonas sp. NJ6-3-1为个案,以产生抗菌物质作为化学防御的响应,一方面鉴定了细菌NJ6-3-1产生的化学防御性物质,并证实细菌NJ6-3-1抗菌物质的产生具有密度依赖性,即抗菌物质的产生受到群体感应的调控,以此说明海绵共栖细菌NJ6-3-1存在由群体感应调控的化学防御;另一方面探明了海绵共栖细菌NJ6-3-1中存在着群体感应信号分子N-酰基高丝氨酸内酯类化合物(AHLs)和二酮哌嗪类化合物(DKPs),并对细菌NJ6-3-1中调控抗菌物质代谢的自诱导信号分子进行了探寻。最后通过对细菌NJ6-3-1进行全基因组测序的方法,在细菌NJ6-3-1中获得了群体感应转录调控蛋白LuxR的基因片段,从而从分子水平上初步证实了细菌NJ6-3-1中确实存在LuxI/LuxR调控的群体感应系统。本项研究将丰富海洋细菌化学防御诱导机制的相关理论,进一步加深对细菌群体感应调控功能的认识,并为开发新型药用天然产物提供新的思路。全文共分六章:
     第一章,分为两部分,首先介绍了海绵共栖微生物的研究概述,包括海绵共栖微生物的种类、次级代谢产物和化学防御机制;然后介绍了细菌群体感应系统的研究概况,包括群体感应的研究历史、目前发现的群体感应信息系统及信号分子的种类、群体感应系统的形成和调控机制及群体感应信号分子AHLs的检测方法、从而引出海洋细菌中的群体感应现象;在此基础上确定了本文的主要研究内容。
     第二章,主要研究了具有抗菌活性的海绵共栖细菌的筛选及鉴定。首先利用平板涂布法从南海和东海海绵生物样品中分离海绵共栖细菌,以4种致病菌作为实验用指示菌对海绵共栖细菌进行了抗菌活性筛选。同时采用16S rDNA同源性和系统发育分析对活性菌株进行种属鉴定和系统发生学研究。结果表明,在分离到的95株海绵共栖细菌中,19株(20 %)细菌具有抗菌活性。并且通过细菌分类鉴定,结果显示具有抗菌活性的细菌大部分属于芽孢杆菌属(Bacillus)。
     第三章,主要研究了海绵共栖细菌Pseudoalteromonas sp.NJ6-3-1抗菌物质产生的密度依赖性。本章第一节和第二节采用化学方法和生物技术相结合的方法,首先对具有显著抗菌活性的海绵共栖细菌NJ6-3-1的抗菌代谢产物进行分离纯化,通过活性跟踪,最终从细菌NJ6-3-1代谢产物中获得了2个抗菌物质,并结合各种结构鉴定的方法确定了化合物的结构。第一个抗菌物质分子式为C15H13BrO3,分子量为320,结构式命名为:2-(1’-溴-1’,3’-丁二烯)-4-(2”,4”-二烯戊酸)-苯酚。该化合物对枯草芽孢杆菌(BS)、金黄色葡萄球菌(SA)、酿酒酵母(SC)均有不同程度的抑菌作用,MIC分别为500μg/mL,125μg/mL和250μg/mL。第二个抗菌化合物分子量为520,分子式为C23H24BrN2SO5。该该化合物对金黄色葡萄球菌(SA)有抑菌作用,MIC为500μg/mL。本章第三节利用酶标仪和高效液相色谱及飞行时间质谱仪同时检测不同培养时间下细菌NJ6-3-1的细胞密度和NJ6-3-1代谢产物粗提液中抗菌物质C23H24BrN2SO5的量,从而确定了细菌NJ6-3-1抗菌物质C23H24BrN2SO5的量依赖于细菌的细胞密度。通过对不同培养时间下细菌NJ6-3-1代谢产物粗提液的抗菌活性检测,进一步证实了细菌NJ6-3-1抗菌物质的代谢具有密度依赖性,且细胞密度阈值为OD630=0.4。
     第四章,主要研究了海绵共栖细菌Pseudoalteromonas sp.NJ6-3-1代谢产物中的AHLs。本章第一节建立了一套检测细菌中群体感应信号分子AHLs的方法,并结合这些方法对海绵共栖细菌NJ6-3-1中AHLs的产生情况进行了检测。首先通过微生物传感菌A. tumefaciens A136检测,确定细菌NJ6-3-1中含有AHLs信号分子,能够诱导A136产生蓝色色素。再通过GC-MS检测确定细菌NJ6-3-1中含有N-己酰基高丝氨酸内酯(C6-HSL)、N-辛酰基高丝氨酸内酯(C8-HSL)和N-十四酰基高丝氨酸内酯(C14-HSL)三种AHLs信号分子。该方法还可用于大批量细菌中AHLs产生菌的筛选工作。本章第二节通过向低密度细菌NJ6-3-1中添加作为群体感应诱导信号分子的NJ6-3-1的自身代谢物C6-HSL、C8-HSL和C14-HSL的甲醇溶液,获得了添加不同诱导物后的NJ6-3-1代谢产物粗提液,通过生物自显影检测抗菌活性及HPLC检测抗菌物质C23H24BrN2SO5的代谢量,结果初步证实了C8-HSL能够诱导低密度细菌NJ6-3-1产生抗菌活性,并且能够诱导低密度细菌NJ6-3-1的抗菌物质C23H24BrN2SO5代谢量增加,由此我们推断C8-HSL很有可能就是细菌NJ6-3-1产生的调控抗菌物质代谢的自诱导信号分子。
     第五章,主要研究了海绵共栖细菌Pseudoalteromonas sp.NJ6-3-1代谢产物中的DKPs。首先通过向低密度细菌NJ6-3-1中添加可作为群体感应机制诱导信号分子的NJ6-3-1自身代谢物cyclo-(ΔVal-L-Val)、cyclo-(L-Phe-L-Val)、cyclo-(L -Pro-L-Leu) (简称为VV-2、VF-2、PL-2),获得了添加不同诱导物后的细菌NJ6-3-1代谢产物粗提液,通过生物自显影检测抗菌活性,结果初步证实VF-2能诱导低密度细菌NJ6-3-1产生抗菌活性,因此很有可能就是细菌NJ6-3-1产生的调控抗菌物质代谢的自诱导信号分子。其次,为了从海绵共栖细菌NJ6-3-1中得到更多的DKPs化合物,我们发酵100 L细菌NJ6-3-1菌液,并对细菌NJ6-3-1代谢产物中的DKPs化合物进行分离纯化,共得到12种DKPs化合物,后来通过理化性质及光谱学手段鉴定了DKPs的结构。并且其中1种DKPs化合物,即cyclo-(Tyr-Phe)至今还没有在微生物中发现的报道。
     第六章,初步研究了海绵共栖细菌Pseudoalteromonas sp.NJ6-3-1中群体感应的分子基础,对luxR基因片段进行了测序分析。通过对细菌NJ6-3-1进行SOLiD全基因组测序的方法(宁波大学工作),在细菌NJ6-3-1中获得了群体感应转录调控蛋白LuxR的基因片段,从而从分子水平上初步证实了细菌NJ6-3-1中存在LuxI/LuxR调控的群体感应系统。
Owing to the complex and special living circumstance they reside, marine microorganisms usually coexist in the marine environment, and they gradually form a set of chemical defense system that is beneficial to the survival of themselves or the host. Most of the chemical defense substances they produce have biological activity, so more and more scientists considered that chemical defense mechanism is the main inducing factor for marine microorganisms to produce bioactive substances. However, there are few people studying about how chemical defense start by marine microorganisms and what is starting mechanism. Quorum sensing phenomenon has been gradually revealed with the development of microbiology, and some scholars proposed the hypothesis that chemical defense mechanism in microorganism, especially bacteria, is regulated by quorum sensing.
