内生芽孢杆菌及抗菌物质的鉴定和对作物黄萎病的防治效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大丽轮枝菌(Verticillium dahliae Kleb.)在世界上很多地区造成多种作物,其中包括棉花(Gossypium hirsutum L.)和茄子(Solanum melongena L.),发生微管束萎蔫病害。由该病菌引起的黄萎病已成为严重危害我国棉花和茄子生产的制约因素之一。利用内生细菌作为生防菌来防治土传微管束病害具有独特的优势,是很有应用前景的防治措施。
     我们从茄子茎组织中分离获得一株内生细菌Jaas edl,其菌体和无细胞滤液对大丽轮枝菌(Verticillium dahliae)都有很强的拮抗活性。根据形态特性、生理生化特性和16s rDNA序列系统发育分析,鉴定该菌株为枯草芽孢杆菌(Bacillius subtilis),其16s rDNA序列在GenBank上的登录号为EF178293。通过平板法测定,内生枯草芽孢杆菌Jaas ed1可产生挥发性抗菌物质、嗜铁素和蛋白酶,但不产生几丁质酶。对内生枯草芽孢杆菌Jaas ed1的胞外抗菌粗提物进行理化性质测定,结果表明其胞外抗菌粗提物的抗菌活性对热稳定,耐碱性不耐酸性,对蛋白酶K和胰蛋白酶都不敏感。抑菌谱测定表明该胞外抗菌粗提物对10种病原真菌和1种病原细菌都具有拮抗作用。在光学显微镜下观察,经该胞外抗菌粗提物处理的大丽轮枝菌部分菌丝细胞异常膨大,细胞膜破裂,细胞质外泄。进一步将内生枯草芽孢杆菌Jaas ed1的培养液离心后的上清液,通过硫酸铵沉淀、Sephedex G-25分子筛层析、Cellulose DEAE-52阴离子交换层析、FPLC300SB-C18反相层析,获得在Tricine-SDS-PAGE上显示为分子量远小于6.5KD的一条带的抗菌物质。再通过电喷雾四极杆飞行时间串联质谱(Q-TOF2)分析发现,该抗菌物质包含有两个分子量相差14Da脂肽类化合物系列,推测为3个Fengycin家族同系物和4个Surfactin-like compound同系物。进一步用Q-TOF2测序鉴定其中m/z718.38(双电荷离子)的物质为C-14fengycinA。
     通过灌根接种内生枯草芽孢杆菌Jaas ed1的Rif突变菌株Jaas ed1R,发现菌株Jaased1R能够从根部进入植株,并能迅速向上转移到茎和叶中。我们推测该菌株能够定殖在植物的微管束组织中,从而快速扩散到整个植株。温室盆栽试验表明,内生枯草芽孢杆菌Jaas ed1的菌体细胞悬浮液和无细胞滤液都对茄子黄萎病有一定的防治效果,但菌体细胞悬浮液的防治效果显著高于无细胞滤液。因此,不但内生枯草芽孢杆菌Jaasedl产生的抗菌物质具有生防作用,而且细菌本身在植株中的定殖可能是其能够有效防治茄子黄萎病的一个重要因素。此外,无论接种内生枯草芽孢杆菌Jaas edl菌体细胞悬浮液,还是其无细胞滤液都未在茄子植株上观察到任何病害症状。将内生枯草芽孢杆菌Jaas ed1作为可用于田间防治茄子黄萎病的生防菌剂还需要进一步进行田间大面积应用试验。
     另外,我们对原有的一株棉花黄萎病生防内生细菌Jaas cd(原名73a)进行了菌种鉴定和田间应用方式的改进。通过形态观察、生理生化鉴定、Biolog鉴定以及16SrDNA序列比对,表明菌株Jaas cd为多粘类芽孢杆菌(Paenibacillus polymyxa),其16S rDNA序列在GenBank上的登录号为AY942618。抑菌谱测定表明,内生多粘芽孢杆菌Jaas cd对12种病原真菌均有较强的抑制作用。比较内生多粘芽孢杆菌Jaas cd和土壤拮抗细菌JB52以及化学药剂黄腐酸绿源宝单独使用、混合使用对棉苗生长、棉花产量的影响以及对棉花黄萎病的防治效果,结果表明无论将内生多粘芽孢杆菌Jaas cd与拮抗细菌JB52混用还是与黄腐酸绿源宝混用都不如单独使用效果好。内生多粘芽孢杆菌Jaas cd的促生长作用最强,棉花苗期株高可增长29.9%,鲜重可增加45.2%,田间试验可增产11.5%,并且用内生多粘芽孢杆菌Jaas cd的菌液灌根对棉花黄萎病的防治效果也最好,在7月底和9月初的防效分别达到51.17%和49.90%。田间大区示范试验表明用内生多粘芽孢杆菌Jaas cd的发酵液在棉苗移栽前喷施苗床和移栽时灌根两种方式处理都能有效防治棉花黄萎病和提高棉花产量,尤其喷施苗床的田间操作更加简便易行。
Verticillium dahliae Kleb. can cause vascular wilt, a serious disease of many plant species, including eggplant(Solanum melongena L.) and cotton(Gossypium hirsutum L.)in many areas of the world. Verticillium wilt is one of the major constraints on cotton and eggplant production in China. Because of the special contributions of endophytic bacteria to biological control, it is attractive to use this type of bacteria as an alternative tool to control soilborne vascular wilt disease.
