改性泥炭吸附水体中疏水性有机污染物及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏水性有机污染物(HOCs)如多环芳烃(PAHs)和环境激素-双酚A (BPA)在人类的生产和生活中广泛存在。由于HOCs具有较高的脂溶性,一旦进入水体,容易在悬浮物和底泥中累积,并在生物体内富集,从而对生态环境造成严重的危害。因此,有必要开发出一种高效而经济的吸附材料用于受HOCs污染水体的修复和净化。
     泥炭是一种具有潜在吸附能力并且来源广泛,价格低廉的天然生物质材料。将泥炭作为吸附剂用于废水处理,可以实现环保有效性和经济性的统一。本研究采用季铵盐阳离子表面活性剂对天然草本泥炭进行接枝改性,制备出一种有效,低成本且环境友好的新型生物质吸附剂,用于去除水体中的HOCs。同时,选取典型的非离子型疏水性有机污染物-PAHs和离子型疏水性有机污染物-BPA作为目标污染物,研究了改性泥炭对这两类HOCs的吸附特性,并探讨了吸附机理。
     采用季铵盐阳离子表面活性剂对泥炭进行接枝改性,优化了改性条件。考察改性时间,改性剂浓度以及不同的表面活性剂对改性效果的影响。结果表明,表面活性剂对泥炭的接枝量随改性时间以及改性剂浓度的增加而提高。在相同的改性条件下,泥炭中表面活性剂接枝量顺序为:十六烷基三甲基溴化铵(HTAB)>溴代十六烷基吡啶(HPB)>四丁基溴化铵(TBAB)。
     在此基础上,分别选用天然草本泥炭和经磺化处理的草本泥炭作为改性基质制备了季铵盐阳离子表面活性剂改性泥炭,并对改性前后的泥炭进行了傅立叶红外光谱表征和元素分析。分析结果表明季铵盐阳离子表面活性剂可以通过离子交换反应有效接枝到泥炭上,并增加了泥炭中有机碳的含量。采用扫描电镜观察了泥炭的表面构型,发现改性后草本泥炭的纤维结构得以完整保留,从而使改性泥炭具有一定的机械强度。通过分析泥炭在水中的zeta电位发现天然草本泥炭和磺化泥炭具有较强的电负性,改性过程有效减小了草本泥炭和磺化泥炭表面的负电位。此外,通过测定泥炭在正己烷中的相对接触角,发现改性后泥炭表面的疏水性显著增强。
     研究了改性前后草本泥炭对PAHs的吸附特性,并对吸附机理进行了探讨。考察了接触时间、初始浓度、PAHs脂溶性等因素对改性泥炭吸附PAHs的影响。结果表明,改性泥炭对PAHs的吸附符合准二级动力学模型,改性后草本泥炭对PAHs的吸附速率提高。改性泥炭对PAHs的等温吸附曲线符合线性分配方程。改性后,萘、菲、芘在草本泥炭上的分配系数分别由675,12870,88590 mL·g-1增加到979,26074,178388 mL·g-1。此外,还发现PAHs在改性泥炭上的分配作用随着PAHs脂溶性的提高而加强。
     研究了BPA在改性草本泥炭和改性磺化泥炭上的吸附特性和吸附机理。考察了接触时间、初始浓度、pH、水中无机盐浓度等因素对吸附的影响。结果表明,BPA在改性草本泥炭上的吸附符合准二级动力学模型,其在改性磺化泥炭上的吸附符合颗粒内扩散模型。BPA在两种改性泥炭上的等温吸附曲线均符合BET模型和Freundlich模型。改性后草本泥炭和磺化泥炭对BPA的吸附量分别提高了322%和33%以上。吸附热力学研究显示,改性草本泥炭和改性磺化泥炭对BPA的吸附为放热过程,吸附热分别为8.926 kJ·mol-1和19.393 kJ·mol-1。研究证实,改性泥炭对离子型疏水性有机污染物的吸附主要通过分配和表面吸附的共同作用进行。分配作用随着泥炭中有机质含量的增加而加强;表面吸附作用随着泥炭表面电负性的减弱以及疏水性的提高而加强。
     采用海藻酸钠对改性草本泥炭进行包埋固定以提高其在水中的可分离性和化学稳定性,并研究了固定化改性泥炭颗粒对BPA的静态和动态吸附特性以及再生的可行性。结果表明,固定化改性泥炭颗粒吸附BPA的等温曲线符合BET模型和Freundlich模型,吸附的最佳pH范围为4.0-9.0,其对BPA的吸附符合准二级动力学模型,且吸附初始阶段受颗粒内扩散作用的控制。流速和初始浓度对固定化改性泥炭颗粒动态吸附双酚A的效果具有显著影响。此外,固定化改性泥炭颗粒具有一定的再生能力。
Hydrophobic organic contaminants (HOCs) such as polycyclic aromatic hydrocarbons (PAHs) and environmental hormone-bisphenol A (BPA) are widely produced and used. Due to strong organophilicity, HOCs can accumulate in sediments, suspension solids and organisms when discharged into water body, which cause harm to both animals and human beings. It is essential to develop an effective and affordable sorbent which can be used in restoration and treatment of HOCs polluted water.
     Peat is a biomaterial of natural origin with potential sorption capability and low cost. The application of peat in removal of contaminants from water can archieve both satisfactory treatment performance and cost effectiveness. In this study, a noval biosorbent for sorption of HOCs was prepared through modification of peat by quaternary ammonium cationic surfactant. The nonionic HOCs-PAHs and ionic HOC-BPA were selected as the target contaminants. And the sorption behavior of PAHs and BPA on modified peat as well as the sorption mechanism was investigated.