     Quorum sensing is a metabolic regulation and control process which enables the bacterial cells to sense changes in cell density and induce the expression of specific genes. This regulatory process is mediated through sensing the concentration changes of specific signal molecules being released either by bacteria themselves, or from external sources. Density-dependent is one of the most important characteristics of quorum sensing, that is, when the bacteria grow to a high cell density, the concentration of autoinducers (AI) they release could reach a critical threshold value. The bacteria could then sense the autoinducers and appear some specific physiological characters, including bioluminescence, the production of antibiotics, virulence genes expression, biofilm formation and so on. In this thesis, we have to solve the problem whether the production of chemical defense substances is regulated by quorum sensing in marine bacteria.
     Based on natural product chemistry and chemical ecology approach, a sponge-associated bacterium Pseudoalteromonas sp. NJ6-3-1 with remarkable biological activities and with the phenomenon of quorum sensing was chosen as case study, and the production of antibacterial substances was taken as a chemical defense response in this dissertation. On the one hand, the chemical defense substances produced by bacteria NJ6-3-1 was identified, and the production of antibacterial substances of bacteria NJ6-3-1 with density-dependence was confirmed, namely the production of antibacterial substances of bacteria NJ6-3-1 was regulated by quorum sensing. These results demonstrated sponge-associated bacteria NJ6-3-1 have chemical defense regulated by quorum sensing mechanism. On the other hand, quorum sensing signal molecules N-acyl homoserine lactones (AHLs) and diketopiperazines (DKPs), which are commonly considered to be quorum sensing signal molecules, were proved to exist in sponge-associated bacteria NJ6-3-1, and the autoinducer that regulated the metabolite of antibacterial substance in bacteria NJ6-3-1 was explored. Finally, the luxR gene fragments of quorum sensing transcriptional regulatory protein LuxR was obtained from whole genome of bacteria NJ6-3-1, thus we preliminary demonstrated that LuxI/LuxR quorum sensing regulatory system exist in bacteria NJ6-3-1 from the molecule level. This study will enrich the related theory of chemical defense induction mechanism of marine bacteria, deepen the understanding of bacteria regulation functions of quorum sensing, and provide a new way for the development of new medicinal natural products. This dissertation consists of six chapters as follow:
     Chapter one consists of two parts. In the first part, a brief introduction of sponge-associated microorganisms is given, including their types, secondary metabolites, and chemical defense mechanisms. In the second part, a brief introduction of bacterial quorum sensing system is summarized, and the topics discussed include the history of quorum sensing, classification of quorum sensing system and signal molecules, the formation and regulation mechanism of quorum sensing, the detection method of signal molecule AHLs, and the phenomenon of quorum sensing in marine bacteria. The research objective and experimental plan of this dissertation are also presented.
     In chapter two, the screening and identification of sponge-associated bacteria with antibacterial activity are discussed. At first, sponge-associated bacteria were isolated by dilution-plate method from marine organism sponge of South China Sea and East China Sea, and the antibacterial activity were screened for four pathogens as test strains by an agar diffusion method. At the same time, taxonomy was studied based on phylogenetic analysis of 16S rDNA sequences. The results showed that 19 strains (20 %) among total 95 isolated marine bacteria have antimicrobial activity. And the most active sponge-associated bacteria were identified to be the genus Bacillus.
     In chapter three, the antibacterial substances of sponge-associated bacteria NJ6-3-1 with cell density dependence is discussed. SectionΙandΠ, the antibacterial metabolites were isolated and purified from sponge-associated bacteria NJ6-3-1 with remarkable antibacterial activity. And combined with the chemical method and the biotechnology, two antibacterial substances in bacteria NJ6-3-1 was ultimately obtained by active tracking, the structure of two compounds was determined by many structure identification methods. The formula of the first antibacterial substance was C15H13BrO3, whose molecular weight was 320, and structure was named as 2-(1’-bromine-1’,3’-butadiene)-4-(2’’,4’’-dienevaleric acid)-phenol. It has different inhibition effect to Bacillus subtilis, Staphylococcus aureus and Saccharomyces cerevisiae, minimum inhibitory concentration (MIC) in turn was 500μg/mL, 125μg/mL and 250μg/mL. The molecular weight of the second antibacterial substance was 520, whose interim formula was C23H24BrN2SO5. It has inhibition effect to Staphylococcus aureus, MIC was 500μg/mL. SectionШ, the content of antibacterial substances C23H24BrN2SO5 of bacteria NJ6-3-1 depends on cell density was determined by simultaneous detection of the cell density of bacteria NJ6-3-1 under different culture times and the content of antibacterial substance C23H24BrN2SO5 in metabolite crude extracts of bacteria NJ6-3-1. The metabolism of antibacterial substance C23H24BrN2SO5 of bacteria NJ6-3-1 with cell density-dependence was further proved by detecting antibacterial activity of metabolite crude extracts of bacteria NJ6-3-1 under different culture times, and cell density threshold value is OD630=0.4.
     In chapter four, the AHLs in the metabolites of sponge-associated bacteria NJ6-3-1 is discussed. SectionΙ, the detection method of quorum sensing signal molecule AHLs in bacteria was established, and the production of AHLs in sponge-associated bacteria NJ6-3-1 was detected combined with these methods. The results showed that signal molecule AHLs which can induce biosensor strain A. tumefaciens A136 to produce blue pigment exist in bacteria NJ6-3-1, and bacteria NJ6-3-1 contains three AHLs, N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-tetradecanoyl-L-homoserine lactone (C14-HSL) by Gas Chromatography-Mass Spectrometry (GC-MS) detection. It demonstrated that this method could be applied to screen AHLs-producing bacteria from large quantities of bacteria. SectionΠ, C6-HSL, C8-HSL and C14-HSL, as quorum sensing signal molecules and the metabolites of bacteria NJ6-3-1, was added respectively in the culture of bacteria NJ6-3-1 at low cell density, and the metabolite crude extracts of bacteria NJ6-3-1 were obtained after adding different inducers. Through analyzing antibacterial activity by bioautography and the content of antibacterial substance C23H24BrN2SO5 by High Performance Liquid Chromatography (HPLC), the results showed C8-HSL can induce low-density bacteria NJ6-3-1 to produce antibacterial activity, and can induce the metabolite content of antibacterial substance C23H24BrN2SO5 of low-density bacteria NJ6-3-1 to increase, thus we concluded that C8-HSL is very likely a quorum sensing autoinducer which are produced by bacteria NJ6-3-1 to regulate the metabolite of antibacterial substance.