     An endophytic bacterial strain, Jaas edl,was isolated from the interior of eggplant (Solanum melongena L.)stems. The strain Jaas ed1and its cell-free filtrate had strong antifungal activity against Verticillium dahliae. According to the morphological and physiological characteristics and phylogenetic analysis of the16s rDNA sequence, it was identified as Bacillius subtilis. The sequence data for the16S rDNA gene of the strain Jaas edl has been deposited in GenBank with the accession number EF178293. The assay results using plates showed that endophytic B. subtilis Jaas edl produced some volatiles which strongly inhibited the mycelial growth of V. dahliae. In addition, the strain also had the capacity of producing siderophores and protease, but it didn't produce chitinase. The characterization of crude extracellular antifungal metabolites indicated that the antifungal activity was thermostable, tolerant to alkalescence pH, untolerant to acid pH, unsensible to proteinase K and trypsin. The crude extracellular antifungal metabolites showed strong antifungal activity against10fungal pathogens and1bacterial pathogen. Observed through optics microscopy, the crude extracellular antifungal metabolites caused cell membrane of Verticillium dahlia swelled and couldn't retain integrity, and then the intracellular substances leaked out. By approaches of ammonium sulphate precipitation, sephedex G-25molecular sieve chromatography, Cellulose DEAE-52ion-exchange chromatography, FPLC 300SB-C18reversion phase chromatography, antifungal substances were able to be isolated and purified from the culture of endophytic B. subtilis Jaas edl. The purified antifungal substances only showed one band with far lower than6.5KDa molecular weight compared with standard protein on the Tricine-SDS-PAGE. The Q-TOF2mass spectrum of purified antifungal substances revealed that two clusters each containing several molecules with the difference of14Da. According to the molecular weight, we speculated1cluster compounds with the doubly charged ion at [M+H] m/z=718.38,725.40,732.40were homologous compound of Fengycin family, and the other with the doubly charged ion at [M+H] m/z=722.37,729.37,736.39,743.39were homologous compound of surfactin-like compound family. After sequenced the amino acid by Q-TOF2, the compound with the doubly charged ion at [M+H] m/z=718.38was identified as C-14fengycinA.
     We used the Rif mutant strain of Jaas ed1R instead of strain Jaas edl to study endophytic colonization ability. We inoculated endophytic B. subtilis Jaas ed1R to the eggplant roots, the bacteria could enter the eggplants from the roots and traveled upward to the stems and leaves quickly. The results suggest that the strain prefers to colonize inside the vascular tissues, so it can move to the whole plant quickly. In greenhouse experiments, the strain cell suspension effectively controlled Verticillium wilt of eggplant, and its control efficiency was far more significant than that of the cell-free filtrate after inoculation of V. dahliae. Therefore, not only the antifungal substance produce by the endophytic B. subtilis Jaas edl had the biocontrol potential, but also that the colonization of the bacterial inside plants might be another major factor in their effectiveness in controlling Verticillium wilt. No disease appeared in any eggplant inoculated with endophytic B. subtilis Jaas edl cell suspension or its cell-free filtrate. Further studies are currently underway to test the practical of usage of strain Jaas edl working as a biocontrol agent against Verticillium wilt in a large scale field experiment.
     In addition, the endophytic bacterial strain Jaas cd (original name73a) against cotton verticillium wilt was identified and its application method for using in field was improved. According to the morphologlcal, physiological characteristics, Biolog identification and phylogenetic analysis, strain Jaas cd was identified as Paenibacillus polymyxa. The sequence data for the16S rDNA gene of the endophytic P. polymyxa Jaas cd has been deposited in GenBank with the accession number AY942618. The strain showed the strong antifungal activity against12fungal pathogens including Verticillium dahliae Kleb, Fusarium oxysporum f. sp. vasinfectum, Fusarium moniliforme and Rhizoctonia solani. Effects of endophytic bacterial strain Jaas cd, antagonistic bacterial strain JB52and fulivic acid on growth,yield and Verticillium wilt of cotton were investigated through single and combine applications, respectively. The results showed that the endophytic P. polymyxa Jaas cd was the best among all treatments. The efficiency of combine application with the strain Jaas cd and strain JB52and combine application with the strain Jaas cd and fulvic acid were weaker than that single application with the strain Jaas cd. Height and fresh weight of individual cotton seedlings was increased up to29.9%,45.2%respectively by the application with the endophytic P. polymyxa Jaas cd in pots. Yield of cotton was increased up to11.5%and the control efficiency against Verticillium wilt of cotton was up to51.17%in the end of July and49.90%at the beginning of September by the application with the endophytic P. polymyxa Jaas cd in field. The results in the field trial experiments showed that the disease indexes of cotton Verticillium wilt were decreased and the yields of cotton were increased by spraying the culture liquid of the endophytic P. polymyxa Jaas cd to cotton seeding beds before transplantation or watering seedling roots after transplantation. Spraying the culture liquid of the endophytic P. polymyxa Jaas cd to the cotton seeding bed before transplantation was more convenient to operate than watering the seedling roots after transplantation.
引文
[1]李长松.拮抗细菌生物防治植物土传病害的研究进展.生物防治通报,1992,8(4):168-172.
    [2]Sturz A V, Christie B R and Nowak J. Baterial endophytes:Potential role in developing sustainable systems of crop production. Critical Rev Microbial Endophytes iews in Plant Sciences.2000,19(1):1-30.
    [3]黄丽丽,乔宏萍,康振生.植物内生细菌及其在农业方面的应用研究.临汾师范学院学报,2006,28(6):63-68.
    [4]Stone J K, Bacon C W, White J F Jr. An overview of endophytic microbes:endophytism defined. Bacon C.W and White J.F. Microbial Endophytes. New York: Marcel Dekker,2000. 3-29.
    [5]石晶盈,陈维信,刘爱媛.植物内生菌及其防治植物病害的研究进展.生态学报,2006,26(7):2395-2401.
    [6]韩继刚,宋未.植物内生细菌研究进展及其应用潜力.自然科学进展,2004,14(4):374-379.
    [7]闫孟红,蔡正求,韩继刚,孙磊,宋未.植物内生细菌在防治植物病害中的应用研究.生物技术通报,2004(3):8-12.
    [8]何红,蔡学清,洪永聪,关雄,胡方平.辣椒内生细菌的分离及拮抗菌的筛选.中国生物防治,2002,18(4):171-175.
    [9]Berg G, Krechel A, Ditz M, Sikora R A, Ulrich A, Hallmann J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology,2005,51 (2):215-229.
    [10]何红,邱思鑫,胡方平,关雄.植物内生细菌生物学作用研究进展.微生物学杂志,2004,24(3):40-45.
    [11]Van buren A M, Andren C, Ishimaru C A. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology.1993,83:1406-1410.