     The modification process of peat was optimized through investigation of the effects of modification time, modifier concentration and different modifiers on the content of surfactant grafted into peat. Results show that the content of grafted surfactant increased with increase of modification time and modifier concentration. HTAB is more effective in modification of peat when compared with HPB and TBAB.
     The modified peat was prepared from raw fibric peat and sulfonated fibric peat. The results of FTIR and element analysis show that the surfactant was grafted into peat effectively through ion-exchange and the organic carbon content of peat increased after modification. SEM results indicate that the fibric structure of peat remained after modification, which suggests that modified peat had same mechanical strength as the raw peat. The zeta potential measurement shows that raw peat and sulfonated peat are negative-charged. The surface negative charge was reduced after modification. In addition, it was also found that the hydrophobicity of modified peat was significantly enhanced.
     The effect of contact time, initial concentration, PAHs properties on PAHs sorption capacity of modified peat were investigated to show the sorption characteristics and sorption mechanism of PAHs on modified peat. It is suggested that the uptake rate of PAHs by peat increased after modification; the sorption experimental data followed pseudo-second-order kinetic model and the sorption isotherms fitted well to linear partitioning equation. After modification, the sorption rate constant of naphthalene, phenanthrene and pyrene by peat increased from 675,12870,88590 mL-g"1 to 979,26074,178388 mL·g-1. The partitioning coefficients were positively correlated with octane-water partitioning coefficients of PAHs.
     The sorption characterisitics and sorption mechanism of BPA were explored by investigating the effects of contact time, initial concentration, pH etc. on BPA sorption capacity of modified peat. Results show that the sorption experimental data followed the pseudo-second-order kinetic model. The sorption isotherms and followed both BET model and Freundlich model. The BPA sorption capacity of modified fibric peat and modified sulphonated peat increased by more than 322%and 33%, respectively. It was also found that sorption of BPA by modified fibric peat and modified sulfonated peat were exothermic processes which haveΔH of 8.926 kJ-mol"1 and 19.393 kJ·mol-1, respectively. The results also verified that the sorption of BPA on modified peat were predominated by both partitioning and surface adsorption. The sorption capacity of peat increased with the enhancement of hydrophobicity and the reduction of surface negative charge.