     In chapter five, the DKPs in the metabolites of sponge-associated bacteria NJ6-3-1 is discussed. At first, cyclo-(ΔVal-L-Val), cyclo-(L-Phe-L-Val) and cyclo-(L-Pro-L-Leu), as quorum sensing signal molecule and the metabolites of bacteria NJ6-3-1, was added respectively in the culture of bacteria NJ6-3-1 at low cell density, and the metabolite crude extract of bacteria NJ6-3-1 were obtained after adding different inducers. Through detecting of antibacterial activity by bioautography, the results showed cyclo-(L-Phe-L-Val) can induce low-density bacteria NJ6-3-1 to produce antibacterial activity, so it is probably that cyclo-(L-Phe-L-Val) is a quorum sensing autoinducer which are produced by bacteria NJ6-3-1 to regulate the metabolite of antibacterial substance. Secondly, 100 L broth of bacteria NJ6-3-1 were fermented in order to get more DKPs compounds from the bacteria NJ6-3-1, and twelve DKPs were isolated and purified from the metabolites of bacteria NJ6-3-1. In addition, the structure of twelve DKPs was identified by means of physical and chemical properties and spectroscopy. Furthermore, one DKPs compound, namely cyclo-(Tyr-Phe) has not yet been reported to be found in the microbial.
     In chapter six, the molecular basis of quorum sensing in sponge-associated bacteria NJ6-3-1 is discussed. The luxR gene fragment was sequenced. The luxR gene fragment of quorum sensing transtritional regulatory protein was found to exist in bacteria NJ6-3-1 by comparison whole genome of bacteria NJ6-3-1 (Ningbo University), thus the LuxI/LuxR quorum sensing regulatory system was initially confirmed to exist in bacteria NJ6-3-1 from genetic aspect.
引文
[1] Armstrong E., Yan L. M., Boyd K. G., Wright P. C., Burgess G. J. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 2001, 461 (1-3): 37~40.
    [2] Berlinck R. G., Hajdu E., da Rocha R. M., de Oliveira. J. H., Hernández I. L., Seleghim M. H., Granato A. C., de Almeida E. V., Nu?ez C. V., Muricy G., Peixinho S., Pessoa C., Moraes M. O., Cavalcanti B. C., Nascimento G. G., Thiemann O., Silva M., Souza A. O., Silva C. L., Minarini P. R. Challenges and rewards of research in marine natural products chemistry in Brazil. Journal of Nature Products, 2004, 67 (3): 510~522.
    [3] Blunt J. W., Copp B. R., Munro M. H. G., Northcote P. T., Prinsep M. R. Marine natural products. Natural Product Reports, 2005, 22 (1): 15~61.
    [4]朱伟明,张敏,方玉春,朱天骄,顾谦群.海绵共附生微生物次级代谢产物的研究进展.中国海洋大学学报,2007,37(3):377~384.
    [5] Wang G. Y. Diversity and biotechnological potential of sponge-associated microbes. Journal of Industrial Microbiology and Biotechnology, 2006, 33 (7): 545~555.
    [6] Vacelet J.étude en microscopieélectronique de l'association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). Journal de microscopie et de biologie cellulaire, 1975, 23 (3): 271~288.
    [7]刘玲枝,黄惠琴,鲍时翔.海绵共附生微生物的研究新进展.生物技术通报,2007,(3): 94~95.
    [8]刘丽,胡江春,王书锦.海绵微生物生物活性物质的研究进展.天然产物研究与开发,2004,16(5):477~481.
    [9]黄丽波,徐石海,岑颖洲,李药兰,许少玉.海绵中抗肿瘤抗病毒生物活性的生物碱研究进展.广州医药,2001,32(1):2~5.
    [10] Prosch P., Edrada R., Ebel R. Drugs from the seas-current status and microbiological implications. Applied Microbiology Biotechnology, 2002, 59 (2-3): 125~134.
    [11] Shigemori H., Bae M. A., Yazawa K., Sasaki T., Kobayashi J. Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. Journal of Organic Chemistry, 1992, 57 (17): 4317~4320.
    [12] Kobayashi J., Ishibashi M. Bioactive metabolites of symbiotic marine microorganisms. . Chemicial Reviews, 1993, 93(5): 1753~1769.
    [13] Unson M. D., Holland N. D., Faulkner D. J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Marine Biology, 1994, 199 (1): 1~11.
    [14] Jayatilake G. S., Thornton M. P., Leonard A. C., Grimwade J. E., Baker B. J. Metabolites from an Antarctic sponge-associated bacterium Pseudomonas aeruginosa. Journal of Nature Products, l996, 59 (3): 293~296.
    [15] Kobayashi M., Aoki S., Gato K., Matsunami K., Kurosu M., Kitagawa I. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chemical & Pharmaceutical Bulletin, 1994, 42 (12): 2449~5241.
    [16] Mitova M., Tommonaro G., De Rosa S. A novel cyclopeptide from a bacterium associated with the marine sponge Ircinia muscarum. Journal of Biosciences, 2003, 58 (9/10): 740~745.
    [17] Mitova M., Popov S., De Rosa S. Cyclic peptides from a Ruegeria strain of bacteria associated with the sponge Suberites domuncula. Journal of Nature Products, 2004, 67 (7): 1178~1181.
    [18] Shigemori H., Tenma M., Shimazaki K. Three new metabolites from the marine yeast Aureobasidium pullulans. Journal of Nature Products, 1998, 61 (5): 696~698.
    [19] Hernández L. M., Blanco J. A., Baz J. P., Puentes J. L., Millán F. R., Vázquez F .E, Fernández-Chimeno R. I., Grávalos D. G. 4'-N-methyl-5'-hydroxystaurosporine and 5'-hydroxystaurosporine, new indolocarbazole alkaloids from a marine Micromonospora sp. strain. Journal of Antibiotics, 2000, 53 (9): 895~902.
    [20] Jadulco R., Edrada R. A., Ebel R., Berg A., Schaumann K., Wray V., Steube K., Proksch P. New Communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. Journal of Nature Products, 2004, 67 (1): 78~81.
    [21] Lin W. L., Brauers G., Ebe1 R. Novel chromone derivatives from the fungus Aspergillus vericolor isolated from the marine sponge Xestospongia exigua. Journal of Nature Products, 2003, 66 (1): 57~59.
    [22] Edrada R. A., Heubes M., Brauers G. Online analysis of xestodecalactones A-C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. Journal of Nature Products, 2002, 65 (11): 1598~1604.
    [23] Jadulco R., Brauers G., Edrada R. A., Ebel R., Wray V., Sudarsono S., Proksch P. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. Journal of Nature Products, 2002, 65 (5): 730~733.
    [24] Hiort J., Maksimenka K., Reichert M., Perovi?-Ottstadt S., Lin W. H., Wray V., Steube K., Schaumann K., Weber H., Proksch P., Ebel R., Müller W. E., Bringmann G. New natural products from the sponge-derived fungus Aspergillus niger. Journal of Nature Products, 2004, 67 (9): 1532~1543.
    [25] Bugni T. S., Bernan V. S., Greenstein M., Janso J. E., Maiese W. M., Mayne C. L., Ireland C. M. Brocaenols A-C: novel polyketides from a marine-derived Penicillium brocae. Journal of Organic Chemistry, 2003, 68 (5): 2014~2017.