    [12]崔林,孙振,孙福在,袁军,田宏先,王利琴,徐惠云.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定.植物病理学报,2003,33(4):353-358.
    [13]杨海莲,孙晓璐,宋未,王云山.水稻内生阴沟肠杆菌MR12的鉴定及其固氮和防病作用研究.植物病理学报,2001.31(1):92-93.
    [14]龙良鲲,肖崇刚.内生细菌01—144在番茄根茎内定殖的初步研究.微生物学通报,2003,30(5):53-56.
    [15]龙良鲲,肖崇刚,窦彦霞.防治番茄青枯病内生细菌的分离与筛选.中国蔬菜,2003(2):19-21.
    [16]Chen C, Banske E M, Musseon G, Rodriguezkabana R and Kloepper J W. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control,1995,5(1):83-91.
    [17]Brooks D S, Gonzalez C F, Appel D N, Filer T H. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol Control,1994,4:373-381.
    [18]夏正俊,顾本康,吴蔼民.植物内生及根际土壤细菌诱导棉花对大丽轮枝菌抗性的研究.中国生物防治,1996,12(1):7-10.
    [19]吴蔼民,顾本康,傅正擎,胡波.内生菌对棉花黄萎病的田间防效及增产作用.江苏农页科学,2000(5):38-39.
    [20]林玲,张爱香,金中时,王永山,王凤良,龚伟荣,陈志石,顾本康.生防细菌与黄腐酸绿源宝促进棉花生长及防治黄萎病的效果.江苏农业学报,2006,22(2):122-126.
    [21]Hallmann J, Rodr guez-kobana R, Kloepper J W. Plant growth promoting rhizobacteria present status and future prospects. Sapporo:Nakanishi Printing.1997.243-245.
    [22]丁国春,付鹏,李红梅,郭坚华.枯草芽孢杆菌AR11菌株对南方根结线虫的生物防治.南京农业大学学报,2005,28(2):46-49.
    [23]吴蔼民,顾本康,傅正擎,胡华东.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究.植物病理学报,2001,31(4):289-294.
    [24]Weisbeek P J H. Gerritis: Ison uptake and competition, In: Ogeshi A, K. Kobayashi, Y. Homma, eds. Plant growth-promoting rhizobacteria-Present status and future prospects. Proc.4th Inter. workshop on plant growth-promoting rhizobacteria, Japan-OECD Joint workshop. Sapporo. Japan,1997,10(5-10):102-106.
    [25]Sturz A V, Christie B R, Matheson B G, Arsenault W J, Buchanan, N A. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathology,1999,48:360-369.
    [26]Manrhfer M, Keel C. Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathology,1998,45: 126-129.
    [27]Buchenauer H. Biological control of soil-borne disease by rhizobacteris. Plant Disease and Protection,1995,44:40-50.
    [28]Kakinuma A, Hori M, Isono M, Tamura G and Arima K. Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem,1969,33:973-976.
    [29]何红,蔡学清,关雄,胡方平,谢联辉.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报,2003,33(4):373-378.
    [30]Miller C M, Miller R V, Garton-Kenny D, Redgrave B, Sears J, Condron M M, Teplow D B, Strobel G A. Ecomycins, unique antimycotics form Pseudomonas viridiflava. J Appl Microbiol, 1998,84:937-944.
    [31]Velazhahan R, Samiyappan R. Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes. Plant Disease and Protection,1999,106(3):244-250.
    [32]Cook R J. Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology,1993,31:53-80.
    [33]Sturz A V, Matheson B G. Population of endophytic bacteria which influence host-resistance to erwinia induced bacteria soft rot in potato. Plant and Soil,1996,184:256-271.
    [34]Liu L, Kloepper J W. Tuzun S. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathol,1995,85(10):1064-1068.
    [35]杨海莲,孙晓璐,宋未.水稻内生阴沟肠杆菌的定殖研究.自然科学进展,1999,12(9):1241-1244.
    [36]Van Loon, L C. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol, 1998,36:453-483.
    [37]Van Wees S C M, Pieteerse C M J, Trijssenaar A, Van't Westende Y A M, Hartog F and Van Loon L C. Differential induction of systemic resistance in Arabidopsis by biocontrol bacterial. Mol Plant-Microbe interaction,1997,10:716-724.
    [38]Benhamou N, Kloepper J W, Qnadt-Hallman A and Tuzun S. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol,1996,112:919-929.
    [39]卢镇岳,杨新芳,冯永君.植物内生细菌的分离、分类、定殖与应用.生命科学,2006,18(1):90-94.
    [40]Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet J-B, Francez A-J, Fitter A H and Young J P W. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Natl Acad Sci USA,2007,104:16970-16975.
    [41]Bais H P, Weir T L, Perry L G., Gilroy S and Vivancol J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol,2006,57: 233-266.
    [42]林玲,乔勇升,顾本康,周益军,董汉松.植物内生细菌及其生物防治植物病害的研究进展.江苏农业学报,2008,24(6):969-974.
    [43]Rosenblueth M and Martinez-Romero E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact.2006,19:827-837.
    [44]Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni Y G and Dazzo F B. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol,2005,71:7271-7278.
    [45]McCully M E. Niches for bacterial endophytes in crop plants:a plant biologist's view. Aust J Plant Physiol,2001,28:983-990.
    [46]Sorensen, J. and Sessitsch, A. Plant-associated bacteria lifestyle and molecular interactions. In Modern Soil Microbiology (2nd edn) (van Elsas, J.D. et al., eds),2006, pp.211-236, CRC Press.
    [47]Hardoim P R, Overbeek L S and Elsas J D. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology,2008,16(10):463-471.
    [48]何红,邱思鑫,蔡学清,关雄,胡方平.辣椒内生细菌Bs-1和BS-2在植物体内的定殖及鉴定.微生物学报,2004,44(1):13-18.
    [49]何红,蔡学清,兰成忠,关雄,胡方平.辣椒内生菌BS-2在白菜体内的定殖、促生和防炭疽病作用.植物保护学报,2004,31(4):347-352.