     To achieve easy separation of peat sorbent from water as well as improve the chemical stability of the sorbent, the modified peat was embedded by sodium alginate for preparation of granular modified peat. The batch sorption characteristics of granular modified peat as well as the feasibility of using granular peat sorbent as filter packer were investigated. Results show that BPA sorption experimental data of granular modified peat followed both pseudo-second-order kinetic model and intraparticle diffusion model. The sorption isotherm followed both BET model and Freundlich model. The optimum pH range for BPA sorption by granular modified peat is 4.0-9.0 and the dynamic sorption performance was found to be affected by intial BPA concentration. In addition, the granular modified peat can be regenerated by bleaching with warm water.
引文
[1]Pierre H, Christian T, Luca N, Rainer L, Annika J, Kevin C J, Jordi D, Di G A, Rosalinda G. PAHs in air and seawater along a north-south Atlantic transect trends:processes and possible sources. Environmental Science and Technology.2008,42(1):1580-1585
    [2]Manoli E, Samara C. Polycyclic aromatic hydrocarbons in natural waters:sources, occurrence and analysis. TrAC Trends in Analytical Chemistry.1999,18(6):417-428
    [3]Keri R A, Ho S M, Hunt P A, Knudsen K E, Soto A M, Prins G S. An evaluation of evidence for the carcinogenic activity of bisphenol A. Reproductive Toxicology.2007, 24(2):240-252
    [4]Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O. Bisphenol A in hazardous waste landfill leachates. Chemosphere.2001,42(4):415-418
    [5]马晓雁,高乃云,李青松,徐斌,乐林生,吴今明.黄浦江原水及水处理过程中内分泌干扰物状况调查.中国给水排水.2006,22(19):1-4
    [6]Peng X Z, Wang Z D, Mai B X, Chen F R, Chen S J, Tan J H, Yu Y Y, Tang C M, Li K C, Zhang G, Yang C. Temporal trends of nonylphenol and bisphenol A contamination in the Pearl River Estuary and the adjacent South China Sea recorded by dated sedimentary cores. Science of The Total Environment.2007,384(1-3):393-400.
    [7]张新荣,胡克,王东坡.东北地区泥炭表土中植硅体的形态特征.地理科学.2007,27(6):831-836
    [8]Khalili N R, Scheff P A, Holsen T M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment.1995,29(4):533-542
    [9]Readman J W, Fillmann G, Tolosa I, Bartocci J, Villeneuve J P, Catinni C, Mee L D. Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin.2002,44(1): 48-62
    [10]Richter H, Granata S, Green W H, Howard J B. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of The Combustion Institute.2005,30(1):1397-1405
    [11]王连生.有机污染物化学(下).北京:科学出版社,1991
    [12]Cheng K Y, Wong J W C. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil-water system. Chemosphere.2006,62(11):1907-1916
    [13]贾鸿宁,戴红.多环芳烃的致癌性及其机制研究进展.大连医科大学学报.2009,31(5):604-607,620
    [14]占新华,周立祥.多环芳烃(PAHs)在土壤-植物系统中的环境行为.生态环境.2003,12(4):487-492
    [15]Aas E, Baussant T, Balk L, Liewenborg B, Andersen O K. PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure:a laboratory experiment with Atlantic cod. Aquatic Toxicology.2000, 51(2):241-258