    [26] Cheng X. C., Varoglu M., Abrell L. Crews P., Lobkovsky E., Clardy J. Chloriolins A-C, chlorinated sesquiterpenes produced by fungal cultures separated from a Juspis marine sponge. Journal of Organic Chemistry, 1994, 59 (21): 6344~6348.
    [27] Wiki M., Otaki N., Yokoyama A. Okadaxanthin, a novel C50-carotenoid from a bacterium Pseudomonas sp.KK10206C associated with marine sponge Halichondria okadai. Experientia, 1994, 50 (7): 684~686.
    [28] Amagata T., Minoura K., Numata A. Gymnasterones, novel cytotoxic metabolite produced by a fungal strain from sponge. Tetrahedron Letters, 1998, 39 (22): 3773~3774.
    [29] Stierle A. C., Cardellina J. H., Singleton F. L. A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia, 1988, 44 (11-12): 1021~1022.
    [30] Thakur N. L., Anil A. C. Antibacterial activity of the sponge Ircinia Ramosa: Importance of its surface-associated bacteria. Journal of Chemical Ecology, 2000, 26 (1): 57~71.
    [31] Nagai K., Kamigiri K., Arao N., Suzumura K., Kawano Y., Yamaoka M., Zhang H., Watanabe M., Suzuki K. YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. Journal of antibiotics, 2003, 56 (2): 123~128.
    [32] Suzumura K., Yokoi T., Funatsu M., Nagai K., Tanaka K., Zhang H., Suzuki K. YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge II. Structure elucidation. Journal of antibiotics, 2003, 56 (2):129~134.
    [33]刘丽,胡江春,王书锦.繁茂膜海绵中两株放线菌的生物学特性及其鉴定.氨基酸和生物资源,2004,26(1):1~4.
    [34]黄艳琴,李志勇,蒋群,乔雨,李堃宝.细薄星芒篊嘀谢钚跃秆〖盎旌暇вΓ?生物学通报,2005,32(4):5~10.
    [35]沈颖,李志勇,蒋群,艳琴,何丽明.贪婪倔海绵中抗菌活性细菌的筛选及初步鉴定.微生物学通报,2005,32(4):17~21.
    [36]李志勇,黄艳琴,何丽明,花卉,胡叶,蒋群,郑学松.一株细薄星芒海绵细菌的抗菌活性与分类学研究.生物技术通报,2006,(2):93~96.
    [37]何丽明,李志勇,蒋群,黄艳琴.海绵中可培养与原位微生物组成的DGGE指纹分析.微生物学通报,2005,32(3):51~56.
    [38] Chanas B. Pawlik J. R., Lindel T., Fenical W. Chemical defense of the Caribbean sponge Agelas clathrodes (Schmidt). Journal of Experimental Marine Biology and Ecology, 1996, 208 (1-2): 185~196.
    [39] Assmann M., Zea S., Kock M. Sventrin, a new bromopyrrole alkaloid from the Caribbean sponge Agelas sventres. Journal of Nature Products, 2001, 64 (12): 1593~1595.
    [40] Kon-ya K., Shimidzu N., Otaki N., Yokoyama A., Adachi K., Miki W. Inhibitory effect of bacterial ubiquinones on the settling of barnacle, Balanus Amphitrite. Experientia, 1995, 51 (2): 153~155.
    [41] Thakur N. L., Anil A. C., Muller W. E. G. Culturable epibacteria of the marine sponge Ircinia fusca: Temporal variations and their possible role in the epibacterial defense of the host. Aquatic Microbial Ecology, 2004, 37 (3): 295~304.
    [42] Dobretsov S., Dahms H. U., Tsoi M. Y., Qian P. Y. Chemical control of epibiosis by Hong Kong sponges: the effect of sponge extracts on micro- and macrofouling communities. Marine Ecology Progress Series, 2005, 297: 119~129.
    [43] Mearns-Spragg A., Bregu M., Boyd K.G., Burgess J.G. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Letters in Applied Microbiology, 1998, 27 (3): 142~146.
    [44] Fuqua W. C., Winans S. C., Greemberg E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 1994, 176 (2): 269~275.
    [45] Miller M. B., Bassler B. L. Quorum sensing in bacteria. Annual Review of Microbiology, 2001, 55 (1): 165~199.
    [46] Winzer K., Williams P. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. International Journal of Medical Microbiology, 2001, 291 (2): 131~143.
    [47] Shih P. C., Huang C. T. Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. Journal of Antimicrobial Chemotherapy, 2002, 49 (2): 309~314.
    [48] DeLisa M. P., Bentley W. E. Bacterial autoinduction: looking outside the cell for new metabolic engineering targets. Microbial Cell Factories, 2002, 1 (1): 5~9.
    [49] Parsek M. R., Greenberg E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology, 2005, 13 (1): 27~33.
    [50] Swift S., Downie J. A., Whitehead N. A., Barnard A. M., Salmond G. P., Williams P. Quorum sensing as a population-density-dependent determinant of bacterial physiology. Advances in Microbial Physiology, 2001, 45: 199~270.
    [51] Nealson K. H., Platt T., Hastings J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104 (1): 313~322.
    [52] Ruby E. G. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annual Review of Microbiology, 1996, 50: 591~624.
    [53] Eberhard A. Inhibition and activation of bacterial luciferase synthesis. Journal of Bacteriology, 1972, 109 (3): 1101~1105.
    [54] Kaplan H. B., Greenberg E. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. Journal of Bacteriology, 1985, 163 (3): 1210~1214.
    [55] De Kievit T. R., Lglewski B. H. Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 2000, 68 (9): 4839~4849.
    [56] Schauder S., Shokat K, Surette M. G, Bassler B. L. The LuxS family of bacteria autoinducers: biosynthesis of a noval quorum-sensing signal molecule. Molecular Microbiology, 2001, 41 (2): 463~476.
    [57] Williams P. Quorum sensing. International Journal of Medical Microbiology, 2006, 296 (2-3): 57~59.
    [58] Voloshin S. A., Kaprelyants A. S. Cell-cell interactions in bacterial populations. Biochemistry, 2004, 69 (11): 1268~1275.
    [59] Nickerson K. W., Atkin A. L., Hornby J. M., et al. Quorum sensing in dimorphic fungi: farnesol and beyond. Applied and environmental microbiology, 2006, 72 (6): 3805~3813.
    [60] Chen H., Fink G. R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes & Development, 2006, 20 (9): 1150-1161.
    [61] Federle M. J., Bassler B. L. Interspecies communication in bacteria. Journal of Clinical Investigation, 2003, 112 (9): 1291~1299.
    [62] March J. C., Bentley W. E. Quorum sensing and bacterial cross-talk in biotechnology. Current Opinion in Biotechnology, 2004, 15 (5): 495~502.
    [63] Lenz D. H., Mok K. C., Lilley B. N., Kulkarni R. V., Wingreen N. S., Bassler B. L. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell, 2004, 118 (1): 69~82.
    [64] Burton E. O., Read H. W., Pellitteri M. C. Identification of acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain schmidt. Applied and Environmental Microbiology, 2005, 71 (8): 4906~4909.
    [65] Fuqua C., Winans S.C., Greenberg E.P. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annual Review of Microbiology, 1996, 50: 727–751.