    [50]蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态.福建农林大学学报(自然科学版)2003,32(1):41-45.
    [51]江木兰,赵瑞,胡小加,张银波,王国平.油菜内生生防菌BY-2在油菜体内的定殖与对油菜菌核病的防治作用.植物病理学报,2007,37(2):192-196.
    [52]刘忠梅,王霞,赵金焕,王琦,梅汝鸿.有益内生细菌B946在小麦体内的定殖规律.中国生物防治,2005,21(2):113-116.
    [53]高增贵,庄敬华,陈捷,刘限,刘军华.应用免疫胶体金银染色技术定位玉米内生细菌.植物宾利学报,2005,35(3):262-266.
    [54]吕泽黝,孝久蒂,朱至清.玉米内生固氮菌的回接分离及限菌条件下在玉米根内的定殖.应用与环境生物学报,2001,7(3):207-212.
    [55]安千里,杨学健,董越梅,冯丽洁,匡柏健,李久蒂.用共聚焦激光扫描显微镜观测GFP标记的内生固氮菌Klebsiella oxytoca SA2侵染水稻根.植物学报,2001,43(6):558-564.
    [56]范晓静,邱思鑫,吴小平,洪永聪,蔡学清,胡方平.绿色荧光蛋白基因标记内生枯草芽孢杆菌.应用与环境生物学报,2007,13(4):530-534.
    [57]王逸群,郑金贵,陈文列,钟秀容.水稻内生固氮细菌的分离及鹑鸡肠球菌在水稻根中的分布.热带亚热带植物学报,2005,13(4):296-302.
    [58]Conrath U, Beckers G J M, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman M-A, Pieterse C M J, Poinssot B, Pozo M J, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L and Mauch-Mani B. Priming: getting ready for battle. Mol Plant Microbe Interact,2006,19: 1062-1071.
    [59]Pillay V K and Nowak J. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol,1997,43:354-361.
    [60]Barka E A, Nowak J and Clementl C. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol,2006,72:7246-7252.
    [61]Hallmann J, Quadt-Hallmann A, Mahaffee W F and J. W. Kloepper. Bacterial endophytes in agricultural crops. Can J Microbiol,1997,43:895-914.
    [62]Hallmann J and Berg G. Spectrum and population dynamics of bacterial root endophytes. In Microbial Root Endophytes (Schulz, B.J.E. et al., eds),2006, pp.15-31, Springer.
    [63]Reinhold-Hurek B and Hurek T. Life in grasses:diazotrophic endophytes. Trends Microbiol, 1998,6:139-144.
    [64]Iniguez A L, Dong Y, Carter H D, Ahmer B M M, Stone J M and Triplett E W. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact,2005, 18:169-178.
    [65]De Weert S, Vermeiren H, Mulders I H, Kuiper I, Hendrickx N, Bloemberg G V, Vanderleyden J, De Mot R, Lugtenberg B J. Flagella-driven chemotaxis towards exudates components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact,2002,15:1173-1180.
    [66]Bais H P, Park S-W, Weir1 T L, Callaway R M and Vivancol J M. How plants communicate using the underground information superhighway. Trends Plant Sci,2004,9:26-32.
    [67]Van Overbeek L. and van Elsas J D. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanumtuberosum L.). FEMS Microbiol Ecol, 2008,64,283-296.
    [68]Miche L, Federico B, Sabrina G, Maya B, Barbara R-H. Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact,2006,19,502-511.
    [69]Glick B R, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci,2007,26,227-242.
    [70]Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K. Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv,2006,24,382-388.
    [71]Glick B R, Penrose D M and Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol,1998,190,63-68.
    [72]Cheng Z Y, Eunmi P, Bernard R G. 1-aminocyclopropane-l-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol,2007,53,912-918.
    [73]Arshad M, Saleema M and Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol.2007,25,356-362.
    [74]Lin L, Qiao Y-S, Ju Z-Y, Ma C-W, Liu Y-H, Zhou Y-J and Dong H-S. Isolation and characterization of endophytic Bacillius subtilis Jaas edl antagonist of eggplant Verticillium wilt. Biosci Biotechnol Biochem,2009,73(7):1489-1493.
    [75]孙义,居正英,林玲,杨启银,周益军.茄子黄萎病生防内生细菌29-12发酵条件的初步研究.江苏农业学报,2008,24(4):425-430.
    [76]乔勇升,林玲,张爱香,陈双林,顾本康.茄子内生细菌的分离及对茄子黄萎病菌的室内拮抗活性测定.江苏农业科学,2005(6):53-55.
    [77]Araujo W L, Marcon J, Maccheroni W, van Elsas J D, van Vuurde J W L. Diversity of endophytic bacterial populations and their interaction with xylella fastidiosa in citrus plants. Appl Environ Microbiol,2002,68:4906-4914.
    [78]Sessitsch A, Reiter B, Pfeifer U, Wilhelm E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol,2002,39,23-32.
    [79]Fravel D R. Commercialization and implementation of biocontrol. Annu Rev Phytopathol,2005, 43,337-359.
    [80]王智文,刘训理.芽孢杆菌非核糖体肽的研究进展.蚕业科学,2006,32(3):392-398.
    [81]Emmert E A B and Handelsman J. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett.1999,171,1-9.
    [82]Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Mol Microbiol. 2005,56,845-857.
    [83]Mukherjee A K and Das K. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol Ecol.2005,54,479-489.
    [84]Bonmatin J M, Laprevote O, Peypoux F. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen,2003,6,541-556.
    [85]Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, and Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. JBacteriol,2004,186, 1084-1096.
    [86]Huszcza E and Burczyk B. Surfactin isoforms from Bacillus coagulans. Z. Naturforsch.2006, 61,727-733.
    [87]Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol,1999,51,553-563.
    [88]Tsuge K, Ano T, Hirai M, Nakamura Y, and Shoda M. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother,1999,43,2183-2192.
    [89]Kim P I, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi Y T. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. JAppl Microbiol, 2004,97,942-949.
    [90]Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, de Pauw E, Thonart P. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl Biochem Biotechnol,1999,77,223-233.