    [16]Yamano Y, Miyakawa S, Iizumi K, Itoh H, Iwasaki M, Tsugane S, Kagawa J, Nakadate T. Long-term study of urinary bisphenol A in elementary school children. Environmental Health and Preventive Medicine.2008,13(6):332-337
    [17]Durant J L, Busby W F, Lafleur A L, Penman B W, Crespi C L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Research/Genetic Toxicology.1996,371(3-4):123-157
    [18]何苗,张晓健.焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性.中国给水排水.1997,13(1):14-17
    [19]韦朝海,贺明和,任源,李国保,陈金贵.焦化废水污染特征及其控制过程与策略分析.环境科学学报.2007,27(7):1083-1093
    [20]于国光,王铁冠,吴大鹏.薪柴燃烧源和燃煤源中多环芳烃的成分谱研究.生态环境.2007,16(2):285-289
    [21]朱利中,王静,杜烨,许青青.汽车尾气中多环芳烃(PAHs)成分谱图研究.环境科学.2003,24(3):26-29
    [22]Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France):concentrations and sources. Science of The Total Environment.2007, 384(1-3):280-292
    [23]马健,翟永越,王东辉.多环芳烃在松花江水环境中的富集及对生态环境的影响.环境科学与管理.2006,31(1):91-92
    [24]Laak T L, Bekke M A, Hermens J L M. Dissolved organic matter enhances transport of PAHs to aquatic organisms. Environmental Science and Technology.2009,43(23):9044
    [25]Weissenfels W D, Klewer H J, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles:influence of biodegradability and biotoxicity. Applied Microbiology and Biotechnology.1992,36(5):689-696
    [26]许士奋,蒋新.长江和辽河沉积物中的多环芳烃类污染物.中国环境科学.2000,20(2):128-131
    [27]Sanders M, Sivertsan S, Scott G Origin and distribution of polycyclic aromatic hydrocarbons in surficial sediments from the Savannah River. Archives of Environmental Contamination and Toxicology.2002,43(4):438-448
    [28]李竺.多环芳烃在黄浦江水体的分布特征及吸附机理研究[博士学位论文].上海:同济大学,2007
    [29]Wang X C, Zhang Y X, Chen R F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fraction in sediments from the Boston Harhor, United States. Marine Pollution Bulletin.2001,42(11):1139-1149
    [30]Viguri J, Verde J, Irabien A. Environmental assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Santander Bay, Northern Spain. Chemosphere.2002,48(2):157-165
    [31]Witt G. Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Marine Chemistry.2002,79(2):49-66
    [32]麦碧娴,盛国英.珠江三角洲河流和珠江口表层沉积物中有机污染物研究-多环芳烃和有机氯农药的分布及特征.环境科学学报.2000,20(2):192-197
    [33]王淑娟,周翔,许宜平,马梅,刘文利,李太山.北方某城市饮用水中多环芳烃的来源及其在水处理过程中的行为研究.环境工程学报.2007,1(8):52-56
    [34]邓红梅,梁春营,陈永亨.水环境中双酚A的污染及其生态毒理效应.环境生物学.2009,31(7):70-76
    [35]端正花,张斌田,朱琳.双酚A对斑马鱼胚胎发育阶段的毒性及生物蓄积.中国环境科学.2008,28(3):260-263
    [36]李惠云,刘鹏威,魏华.双酚A对鲫雌激素受体表达和雌二醇水平的影响.上海水产大学学报.2008,17(6):641-646
    [37]邓茂先,吴德生,詹立.环境雌激素双酚A的生殖毒理研究.环境与健康杂志.2001,18(3):134-136
    [38]Lindholst C, Pedersen K L, Pedersen S N. Estrogenic response of bisphenol A in rainbow trout (oncorhynchus mykiss). Aquatic Toxicology.2000,48(2-3):87-94
    [39]Palanza P, Gioiosa L, vom Saal FS, Parmigiani S. Effects of developmental exposure to bisphenol a on brain and behavior in mice. Environmental Research.2008,108(2):150-157.