    [66] Bassler B.L. How bacteria talk to each other: Regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 1999, 2 (6): 582~587.
    [67] Engebrecht J., Nealson K., Silverman M. Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell, 1983, 32 (3): 773~781.
    [68] Park S. Y., Lee S. J., Oh T. K., Oh J. W., Koo B. T., Yum D. Y., Lee J. K. AhID, an N-acylhomoserine lactonase in Arthrobacter sp, and predicted homologues in other bacteria. Microbiology, 2003, 149 (6): 1541~1550.
    [69] Swift S., Bainton N. J., Winson M. K. Gram-negative bacterial communication by N-acyl homoserine lactones: a universal language? Trends in Microbio1ogy, 1994, 2 (6): 193~198.
    [70] Schauder S., Bassler B. L. The languages of bacteria. Genes & Development, 2001, 15 (12): 1468~1480.
    [71] Hanzelka B. L., Greenberg E. P. Quorum sensing in Vibrio fischeri: Evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. Journal of Bacteriology, 1996, 178 (17): 5291~5294.
    [72] Val D. L., Cronan J. E. Jr. In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. Journal of Bacteriology, 1998, 180 (10): 2644~2651.
    [73] Parsek M. R., Val D. L., Hanzelka B. L., Cronan J. E. Jr., Greenberg E. P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (8): 4360~4365.
    [74]付艳芳,唐李斐,万军庭,钟靖.细菌的信息交流.氨基酸和生物资源,2004,26(4): 62~64.
    [75] Dong Y. H., Gusti A. R., Zhang Q., Xu J. L., Zhang L. H. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species, Applied and Environmental Microbiology, 2002, 68 (4): 1754-1759.
    [76] Beeston A. L., Surette M. G. pfs-Dependent regulation of autoinducer 2 production in Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 2002, 184 (13): 3450~3456.
    [77] Gray K. M., Passador L., Iglewski B. H., Greenberg E. P. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. Journal of Bacteriology, 1994, 176 (10): 3076~3080.
    [78] Parsek M. R., Greenberg E. P. Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods in Enzymology, 1999, 310: 43~55.
    [79] Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 1993, 260 (5111): 1127~1130.
    [80] Brint J. M., Ohman D. E. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. Journal of Bacteriology, 1995, 177 (24): 7155~7163.
    [81] Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. Identification, timing and siagnal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transeriptome analysis. Journal of Bacteriology, 2003, 185 (7): 2066~2079.
    [82] Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Cámara M., Williams P. The Pseudomonas agruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationaryphase and can be produced in the absence of LasR. Molecular Microbiology, 2003, 50 (1): 29~43.
    [83]郭秀春.海绵共栖细菌NJ6-3-1基于群体感应调控抗菌物质代谢的研究:[硕士学位论文].山东:青岛科技大学化工学院,2008.
    [84] Grossman A. D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annual Review of Genetics, 1995, 29: 477~508.
    [85] Lazazzera B. A., Grossman A. D. The ins and outs of peptide signaling. Trends in Microbiology, 1998, 6 (7): 288~294.
    [86] Withers H., Swift S., Williams P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Current Opinion in Microbiology, 2001, 4 (2): 186 ~193.
    [87] Detmers F. J. M., Lanfermeijer F. C., Poolman B. Peptides and ATP-binding cassette peptide transporters. Research in Microbiology, 2001, 152 (3-4): 245~258.
    [88] Kleerebezem M., Quadri L. E., Kuipers O. P., de Vos W. M. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molecular Microbiology, 1997, 24 (5): 895~904.
    [89]江启沛.细菌群体感应效应及其应用研究进展.河北农业科学,2009,13(11):49~52.
    [90] Bassler B. L., Greenberg E. P., Stevens A. M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of Bacteriology, 1997, 179 (12): 4043~4045.
    [91] Croxatto A., Chalker V. J., Lauritz J., Jass J., Hardman A., Williams P., Cámara M., Milton D. L. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. Journal of Bacteriology, 2002, 184 (6): 1617~1629.
    [92] Surette M. G., Miller M. B., Bassler B. L. Quorum sensing in Excherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (4): 1639~1644.
    [93] Bassler B.L., Wright M., Showalter R.E., Silverman M.R. Intercellular signaling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 1993, 9 (4): 773~786.
    [94] Hanzelka B.L., Parsek M.R., Val D.L., Dunlap P.V., Cronan J.E., Jr., Greenberg E.P. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. Journal of Bacteriology, 1999, 181 (18): 5766~5770.
    [95] Bassler B. L., Wright M., Silverman M. R. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: Sequence and function of genes encoding a second sensory pathway. Molecular Microbiology, 1994, 13 (2): 273~286.
    [96] Freeman J. A., Bassler B. L. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. Journal of Bacteriology, 1999, 181 (3): 899~906.
    [97] Martin M., Showalter R., Silverman M. Identification of a locus controlling expression of luminescence genes in Vibrio harveyi. Journal of Bacteriology, 1989, 171 (5): 2406~2414.
    [98]温晓芳,黄俊生.细菌的群体感应及其信号分子.华南热带农业大学学报,2005,11(1):31~35.
    [99] Surette M. G., Bassler B. L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95 (12): 7046~7050.
    [100] Joyce E. A., Bassler B. L., Wright A. Evidence for a signaling system in Helicobacter pylori: Detection of a luxS-encoded autoinducer. Journal of Bacteriology, 2000, 182 (130): 3638~3643.
    [101] Day W. A., Maurelli A. T. Shigella flexneri LuxS quorum-sensing system modulates virB expression but is not essential for virulence. Infection and Immunity, 2001, 69 (1):15~23.
    [102] Reading N. C., Sperandio V. Quorum sensing: the many languages of bacteria. FEMS Microbiology Letters, 2006, 254 (1): 1~11.
    [103] Walters M., Sircili M. P., Sperandio V. AI-3 syntheses is not dependent on luxS in Escherichia coli. Journal of Bacteriology, 2006, 188 (16): 5668~5681.
    [104] Clarke M. B., Sperandio V. Events at the host-microbial interface of the gastrointestinal tract III. Cell-to-cell signaling among microbial flora, host, and pathogens: There is a whole lot of talking going on. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2005, 288 (6): 1105~1109.
    [105] Holden I, Swift I, Williams I. New signal molecules on the quorum-sensing block: response. Trends in Microbiology, 2000, 8 (2): 103~104.
    [106]郭嘉亮,陈卫民.细菌群体感应信号分子与抑制剂研究进展.生命科学,2007,19 (2):224~232.
    [107] Zhang L. H., Dong Y. H. Quorum sensing and signal interference: diverse implications. Molecular Microbiology, 2004, 53 (6): 1563~1571.
    [108] Holden M. T., Ram Chhabra S., de Nys R., Stead P., Bainton N. J., Hill P. J., Manefield M., Kumar N., Labatte M., England D., Rice S., Givskov M., Salmond G. P., Stewart G. S., Bycroft B. W., Kjelleberg S., Williams P. Quorum sensing cross talk: isolation and chemicalcharacterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mo1ecular Microbio1ogy, 1999, 33 (6): 1254~1266.