    [91]Thakore Y. The biopesticide market for global agricultural use. Ind Biotechnol,2006,2, 194-208.
    [92]李晶,杨谦卜.生防枯草芽孢杆菌的研究进展.安徽农业科学,2008,36(1):106-111,132.
    [93]刘颖,徐庆,陈章良.抗真菌肽LP21的分离纯化及特性分析.微生物学报,1999,39(5):441-447.
    [94]林东,徐庆,刘忆舟,魏军明,瞿礼嘉,顾红雅,陈章良.枯草芽孢杆菌S0113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化术.农业生物技术学报,2001,9(1):77-80.
    [95]何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究.中国水稻科学,2002,16(4):361-365.
    [96]高学文,姚仕义,Huong Pham, Joachim Vater,王金生.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究.中国农业科学,2003,36(12):1496-1501.
    [97]高学文,姚仕义,Huong Pham, Joachim Vater,王金生.枯草芽孢杆菌B2产生的表面活性变异体的纯化和鉴定.微生物学报,2003,43(5):647-652.
    [98]高学文,姚仕义,Huong Pham, Joachim Vater,王金生.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析.中国生物防治,2003,19(4):175-179.
    [99]吕应年,杨世忠,牟伯中.脂肽的分离纯化与结构研究.微生物学通报,2005,32(1):67-73.
    [100]刘静,王军,姚建铭,潘仁瑞,余增亮.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化.微生物学报,2004,44(4):511-514.
    [101]陈华,王丽,袁成凌,郑之明,余增量.高效液相色谱-电喷雾质谱法分离和鉴别枯草芽孢杆菌产生的脂肽类化合物.色谱,2008,26(3):343-347.
    [102]陈华,袁成凌,蔡克周,郑之明,余增亮.枯草芽孢杆菌JA产生的脂肽类抗生素—iturin A的纯化及电喷雾质谱鉴定.微生物学报,2008,48(1):116-120.
    [103]别小妹,吕凤霞,陆兆新,黄现青,沈娟.Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定.生物工程学报,2006,22(4):644-649.
    [104]鲁小城,赵宇华,方萍.枯草芽孢杆菌F-2抗植物病原真菌活性物质的研究.物江大学学报(农 业与生命科学版),2007,33(1):34-39.
    [105]胡梁斌,杨静东,章挺,杨志敏,程凤科,石志琦.枯草芽孢杆菌B-FS01鞭毛蛋白FCD基因克隆与拮抗活性.扬州大学学报(农业与生命科学版),2008,29(3):84-87.
    [106]李德全,陈志谊,聂亚锋.生防菌Bs-916及高效突变菌株抗菌物质及其对水稻抗性诱导作用的研究.植物病理学报,2008,38(2):192-198.
    [107]Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol,2008,16(3):115-125.
    [108]Walsh C T. Polyketide and nonribosomal peptide antibiotics:Modularity and versatility. Science, 2004,303,1805-1810.
    [109]Finking R and Marahiel M A. Biosynthesis of nonribosomal peptides. Annu Rev Microbiol, 2004,58,453-488.
    [110]Steller S, Sokoll A, Wilde C, Bernhard F, Franke P, Vater J. Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry,2004,43,11331-11343.
    [111]Steller S, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J, Vollenbroich D. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol,1999,6,31-41.
    [112]Duitman E H, Hamoen L W, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, and Vater J. The mycosubtilin synthetase of Bacillus subtilis ATCC6633:a multifunctional hybrid between a peptide synthetase, an amino transferase and a fatty acid synthase. Proc Natl Acad Sci U S A,1999,96, 13294-13299.
    [113]Aron Z D, Dorrestein P C, Blackball J R, Kelleher N L, Walsh C T. Characterization of a new tailoring domain in polyketide biogenesis:The amine transferase domain of MycA in the mycosubtilin gene cluster. J Am Chem Soc,2005,127,14986-14987.
    [114]侯红漫,靳艳,金美芳,虞星炬,张卫.环脂肽类生物表面活性剂结构、功能及生物合成.微生物学通报,2006,33(5):122-128.
    [115]Heerklotz H and Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J,2007,36,305-314.
    [116]Carrillo C, Teruel J A, Aranda F J, Ortiz A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta,2003,1611,91-97.
    [117]Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Jacques P, Brasseur R. Interaction of surfactin with membranes:a computational approach. Langmuir 2003,19, 3377-3385.
    [118]Heerklotz H, Wieprecht T, Seelig J. Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. JPhys Chem B,2004,108,4909-4915.
    [119]Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M. Dufour S. Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta,2005,1726,87-95.
    [120]Moyne A L, Shelby R, Cleveland T E, Tuzun S. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. JAppl Microbiol,2001,90,622-629.
    [121]Yu G Y, Sinclair J B, Hartman G L and Bertagnolli B L. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem,2002,34,955-963.
    [122]Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry,2002,61,693-698.
    [123]Phae C G, Shoda M, Kubota H. Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J Ferment Bioeng,1990,69,1-7.
    [124]Aranda F J, Teruel J A, Antonio O. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta,2005,1713,51-56.
    [125]Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. JAntibiot (Tokyo),1986,39,888-901.
    [126]Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A. Genetic analysis of the biosynthesis of nonribosomal peptide-and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics,2004,272,363-378.
    [127]Deleu M, Paquot M, Nylander T. Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. J Colloid Interface Sci,2005,283,358-365.
    [128]Maget-Dana R, Thimon L, Peypoux F, Ptak M. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie,1992,74, 1047-1051.
    [129]Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J L, Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol,2007,9,1084-1090.
    [130]Romero D, de Vicente A, Rakotoaly R H, Dufour S E, Veening J-W, Arrebola Eva, Cazorla F M, Kuipers O P, Paquot Michel, Perez-Garcia Alejandro. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact.2007,20,430-440.
    [131]Morris C E, and Monier J M. The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol,2003,41:429-453.
    [132]Shapiro J A. Thinking about bacterial populations as multicellular organisms. Ann Rev Microbiol,1998,52:81-104.
    [133]Lugtenberg B J J, Dekkers L, and Bloemberg G V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol,2001,39,461-490.