    [40]Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. Journal of Clinical Endocrinology and Metabolism.2002,87(1):5185-5190
    [41]Munoz-de-Toro M, Markey G M, Wadia P R, Luque E H, Rubin B S, Sonnenschein C, Sato A M. Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice. Endocrinology.2005,146(9):4138-4147
    [42]Ahel M, Giger W. Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere.1993,26(8):1471-1478
    [43]Klotz D M, Hewitt S C, Korach K S, Diaugustine R P. Activation of a uterine insulin-like growth factor I signaling pathway by clinical and environmental estrogens:requirement of estrogen receptor-a. Endocrinology.2000,141(9):3430-3439
    [44]Hayashi Y, Matsuda R, Haishima Y, Yagami T, Nakamura A. Validation of HPLC and GC-MS systems for bisphenol-A leaches from hemodialyzers on the basis of FUMI theory, Journal of Pharmacy and Biomedical Analysis.2002,28(3-4):421-429
    [45]Goodson A, Robin H, Summerfield W, Cooper I. Migration of bisphenol A from can coatings-effects of damage, storage conditions and heating. Food Additives and Contaminants. 2004,21(10):1015-1026
    [46]Suzuki T, Nakagawa Y, Takano I, Yaguchi K, Yasuda K. Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environmental Science and Technology.2004,38(8):2389-2396
    [47]Zafra A, Olmo M, Suareza B, Hontoriab E, Navalona A, Vilchez J L. Gas chromatographic-mass spectrometric method for the determination of bisphenol A and its chlorinated derivatives in urban wastewater. Water Research.2003,37(4):735-742
    [48]Sajiki J, Yonekubo J. Leaching of bisphenol A (BPA) from polycarbonate plastic to water containing amino acids and its degradation by radical oxygen species. Chemosphere.2004, 55(6):861-867
    [49]Furhacker M, Scharf S, Weber H. Bisphenol A emissions from point sources. Chemosphere.2000,41(5):751-756
    [50]Czaplicka M. Determination of phenols and chlorophenols in bottom sediments. Chromatographia.2001,53(S1):470-473
    [51]Davi M L, Gnudi F. Phenolic compounds in surface water. Water Research.1999, 33(14):3213-3219
    [52]李睿,刘玉,谭凤仪,陈桂珠,栾天罡.微小小环藻对双酚A的富集与降解.环境科学学报.2006,26(7):1101-1106
    [53]庄惠生,杨光.双酚A对鲤鱼急性和亚急性毒性的研究.环境化学.2005,24(6):682-684.
    [54]Watabe Y, Kondo T, Morita M, Tanaka N, Haginaka J, Hosoya K. Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. Journal of Chromatography. 2004,1032(1-2):45-49
    [55]Ying G G, Kookana R S, Dillon P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research.2003,37(15):3785-3791
    [56]Kang J H, Kondo F. Bisphenol A degradation in seawater is different from that in river water. Chemosphere.2005,60(9):1288-1292
    [57]Fromme H, Kuchler T, Otto T, Pilz K, Muller J, Wenzel A. Occurrence of phthalates and bisphenol A and F in the environment. Water Research.2002,36(6):1429-1438
    [58]Staple C A, Dome P B, Klecka G M, Oblock S T, Harris L R. A review of the environmental fate, effects and exposures of bisphenol A. Chemosphere.1998,36(10): 2149-2173
    [59]董军.珠三角地区鱼塘水体中双酚A污染及其生态风险评价.中国生态农业学报.2009,17(6):1240-1244
    [60]宋宏宇,王捷.环境内分泌干扰物与农药.农药科学与管理.2001,22(2):23-25
    [61]王宏,沈英娃.烷基酚聚氧乙烯醚类物质的环境雌激素效应.中国环境科学.1999,19(5):427-431
    [62]Forbes V E, Warbritton R, Aufderheide J, Hoeven N V D, Caspers N. Effects of bisphenol A on fecundity, egg hatchability, and juvenile growth of Marisa cornuarietis. Environmental Toxicology and Chemistry.2008,66(3):309-318
    [63]Hill M, Stabile C, Steffen L K, Hill A. Toxic effects of endocrine disruptors on freshwater sponges:common developmental abnormalities. Environmental Pollution.2002, 117(2):295-300
    [64]Marcial H S, Hagiwara A, Snell T W. Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environmental Toxicology and Chemistry.2003, 22(12):3025-3030
    [65]Mihaich E M, Friederich U, Caspers N, Hall A T, Klecka G M, Dimond S S, Staples C A, Ortego L S, Hentges S G. Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicology and Environmental Safety.2009,72(5):1392-1399.