    [109] Degrassi G., Aguilar C., Bosco M., Zahariev S., Pongor S., Venturi V. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: Cross-talk with quorum sensing bacterial sensors. Current Microbiology, 2002, 45 (4): 50~54.
    [110] Mitova M., Tommonaro G., Hentschel U., Müller W. E., De Rosa S. Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula. Marine Biotechnology, 2004, 6 (1): 95~103.
    [111] Li Z. Y., Peng C. S., Shen Y., Miao X. L., Zhang H. J., Lin H. W. L,L-diketopiperazines from Alcaligenes faecalis A72 associated with South China Sea sponge Stelletta tenuis. Biochemical Systematics Ecology, 2008, 36 (3): 230~234.
    [112]李曼,邱健,宋水山.真菌中的群体感应系统.微生物学通报,2005,34(3):566~568.
    [113] Kugler S., Schurtz Sebghati T., Groppe Eissenberg L., Goldman W. E. Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97 (16): 8794~8798.
    [114] Hornby J. M., Jensen E. C., Lisec A. D., Joseph J. Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and Environmental Microbiology, 2001, 67 (7): 2982~2992.
    [115] Ramie G., Saville S. P., Wickes B. L., López-Ribot J. L. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Applied and Environmental Microbiology, 2002, 68 (11): 5459~5463.
    [116] Chen H., Fujita M., Feng Q., Clardy J., Fink G. R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (14): 5048~5052.
    [117] Macko V., Staples R. C., Gershon H., Renwick J. A. A. Self-inhibitor of bean rust uredospores: methyl 3,4-dimethoxycinnamate. Science, 1970, 170 (3957): 539~540.
    [118] Honrby J. N. M., Jacobitz-Kizzir S. M., McNeel D. J., Jensen E. C., Treves D. S., Nickerson K. W. Inoculum size effect in dimorphic Fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Applied and Environmental Microbiology, 2004, 70 (3): 1356~1359.
    [119]吴红,宋志军,Niels Hoiby.细菌与细菌之间的信息交流——革兰氏阴性细菌的Quorum-Sensing系统.自然科学进展,2003,13(7):679~686.
    [120]彭吕文.细菌群体感应系统的原理及应用.生物学教学,2008,33(12):10~11.
    [121]宋水山,贾振华,邢志华,马宏,高振贤,张霞.植物对细菌群体感应系统的反应.细胞生物学杂志,2005,27(4):427~430.
    [122]王建华,权春善,李新.细菌群体感应的信号转导机制及其对抗生素生产的影响.中国生物工程杂志,2008,(4):87~ 92.
    [123]曹广霞,徐素平,彭远义.细菌群体感应信号分子N-酰基高丝氨酸内酯的检测.生物即时通讯,2010,2l(3):433~437.
    [124]綦国红,董明盛,吴胜明,陈晓红,姜梅.HPLC-MS法检测N-酰基-高丝氨酸内酯类信号分子.分析测试学报,2007,26(3):417~419.
    [125] Ortori C. A., Atkinson S., Chhabra S. R., Cámara M., Williams P., Barrett D. A. Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Analytical and Bioanalytic Chemistry, 2007, 387 (2): 497~511.
    [126] Englmann M., Fekete A., Kuttler C., Frommberger M., Li X., Gebefügi I., Fekete J., Schmitt-Kopplin P. The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites analytical approaches using ultra performance liquid chromatography. Journal of Chromatography A, 2007, 1160 (1-2): 184~193.
    [127] Cataldi T. R. I., Bianco G., Frommberger M., Schmitt-Kopplin P. Direct analysis of selected N-acyl-L-homoserine lactones by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18 (12): 1341~1344.
    [128] Cataldi T. R. I., Bianco G., Palazzo L., Quaranta V. Occurrence of N-acyl-L-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatography-mass spectrometry. Analytical Biochemistry, 2007, 361 (2): 226~235.
    [129] Teplitski M., Robinson J. B., Bauer W. D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone sign activities and affect population density-dependent behaviors in associated bacteria. Molecular Plant-Microbe Interactions, 2000, 13 (6): 637~648.
    [130]王卉.外源蛋白介导的信号干扰对细菌的群体感应系统及相关生理功能的影响:[博士学位论文].南京:南京农业大学,2007,27~31.
    [131]宋水山,黄媛媛.细菌群体感应信号分子-酰基高丝氨酸内酯的检测.细胞生物学杂志,2007,29(5):697~700.
    [132] Mclean R. J., Pierson L. S., Fuqua C. A simple screening protocol for the identification of quorum signal antagonists. Journal of Microbiological Methods, 2004, 58 (3): 351~360.
    [133] Ravn L., Christensen A. B., Molin S., Givskovb M., Grama L. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. Journal of Microbiological Methods, 2001, 44 (3): 239~251.
    [134] Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E. Jr., Rinehart K. L., Farrand S. K. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proceedings of the National Academy of Sciences, 1997, 94 (12): 6036~6041.
    [135] McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Camara M., Daykin M., Lamb J. H., Swift S., Bycroft B. W., Stewart G. S., Williams P. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 1997, 143 (12): 3703~3711.
    [136] Whitehead N. A., Barnard A. M. L., Slater H., Simpson N. J., Salmond G. P. Quorum sensing in gram_negative bacteria. FEMS Microbiology Reviews, 2001, 25 (4): 365~404.
    [137] Byers J. T., Lucas C., Salmond G. P., Welch M. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. Journal of Bacteriology, 2002, 184 (4): 1163~1171.
    [138] Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing contro1. Molecular Microbiology, 2000, 36 (3): 539~556.
    [139] Miller S. T., Xavier K. B., Campagna S. R., Taga M. E., Semmelhack M. F., Bassler B. L., Hughson F. M. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molecular Cell, 2004, 15 (5): 677~687.
    [140] Gram L., Grossart H. P., Schlingloff A., Ki?rboe T. Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Applied and Environmental Microbiology, 2002, 68 (8): 4111~4116.
    [141] Zheng L., Yan X. J., Xu J. L., Chen H. M., Lin W. Hymeniacidon perleve associated bioactive bacterium Pseudomonas sp.NJ6-3-1. Applied Biochemistry and Microbiology, 2005, 41(1): 29-33.
    [142] Daniels R., Vanderleyden J., Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiology Reviews, 2004, 28 (3): 261~289.
    [143] Yan L. M., Boyd K. G., Adams D. R., Burgess J. G. Biofilm-specific cross-species induction of antimicrobial compounds in Bacilli. Applied and Environmental Microbiology, 2003, 69 (7): 3719~3727.
    [144] El-Sayed A. K., Hothersall J., Thomas C. M. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology, 2001, 147 (8): 2127~2139.
    [145] Quadri L. E. Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82 (1-4): 133~145.
    [146] Whitehead N. A., Byers J. T., Commander P., Corbett M. J., Coulthurst S. J., Everson L., Harris A. K., Pemberton C. L., Simpson N. J., Slater H., Smith D. S., Welch M., Williamson N., Salmond G. P. The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie van Leeuwenhoek, 2002, 81 (1-4): 223~231.
    [147]黄奕,李志勇.海绵及其共附生微生物的活性物质与化学防御.生物技术通报,2006,(1):13~17.