    [134]Ramey B E, Koutsoudis M, von Bodman S B, and Fuqua C. Biofilm formation in plant-microbe associations. Curr Opin Microbiol,2004,7,602-609.
    [135]冯永君,何晴.植物内生细菌的生物薄膜(biofilm)生命的化学,2007,27(1):87-89.
    [136]Branda S S, Gonzalez-Pastor J E, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A,2001,98,11621-11626.
    [137]Kinsinger R F, Shirk M C, and Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. JBacteriol,2003,185,5627-5631.
    [138]Bais H P, Fall R, and Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol,2004,134,307-319.
    [139]Ahimou F, Jacques P, and Deleu M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb. Technol,2000,27,749-754.
    [140]Raaijmakers J M, de Bruijn I, and de Kock M J. Cyclic lipopeptide production by plantassociated Pseudomonas spp.:diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact,2006,19,699-710.
    [141]Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev,2004,28,261-289.
    [142]Leclere V, Marti R, Bechet M, Fickers P and Jacques P. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol,2006,186,475-483.
    [143]张霞,唐文华,张力群.枯草芽孢杆菌B931防治植物病害和促进植物生长的作用.作物学报,2007,33(2):236-241.
    [144]Asaka O and Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14.Appl Environ Microbiol,1996,62,4081-4085.
    [145]Leclere V, Bechet M, Adam A, Guez J S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M And Jacques P. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol,2005, 71,4577-4584.
    [146]Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol,2005,69,29-38.
    [147]Van Rij E T, Wesselink M, Chin-A-Woeng T F C, Bloemberg G V and Lugtenberg B J J. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact,2004,17,557-566.
    [148]Ongena M, Jourdan E, Adam A, Schafer M, Budzikiewicz H and Thonart P. Amino acids, iron, and growth rate as key factors influencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Microb Ecol,2008,55,280-292.
    [149]Guez J S, Mueller C H, Danze P M, Buechs J, Jacques P. Respiration Activity Monitoring System (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J Biotechnol,2008,134(1-2),121-126.
    [150]Cosby W M, Vollenbroich D, Lee O H, and Zuber P. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the SpoOK oligopeptide permease and the ComQX system of extracellular control. JBacteriol,1998,180,1438-1445.
    [151]Rainey P B. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol, 1999,1,243-257.
    [152]Lin S-C, Lin K-G, Lo C C, and Lin Y-M. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb Technol,1998,23,267-273.
    [153]An D, Danhorn T, Fuqua C, and Parsek M R. Quorum sensing and motilitymediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc Natl Acad Sci USA,2006,103,3828-3833.
    [154]Haas D and Keel C. Regulation of antibiotic production in rootcolonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol,2003,41,117-153.
    [155]Hamoen L W, Venema G, Kuipers O P. Controlling competence in Bacillus subtilis:shared use of regulators. Microbiology,2003,149,9-17.
    [156]Duitman E H, Wyczawski D, Boven L G, Venema G, Kuipers O P, Hamoen L W. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol,2007,73,3490-3496.
    [157]Toure Y, Ongena M, Jacques P, Guiro A, and Thonart P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. JAppl Microbiol,2004,96,1151-1160.
    [158]Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra S S. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol, 2002,68,6210-6219.
    [159]Leenders F, Stein T H, Kablitz B, Franke P, and Vater J. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom,1999,13,943-949.
    [160]Fogliano V, Gallo M, Vinale F, Ritieni A, Randazzo R, Greco M, Lops R, Graniti A. Immunological detection of syringopeptins produced by Pseudomonas syringae pv. lachrymans. Physiol Mol Plant Pathol,1999,55,255-261.
    [161]Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, and Thonart P. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol, 2001,91,551-561.
    [162]Rediers H, Rainey P B, Vanderleyden J, Rediers H, Rainey P B, Vanderleyden J, and De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev,69,2005,217-261.
    [163]Kiely P D, Haynes J M, Higgins C H, Franks A, Mark G L, Morrissey J P, and O'Gara F. Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol,2006,51,257-266.
    [164]Bloemberg G V and Lugtenberg B J J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol,2001,4,343-350.
    [165]Kloepper J W, Ryu C M, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology,2004,94,1259-1266.
    [1]Bhat R G and Subbarao K V. Reaction of broccoli to isolates of Verticillium dahliae from various hosts. Plant Disease,2001,85,141-146.
    [2]Huang J L, Li H L, and Yuan H X. Effect of organic amendments on Verticillium wilt of cotton. Crop Prot,2006,25(11),1167-1173.
    [3]Ferrandino F J and Elmer W H. Eggplant tolerance to Verticillium wilt. Biol. Cult. Control Tests, 1993,8,21.
    [4]Gent M N P, Ferrandino F J and Elmer W H. The effect of Verticillium wilt on gas exchange of entire eggplants. Can. J. Bot.,1995,73,557-565.
    [5]Colson-Hanks E S and Deverall B J. Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to Alternaria leaf spot in cotton. Plant Pathol, 2000,49,171-178.
    [6]Nannipieri P, Klug M T and Reddy C A. Microbial biomass and activity measurement in soils: ecological significance. American Society for Microbiology, Washington,1984.
    [7]Thomas P, Kumari S, Swarna G K and Gowda T K S. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo. Can. J. Microbiol,2007,53(3),380-390.
    [8]Misaghi I J and Donndelinger C R. Endophytic bacteria in symptom-free cotton plants. Phytopathology,1990,80,808-811.
    [9]Hallmann J, Hallmann Q A, Mahaffee W F and Kloepper J W. Bacterial endophytes in agricultural crops. Can. J. Microbiol,1997,43,895-914.
    [10]Mahaffee W F and Kloepper J W. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb. Ecol,1997,34,210-223.
    [11]乔勇升,林玲,张爱香,陈双林,顾本康.茄子内生细菌的分离及其对茄子黄萎病菌的室内拮抗活性测定.江苏农业科学,2005,6,53-55.
    [12]易有金,刘如石,尹华群,罗宽,刘二明,刘学端.烟草青枯病拮抗内生细菌的分离、鉴定及其田间防效.应用生态学报,2007,18(3):554-558.