    [66]原盛广,王东红,马梅,王子健,吴玉英.自来水厂不同净水工艺对持久性有机物的去除效果试验研究.环境工程学报.2008,2(5):586-590
    [67]Brown J N, Peake B M. Determination of colloidally-associated polycyclic aromatic hydrocarbons (PAHs) in fresh water using C18 solid phase extraction disks. Analytica Chimica Acta.2003,486(2):159-169
    [68]Sun L Y, Sun W L, Ni J R. Partitioning of water soluble organic carbon in three sediment size fractions:effect of the humic substances. Journal of Environmental Science.2009,21(1): 113-119
    [69]Luo X J, Mai B X, Yang Q S, Fu J M, Sheng G Y, Wang Z S. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao Harbor in the Pearl River Delta in South China. Marine Pollution Bulletin. 2004,48(11-12):1102-1115
    [70]Hsieh Y N, Huang P C, Sun I W, Whang T J, Hsu C Y, Huang H H, Kuei C H. Nafion membrane-supported ionic liquid-solid phase microextraction for analyzing ultra trace PAHs in water samples. Analytica Chimica Acta.2006,557(1-2):321-328
    [71]高媛,孙红文.菲在不同地质吸附剂上吸附/解吸的研究.环境化学.2008, 27(2):158-163
    [72]Valderrama C, Gamisans X, Heras X, Farran A, Cortina J L. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon:Intraparticle diffusion coefficients. Journal of Harzardous Materials.2008,157(2-3):386-396
    [73]Bautista-Toledo I, Ferro-Garcia M A, Moreno-Castilla C, Vegas F J. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environmental Science and Technology.2005,39(16):6246-6250
    [74]Anbia M, Moradi S.E. Adsorption of naphthalene-derived compounds from water by chemically oxidized nanoporous carbon. Chemical Engineering Journal.2009, 148(2-3):452-458
    [75]Thorsen W A, Cope W G, Shea D. Bioavailability of PAHs:effects of soot carbon and PAH source. Environmental Science and Technology.2004,38(7):2029-2037
    [76]陆志强,郑文教,马丽.两种红树植物落叶碎屑对海水中多环芳烃的吸附作用.厦门大学学报(自然科学版).2008,47(4):607-610
    [77]宋立岩.仿生脂肪吸溶材料制备及对水体中疏水性有机污染物去除的研究[博士学位论文].上海:同济大学,2006
    [78]刘建武,林逢凯,王郁,胥峥,张啸.水生植物根系对多环芳烃(萘)吸附过程研究.环境科学与技术.2003,26(2):32-34
    [79]Zeledon-Toruno Z C, Lao-Luque C, Heras F X C, Sole-Sardans M. Removal of PAHs from water using an immature coal (leonardite). Chemosphere.2007,67(3):505-512
    [80]Perminova I V, Gerchishcheca N Y, Petrosyan V S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons:relevance of molecular descriptors. Environmental Science and Technology.1999,33(21):3781-3787
    [81]陈静,王学军,胡俊栋,陶澍,刘文新.多环芳烃(PAHs)在砂质土壤中的吸附行为.农业环境科学学报.2005,24(1):69-73
    [82]Johnson M D, Huang W L, Werbr W J. A distributed reactivity model for sorption by soils and sediments.13. Simulated diagenesis of natural sediment organic matter and its impact on sorption/desorption equilibria. Environmental Science and Technology.2001,35(8): 1680-1687
    [83]Karapanagioti H K, Kleineidam S, Sabatini D A, Grathwohl P, Ligouis B. Impacts of heterogeneous organic matter on phenanthrene sorption:equilibrium and kinetic studies with aquifer material. Environmental Science and Technology.2000,34(3):406-414
    [84]王燕春,刘启凯,赵庆祥.双酚A的活性炭吸附特性.华东理工大学学报(自然科学版).2006,32(4):431-433,479
    [85]Liu, G F, Ma J, Li X C, Qin Q D. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials. 2009,164(2-3):1275-1280