    [148] Dushenkov V, Raskin I. New strategy for the search of natural biologically active substances. Russian Journal of Plant Physiology, 2008, 55 (4): 564~567.
    [149] Xin Z. H., Zhu W. H., Gu Q. Q., FangY. C., Duan L., Cui C. B. A new cytotoxic compound from penicillium auratiogriseum, symbiotic or epiphytic fungus of sponge Mycale plumose. Chinese Chemical Letters, 2005, 16 (9): 1227~1229.
    [150] Liu R., Cui C. B., Duan L., Gu Q. Q., Zhu W. M. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Archives of Pham1acal Research, 2005, 28 (12):1341~1344.
    [151] Rasmussen T. B., Skindersoe M. E., Bjarnsholt T., Phipps R. K., Christensen K. B., Jensen P. O., Andersen J. B., Koch B., Larsen T. O., Hentzer M., Eberl L., Hoiby N., Givskov M. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 2005, 151 (5):1325~1340.
    [152]郭秀春,郑立,崔志松,韩平,田黎,王小如.海绵共栖细菌NJ6-3-1基于群体感应调控的抗菌活性.微生物学报,2008,48(4):545~550.
    [153]张骁英,赵权宇,薛松,张卫.海绵生物活性物质及海绵细胞离体培养.生物工程学报,2002,18(1):10~16.
    [154] Kelly S. R., Garo E., Jensen P. R, Fenical W., Pawlik J. R. Effects of Caribbean sponge secondary metabolites on bacterial surface colonization. Aquatic Microbial Ecology, 2005, 40 (2): 191-203.
    [155] Kanagasabhapathy M, Nagata S. Cross-species induction of antibacterial activity produced by epibiotic bacteria isolated from Indian marine sponge Pseudoceratina purpurea. World Journal of Microbiology and Biotechnology, 2007, 24 (5): 687~691.
    [156]刘玲枝,黄惠琴,蔡海宝,孙前光,鲍时翔.抗肿瘤海绵放线菌的分离及菌株HA01184的鉴定.生物技术通讯,2008,91(1):59~61.
    [157]郑立,林伟,严小军,陈海敏.海洋细菌抗菌和细胞毒活性的初步研究.应用生态学报,2004,15(9):1633~1636.
    [158] Torres Y. R., Berlinck R. G. S., Nascimento G. G. F.;Fortier S. C., Pessoa C., de Moraes M. O. Antibacterial activity against resistant bacterial and cytotoxicity of four alkaloid toxins isolated from marine sponge Arenosclera brasiliensis. Toxins, 2002, 40 (7): 885~891.
    [159]郑立,韩笑天,严小军,俞志明,王小如.海洋生物共栖细菌抑藻活性的初步研究.海洋科学进展,2006,26(4):511~519.
    [160] Ausubel F., Bront R., Kingston R. E. Short Protocols in Moleculer Biology. Third Edition. Beijing: Science Press, 1998.
    [161]韩平,郑立,崔志松,郭秀春,田黎.胜利油田滩涂区石油降解菌的筛选、鉴定及多样性初步分析.应用生态学报,2009,20(5):1189~1195.
    [162] Lemos M. L., Toranzo A. E., Barja J. L. Antibiotic activity of epiphytic bacteria isolate from intertidal seaweeds. Microbial Ecology, 1985, 11 (2): 149~163.
    [163] Ivanova E. P., Nicolau D. V., Yumoto N., Taguchi T., Okamoto K., Tatsu Y., Yoshikawa S. Impact of conditions of cultivation and adsorption on antimicrobial activity of marine bacteria. Marine Biology, 1998, 130 (3): 545~551.
    [164] Demain A. L. Phamaceutically active secondary metabolites of microorganism. Appl Microbial Biotechol, 1999, 52 (4): 455~463.
    [165] Carte B. K. Biomedical potential of marine natural products. BioScience, 1996, 46 (4): 271~286.
    [166] Rinehart K. L. Antitumor compounds from tunicates. Medicinal Research Reviews, 2000, 20 (1): 1~27.
    [167] Schwartsmann G., Brondani da Rocha A., Berlinck R. G., Jimeno J. Marine organisms as a source of new anticancer agents. The Lancet Oncology, 2001, 2 (4): 221~225.
    [168] Unson M. D., Faulkner D. J. Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia, 1993, 49 (4): 349~353.
    [169] Schupp P., Eder C., Proksch P., Wray V. V., Schneider B., Herderich M., Paul V. V. Staurosporine derivatives from the ascidian eudistoma toealensis and its predatory flatworm pseudoceros sp. Journal of Natural Products, 1999, 62 (7): 959~962.
    [170] Luesch H., Moore R. E., Paul V. J., Mooberry S. L., Corbett T. H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. Journal of Natural Products, 2001, 64 (7): 907~910.
    [171] Burgess J. G., Jordan E. M., Bregu M. Microbial antagonism: A neglected avenue of natural products research. Journal of Biotechnology, 1999, 70 (1-3): 27~32.
    [172] Holmstrom C., Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiology Ecology, 1999, 30 (4): 285~293.
    [173] Jensen P. R., Fenical W. Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annual Review of Microbiology, 1994, 48: 559~584.
    [174] Ivanova E. P., Bakunina I. Y., Sawabe T., Hayashi K., Alexeeva Y. V., Zhukova N. V., Nicolau D. V., Zvaygintseva T. N., Mikhailov V. V. Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens. Microbial Ecology, 2002, 41 (2): 242~249.
    [175] Gibbons S., Gray A. I. Isolation by polanar chromatography. In: Cannell R.J.P., Eds.Natural Products Isolation. 1998, 209-245.
    [176] Steindler L, Venturi V. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 2007, 266 (1): 1~9.
    [177] Pinto U. M., Viana E. de S., Martins M. L., Vanetti M. C. D. Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control, 2007, 18 (10): 1322~1327.
    [178] Morin D., Grasland B., Vallée-Réhel K., Dufau C., Haras D. On-line high-performance liquid chromatography–mass spectrometric detection and quanti?cation of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. Journal of Chromatography A, 2003, 1002 (1-2): 79~92.
    [179] Middleton B., Rodgers H. C., Camara M., Knox A. J., Williams P., Hardman A. Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiology Letters, 2002, 207 (1): 1~7.
    [180] Farrand S. K., Qin Y., Oger P. Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods in enzymology, 2002, 358: 452-484.
    [181] Zhu J., Chai Y. R., Zhong Z. T., Li S. P., Winans S. C. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: Detection of autoinducers in Mesorhizobium huakuii. Applied and Environmental Microbiology, 2003, 69 (11): 6949~6953.
    [182]郭秀春,郑立,崔志松,杨佰娟,田黎,王小如.海绵共栖细菌抗菌活性及其群体感应信号的研究.海洋学报,2010,32(5):135-143.
    [183] Wang Y., Ikawa A., Okaue S., Taniguchi S., Osaka I., Yoshimoto A., Kishida Y., Arakawa R., Enomoto K. Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas. Bioscience Biotechnology and Biochemistry, 2008, 72 (7): 1958~1961.
    [184] Taylor M. W., Schupp P. J., Baillie H. J., Charlton T. S., de Nys R., Kjelleberg S., Steinberg P. D. Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Applied and Environmental Microbiology, 2004, 70 (7): 4387~4389.