    [13]R E布坎南,N E吉本斯.伯杰细菌鉴定手册(第八版).北京:科学出版社,1984.
    [14]Sambrook J, Fritsch E F and Maniatis T. Molecular cloning: a laboratory manual,2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.1989.
    [15]Delong E F. Archaea in coastal marine environments. Proc Natl Acad Sci,1992,89,5685-5689.
    [16]Thompson Julie D, Gibson Toby J, Plewniak Frederic, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25(24):4876-4882.
    [17]Kumar Sudhir, Tamura Koichiro, and Nei Masatoshi. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics,2004,5(2), 150-163.
    [18]吴征彬,孟艳艳,棉花品种区域试验中的抗病鉴定技术.华中农业大学学报,2004,23(5),500-503.
    [19]Compeau G, Al-Chi B J, Platsouka E and Levy S B. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl. Environ. Microbiol.,1988, 54,2432-2438.
    [20]Bacon C W and Hinton D M. Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control,2002,23,274-284.
    [21]Fernando W G D, Nakkeeran S, Zhang Y and Savchuk S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot, 2007,26(2),100-107.
    [22]Tjamosl E C, Tsitsigiannis D I, Tjamos S E, Antoniou P P and Katinakis P. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. European Journal of Plant Pathology,2004,110,35-44.
    [23]Berg G, Knaape C, Ballin G and Seidel D. Biological control of Verticillium dahliae Kleb. by naturally occurring rhizosphere bacteria. Journal of Plant Disease Protection,1994,29,249-262.
    [24]Leben S D, Wadi J A and Easton G D. Effects of Pseudomonas fluorescens of potato plant growth and control of Verticillium dahliae. Phytopathology,1987,77,1592-1595.
    [25]Chet I, Ordentlich A, Shapira R and Oppeneim A. Mechanisms of biocontrol of soilborne plant pathogens by Rhizobacteria. Plant and Soil,1990,129,85-92.
    [26]Weller D M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology,1988,26,379-407.
    [27]Nejad P and Johnson P A. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rap and tomato. Biological Control,2000,18,208-215.
    [28]Wang, J., Liu, J., Chen, H., and Yao, J., Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol,2007,76,889-894.
    [29]Lamb T G, Tonkyn D W and Kluepfel D A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can. J. Microbiol.,1996,42,1112-1120.
    [30]Jacobs M J, Bugbee W M and Gabrielson D A. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot.,1985,63,1262-1265.
    [31]Patriquin D G and Bereiner J D & oring. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol.,1978,24, 734-742.
    [32]Bell C R, Dickie G A, Harvey W L G and Chan J W Y F. Endophytic bacteria in grapevine. Can. J. Microbiol.,1995,41,46-53.
    [1]陈中义,张杰,黄大防.植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报,2003,33(2):97-103.
    [2]Bacon, C W, and Hinton D M, Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control,2002,23,274-284.
    [3]王帅,高圣风,高学文,王娜,王光强.枯草芽孢杆菌脂肽类抗生素发酵和提取条件.中国生物防治,2007,23(4):342-347.
    [4]Shin S H, Lim Y, Lee S E, Yang N W, Rhee J H. CAS agar diffusion assay for the measurement of siderophores in biological fluids. JMicrobiol Methods,2001,44(1):89-95.
    [5]于宏伟,栗志丹,郝珊珊,贾英民.蛋白酶产生菌的筛选及酶学性质研究.农产品加工,2006(10):67-73.
    [6]Roberts W K, Selitrennikoff C P. Plant and bacterial chitinases differ in antifungal activity. Microbiology,1988,134(1):169-176.
    [7]乔勇升,林玲,张爱香,陈双林,顾本康.茄子内生细菌的分离及其对茄子黄萎病菌的室内拮抗活性测定.江苏农业科学,2005(6):53-55.
    [8]方中达.植病研究方法(第三版).中国农业出版社.1998,151-152.
    [9]Schagger H, Von Jagow G. Tricine-sodium dodecyl sulfate polyacrylamidegel electrophoreais for the separation of proteins in the range from 1 to 100 KDa.Anal Biochem,1987,166:368-379.
    [10]Motta A S, Lorenzini D M, Brandelli A. Purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp. isolated from the amazon basin. Curr Microbio,2007,54: 282-286.
    [11]邓小娟,曹阳,钟仰进,黄自然SDS-PAGE凝胶原位检测抗菌蛋白的活性—生物自显影技术.西南农业大学学报(自然科学版),2005,27(1):136-137.
    [12]王红霞,李萍,何家田,周迈,刘炳玉,杨松成,张学敏.人肝癌细胞系HLE细胞表面抗原多肽的纳升电喷雾串联质谱从头测序分析.分析化学,2006,7:915-918.
    [13]Hu L-B, Shi Z-Q, Zhang T, Yang Z-M. Fengycins antibiotics isolated from B-FS01 culture inhibit growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett,2007,272:91-98.
    [14]Sun L-J, Lu Z-X, Bie X-M, Lu F-X and Yang S-Y. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol,2006,22:1259-1266.
    [15]Motta A S, Lorenzini D M, Brandelli A. Purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp. isolated from the amazon basin. Current Microbiology, 2007,54:282-286.
    [16]Fernando W G D, Ramarathnam R, Krishnamoorthy A S, Savchuk, S C. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem,2005,37(5): 955-964.
    [17]Kai M, Effmert U, Berg G, et al. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol,2007,187(5):1-360.
    [18]陈华,郑之明,余增亮.枯草芽孢杆菌JA脂肽类及挥发性物质抑菌效应的研究.微生物学通报,2008,35(1):1-4.
    [19]Shelly M P. Detection, isolation and characterization of siderophores. Methods in Enzymology,1994, 235:329-344.
    [20]Weisbeek P J H. Gerritis: Ison uptake and competition, In:Ogeshi A, K. Kobayashi, Y. Homma, eds. Plant growth-promoting rhizobacteria-Present status and future prospects. Proc.4th Inter. workshop on plant growth-promoting rhizobacteria, Japan-OECD Joint workshop. Sapporo. Japan,1997, 10(5-10):102-106.