    [86]Tsai W T, Lai C W, Su T Y. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents. Journal of Hazardous Materials,2006,134(1-3):169-175
    [87]Hsu H C, Su T Y, Lin K Y, Lin C M. Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite. Journal of Colloid and Interface Science.2006, 299(2):513-519
    [88]唐文清,曾荣英,冯泳兰,曾光明,陈朝猛.碳羟基磷灰石处理有机废水的研究.水处理技术.2007,33(4):30-32
    [89]陈素清,梁华定,邱昀芳.碳纳米管吸附水溶液中双酚A的热力学.应用化学.2009,26(5):571-575
    [90]Cao F M, Bai P L, Li H C, Ma Y L, Deng X P, Zhao C S. Preparation of polyethersulfone-organophilic montmorillonite hybrid particles for the removal of bisphenol A. Journal of Hazardous Materials.2009,162(2-3):791-798
    [91]孙卫玲,倪晋仁,郝鹏鹏,孙莉英.泥沙对双酚A的吸附及其影响因素研究.环境科学学报.2004,24(6):975-981
    [92]信晶,王婷,黎娜,李鱼.阳离子表面活性剂对沉积物及其主要组分吸附双酚A的影响.生态环境学报.2009,18(3):885-890
    [93]袁加程.环境化学.北京:化学工业出版社,2010
    [94]Oepen B, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils: Process, measurement and experience with the applicability of the modified OECD-guideline. Chemosphere.1991,22(3-4):285-304
    [95]孙兆海,毛丽,冯政,余益军,于红霞.污水中溶解性有机质对土壤吸附四溴双酚A的影响.农业环境科学学报.2008,27(6):2222-2226
    [96]Chen B L, Zhu L Z, Zhu J X, Xing B X. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. Environmental Science and Technology.2005,39(16):6093-6100
    [97]路佳.纳米分子筛组装体吸附水体中痕量甲基叔丁基醚及其机理研究[博士学位论文].上海:上海交通大学,2008
    [98]Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water:a review. Journal of Hazardous Materials.2003,97(1-3):219-243
    [99]Iqbal M, Saeed A, Akhtar N. Petiolar felt-seath of palm:a new biosorbent for the removal of heavy metals from contaminated water. Bioresource Technology.2002, 81(2):151-153
    [100]Low K S, Lee C K, Ng A Y. Column study on the sorption of Cr (VI) using quarternized rice hulls. Bioresource Technology.1999,68(2):205-208
    [101]Raji S, Anirudhan T S. Removal of Hg(II) from aqueous solution by sorption on polymerized saw dust. Indian Journal of Chemical Technology.1996,3(1):49-54
    [102]Brandao P C, Souza T C, Ferreira C A, Hori C E, Romanielo L L. Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. Journal of Hazardous Materials.2010,175(1-3):1106-1112
    [103]Chung M K, Tsui M T K, Cheung K C, Tam, N F Y, Wong M H. Removal of aqueous phenanthrene by brown seaweed Sargassum hemiphyllum:sorption-kinetic and equilibrium studies. Separation and Purification Technology.2007,54(3):355-362
    [104]Lohani M B, Singh A, Rupainwar D C, Dhar D N. Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (Ⅱ) from aqueous solutions. Journal of Hazardous Materials.159(2-3):626-629
    [105]黄翔,宗浩,陈文祥,陈施羽,张翔.花生壳对水溶液中铜离子的吸附特性.四川师范大学学报(自然科学版).2007,30(3):380-383
    [106]Crisafully R, Milhome M A L, Cavalcante R M, Silveira E R, Keukeleire D, Nascimento R F. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresource Technology.2008,99(10): 4515-4519
    [107]刘志生,伊军,张国立,王建辉.炭化稻壳吸附去除水中硝基苯的试验.环境化学.2008,27(2):190-192
    [108]Namasivayam C, Sureshkumar M V. Removal of chromium(Ⅵ) from water and wastewater using surfactant modified coconut coir pith as a biosorbents. Bioresource Technology.2008,99(3):2218-2225
    [109]王宇.利用农业秸秆制备阴离子吸附剂及其性能的研究[博士学位论文],山东:山东大学,2007
    [110]Sharma D C, Forster C F. Column studies into the adsorption of chromium(Ⅵ) using sphagnum moss peat. Bioresource Technology.1995,52(3):261-267