    [185] Smith R. S., Fedyk E. R., Springer T. A., Mukaida N., Iglewski B. H., Phipps R. P. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. Journal of Immunology, 2001, 167 (1): 366~374.
    [186] Telford G., Wheeler D., Williams P., Tomkins P. T., Appleby P., Sewell H., Stewart G. S. A. B., Bycroft B. W., Pritchard D. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoy1)-L-hormoserine lactone has immunomodulatoryactivity. Infection and Immunity, 1998, 66 (1): 36~42.
    [187] Tateda K., Ishii Y., Horikawa M., Matsumoto T., Miyairi S., Pechere J. C., Standiford T. J., Ishiguro M., Yamaguchi K. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infection and Immunity, 2003, 71(10): 5785~5793.
    [188] Kenneth D.K., David H.M. Conformations of cyclic peptides. The folding of cyclic dipeptides containing an aromatic side chain. Journal of the American Chemical Society, 1967, 89(24): 6193~6200.
    [189]吴雄宇,林永成,冯爽,姜广策,周世宁.南海红树林内生真菌1356#代谢产物的研究.热带海洋学报,2001,20(4):80~85.
    [190]王双明,谭宁华,杨亚滨,何敏.三七环二肽成分.天然产物研究与开发,2004, 16(5):83~386.
    [191]赵文英,朱庆书,顾谦群.海洋来源真菌烟曲霉(Aspergillus fumigatus)次级代谢产物研究(II).青岛科技大学学报:自然科学版,2007,28(5):390~393.
    [192]石瑛,田黎,王婧,裴月湖.海洋放线菌Micromonospora sp.与细菌Oceanospirillum sp.发酵液中化学成分的研究.中国海洋药物杂志,2006,25(1):6~10.
    [193]李德海,顾谦群,朱伟明,刘红兵,方玉春,朱天骄.海洋放线菌11014中抗肿瘤活性成分的研究Ⅰ.环二肽.中国抗生素杂志,2005,30(8):449~452.
    [194]熊江,周俊,戴好富,谭宁华,丁中涛.多蕊商陆的化学成分.云南植物研究,2001,24(3):401~405.
    [195]向兰,郭东晓,鞠瑞,马彬,雷帆,杜力军.马齿苋中环二肽成分研究.中草药,2007,38(11):1622~1625.
    [196]李春远,陈敏,丁唯嘉,林永成,周世宁.一株南海木榄内生真菌(Gloesporium sp.)代谢产物的研究.华南农业大学学报,2008,29(1):122~124.
    [197]李莉娅,邓志威,李军,付宏征,林文翰.中国南海海绵Cinachyrella australiensis化学成分研究.北京大学学报:医学版,2004,36(1):12~17.
    [198]陈光英,朱峰,林永成,Vrijmoed L. L. P.南海红树内生真菌1947号次级代谢产物的研究.化学研究与应用,2007,19(1):98~99.
    [199]李冬,朱伟明,顾谦群,崔承彬,朱天骄,刘红兵,方玉春.海洋放线菌H2003代谢产物中环二肽成分及其抗肿瘤活性的初步研究.海洋科学,2007,31(5):45~48.
    [200]郭秀春,郑立,周文辉,田黎,王小如.海洋微生物中二酮哌嗪类化合物的研究进展.微生物学通报,2009,36(10):1596-1603.
    [201]赵文英,朱天骄,古静燕,顾谦群,朱伟明.海洋来源放线菌3275化学成分及抗肿瘤活性研究.天然产物研究与开发, 2006,18(3):405~407,417.
    [202]刘睿,朱天骄,朱伟明.海洋放线菌S1001中抗肿瘤活性成分的研究.中国抗生素杂志,2006,31(1):36~38.
    [203] De Rosa S., Mitova M., Tommonaro G. Marine bacteria associated with sponge as source of cyclic peptides. Biomolecular Engineering, 2003, 20 (4-6): 311~316.
    [204] Vergne C., Boury-Esnault N., Perez T., Martin M. T., Adeline M. T., Tran Huu Dau E., Al-Mourabit A. Verpacamides A-D, a sequence of C11N5 diketopiperazines relating cyclo(Pro-Pro) to cyclo(Pro-Arg), from the marine sponge Axinella vaceleti: possible biogenetic precursors of pyrrole-2-aminoimidazole alkaloids. Organic Letters, 2006, 8 (11): 2421~2424.
    [205] Ovenden S. P. B., Sberna G., Tait R. M., Wildman H. G., Patel R., Li B., Steffy K., Nguyen N., Meurer-Grimes B. M. A Diketopiperazine dimer from a marine-derived isolate of Aspergillus niger. Journal of Natural Products, 2004, 67 (12): 2093~2095.
    [206]林永成,周世宁.海洋微生物及其代谢产物.北京:化学工业出版社,2003,416~417.
    [207]郭秀春,郑立,田黎,崔志松,王小如.二酮哌嗪类化合物诱导海洋共栖细菌NJ6-3-1产生抗菌活性的研究.中国海洋药物,2008,27(5):1-7.
    [208]王彧博,諥ⅲ钗模嵩潞Q笙妇?NJ6-3-1次级代谢产物化学成分的分离与鉴定.沈阳药科大学学报,2010,27(05):345-349.
    [209]周世宁,林永成,吴雄宇,姜广策,关利平.海洋真菌与细菌发酵物中的环二肽.微生物学通报,2002,29(3):59~62.
    [210]艾峰,许强芝,杨妤,刘小宇,施晓琼,宋志刚,焦炳华.东海微生物中6种环二肽类天然活性物质的分离和鉴定.第二军医大学学报,2006,27(1):22~24.
    [211] Fdhila F., Vazquez Z., Sanchez J. L., Riguera R. DD-diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. Journal of Natural Products, 2003, 66 (10): 1299~1301.
    [212]崔海滨,梅文莉,缪承杜,林海鹏,洪葵,戴好富.红树植物卤蕨内生真菌Penicillium sp.0935030中的抗菌活性成分研究.中国抗生素杂志,2008,33 (7): 407~410.
    [213]刘海滨,高昊,王乃利,林海鹏,洪葵,姚新生.红树林真菌草酸青霉(092007)的环二肽类成分.沈阳药科大学学报,2007,24 (8):474~478.
    [214]魏美燕,李尚德,陈须堂,邵长伦,佘志刚,林永成.南海红树林内生真菌Cephalosporium sp.(2090#)次级代谢产物研究.化学研究与应用,2008,20 (6): 790~792.
    [215] Williamson L. L., Borlee B. R., Schloss P. D., Guan C., Allen H. K., Handelsman J. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Applied and environmental Microbiology, 2005, 71 (10): 6335~6344.
    [216]陈静,谢建平.细菌转录因子LuxR家族的功能.《2010年中国药学大会暨第十届中国药师周论文集》,2010,R378.
    [217]梁斌,郭滨,杨晨,张鑫军,戴陆园,余腾琼,沈大棱.水稻白叶枯病菌luxR同源基因的克隆和表达.复旦学报(自然科学版),2005,44(4):540~543.
    [218]朱鹏.珍珠膜海绵共附生微生物PKS与NRPS的筛选与模块结构研究:[博士学位论文].浙江:浙江大学生命科学学院,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700