    [21]杨合同.木霉分类与鉴定.中国大地出版社,2009,16.
    [22]刘永锋,陈志谊,周明国,张杰,宋福平,刘邮洲,罗楚平.枯草芽孢杆菌Bs-916的抑菌活性及其抑菌物质初探.农药学学报,2007,9(1):92-95.
    [23]胡梁斌.细菌B-FS01抗菌物质的鉴定以及对串珠镰刀菌生长和伏马菌素B1产生的抑制效应.南京农业大学博士论文.2007.
    [24]Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol,2008,16(3):115-125.
    [25]高学文,姚仕义,Pham H, Vater J,王金生.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报,2003,43(5):647-652.
    [26]Akpa E, Jacques P, Wathelet B, Paquot m, Fuchs R, Budzikiewicz H, Thonart P. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotech,2001,91-93: 551-561.
    [27]Yu G Y, Sinclair J B, Hartman G L, Bertagnolli B L. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem,2002,34:955-963.
    [28]陈华,袁成凌,蔡克周,郑之明,余增亮.枯草芽孢杆菌JA产生的脂肽类抗生素—turin A的纯化及电喷雾质谱鉴定.微生物学报,2008,48(1):116-120.
    [29]王英武,王玲,顾景凯,陈刚,钟大放,周慧.电喷雾-串联四极杆-飞行时间质谱法分析寡肽 的一级结构.分析化学,2003,31(6):709-712.
    [30]Wang J, Liu J, Wang X, Yao J and Yu Z. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol,2004, 39:98-102.
    [31]Pueyo M T, Jr C B, Carmona-Ribeiro A M, Mascio P d. Lipopeptides produced by a soil Bacillus Megaterium Strain. Microb Ecol,2009,57:367-378.
    [32]Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005,56,845-857.
    [33]别小妹,吕凤霞,陆兆新,黄现青,沈娟Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定.生物工程学报,2006,22(4):644-649.
    [34]高学文,姚仕义,Pham H, Vater J,王金生.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析.中国生物防治,2003,19(4):175-179.
    [35]吕应年,杨世忠,牟伯中.脂肽的分离纯化与结构研究.微生物学通报,2005,32(1):67-73.
    [36]刘静,王军,姚建铭,潘仁瑞,余增亮.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化.微生物学报,2004,44(4):511-514.
    [37]陈华,王丽,袁成凌,郑之明,余增量.高效液相色谱-电喷雾质谱法分离和鉴别枯草芽孢杆菌产生的脂肽类化合物.色谱,2008,26(3):343-347.
    [38]鲁小城,赵宇华,方萍.枯草芽孢杆菌F-2抗植物病原真菌活性物质的研究.浙江大学学报(农业与生命科学版),2007,33(1):34-39.
    [39]Li D-Q, Nie F-Y, Wei L-H, Wei B-Q, Chen Z-Y. Screening of high-yielding biocontrol bacterium Bs-916 mutant by ion implantation. Appl Microbiol Biotechnol,2007,75:1401-1408.
    [40]Liu Y-F, Chen Z-Y, Ng T B, Zhang J, Zhou M-G, Song F-P, Lu F, Liu Y-Z. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides,2007,28:553-559.
    [1]吴蔼民,顾本康,傅正擎,胡波.内生菌对棉花黄萎病的田间防效及增产作用.江苏农业科学,2000(5):38-39.
    [2]夏正俊,顾本康,吴蔼民.植物内生及根际土壤细菌诱导棉花对大丽论枝菌抗性的研究.中国生物防治,1996,12(1):7-10.
    [3]林玲,陈怀谷,刘磊,张爱香,王裕中,史建荣.小麦纹枯病菌拮抗细菌的筛选及生物活性测定.江苏农业学报,2003,19(3):187-188.
    [4]李社增,马平,刘杏忠,H. C. Huang,陈新华.利用拮抗细菌防治棉花黄萎病.华中农业大学学报,2001,20(5):422-425.
    [5]李素英,刘冬青,牛瞻光.生物防治菌与多菌灵混用防治棉花黄萎病的效应研究.中国生态农业学报,2004,12(1):114-116.
    [1]简桂良,卢美光,王凤行,张洪成,仇家山.转基因抗虫棉黄萎病综合防治技术体系.植物保护,2007,33(5):136-140.
    [2]李社增,马平,刘杏忠,H. C. Huang,陈新华.利用拮抗细菌防治棉花黄萎病.华中农业大学学报,2001,20(5):422-425.
    [3]易有金,刘如石,尹华群,罗宽,刘二明,刘学端.烟草青枯病拮抗内生细菌的分离、鉴定及其田间防效.应用生态学报,2007,18(3):554-558.
    [4]夏正俊,顾本康,吴蔼民.植物内生及根际土壤细菌诱导棉花对大丽论枝菌抗性的研究.中国生物防治,1996,12(1):7-10.
    [5]吴蔼民,顾本康,傅正擎,胡华东.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究.植物病理学报,2001,31(4):289-294.
    [6]吴蔼民,顾本康,傅正擎,胡波.内生菌对棉花黄萎病的田间防效及增产作用.江苏农业科学,2000(5):38-39.
    [7]Thompson Julie D, Gibson Toby J, Plewniak Frederic, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25(24):4876-4882.
    [8]Kumar Sudhir, Tamura Koichiro, and Nei Masatoshi. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics,2004,5(2), 150-163.
    [9]林玲,乔勇升,顾本康,周益军,董汉松.植物内生细菌及其生物防治植物病害的研究进展.江苏农业学报,2008,24(6):969-974.
    [10]林玲,张爱香,金中时,王永山,王凤良,龚伟荣,陈志石,顾本康.生防细菌与黄腐酸绿源宝促进棉花生长及防治黄萎病的效果.江苏农业学报,2006,22(2):122-126.
    [11]李社增,鹿秀云,马平,高胜国,刘杏忠,刘干.防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定.植物病理学报,2005,35(5):451-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700