    [111]杨浩明,龚小平,曾跃.泥炭在水处理中除磷研究进展.能源研究与信息.2009,25(2):94-97
    [112]姚冬梅,付春香,李萍.泥炭对重金属离子的吸附性能.黑龙江科技学院学报.2006,16(1):38-40
    [113]Qin F, Wen B, Shan X Q, Xie Y N, Liu T, Zhang S Z, Khan S U. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environmental Pollution.2006, 144(2):669-680
    [114]Brown P A, Gill S A, Allen S J. Metal removal from wastewater using peat. Water Reaearch.2000,34(16):3907-3916
    [115]Ringqvist L, Oborn I. Copper and zinc adsorption onto poorly humified Sphagnum and Carex peat. Water Research.2002,36(9):2233-2242
    [116]Ho Y S, McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal.1998,70(2):115-124
    [117]McNevin D, Barford J, Hage J. Adsorption and biological degradation of ammonium and sulfide on peat. Water research.1999,33(6):1449-1459
    [118]Calderon M, Moraga C, Leal J, Agouborde L, Navia R, Vidal G.The use of Magallanic peat as non-conventional sorbent for EDTA removal from wastewater. Bioresource Technology.2008,99(17):8130-8136.
    [119]Viraraghavan T, Alfaro F M. Adsorption of phenol from wastewater by peat, fly ash and bentonite. Journal of Hazardous Materials.1998,57(1-3):59-70
    [121]白燕,赵霞.泥炭净化含油污水的技术和方法.城市环境与城市生态.1996,9(3):11-14.
    [122]Zadaka D, Mishael Y G, Polubesova T, Serban C, Nir S. Modified silicates and porous glass as adsorbents for removal of organic pollutants from water and comparison with activated carbons. Applied Clay Science.2007,36(1-3):174-181
    [123]Zhou Y B, Tang X Y, Hu X M, Stefan F, Lu J. Emulsified oily wastewater treatment using a hybrid-modified resin and activated carbon system. Separation and Purification Technology.2008,63(2):400-406
    [124]朱利中,陈宝梁.有机膨润土吸附水中多环芳烃的性能及机理研究.环境科学学报.2000,20(1):21-26
    [125]Zhu L Z, Chen B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water. Environmental Science and Technology.2000, 34(14):2997-3002
    [126]Yang B W, Chang Q. Wettability studies of filter media using capillary rise test. Seperation and Purification Technology.2008,60(2):335-340.
    [127]Lin D H, Pan B, Zhu L Z, Xing B S. Characterization and phenanthrene sorption of tea leaf powders. Journal of Agriculture and Food Chemistry.2007,55(14):5718-5724
    [128]Ajuong E-MA, Redington M. Fourier transform infrared analyses of bog and modern oak wood (quercus petraea) extractives. Wood Science Technology.2004,38(3):181-190
    [129]Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science and Technology.2006,40(6):1855-1861
    [130]Chiou C T, McGroddy S E, Kile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology.1998,32(2): 264-269
    [131]Chefetz B, Deshmukh A P, Hatcher P G. Pyrene sorption by natural organic matter. Environmental Science and Technology.2000,34(14):2925-2930
    [132]Eberhardt T L, Min S H, Han J S. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride. Bioresource Technology.2006, 97(18):2371-2376
    [133]Yoon Y, Westerhoff P, Snyder S, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A,17β-estradiol, and 17a-ethynyl estradiol on powdered activated carbon. Water Research.2003,37(14):3530-3537
    [134]沈学优,卢瑛莹,朱利中,朱春江.有机膨润土吸附水中有机物的盐效应及其机理.中国环境科学.2003,23(1):77-80
    [135]陈宝梁,朱利中.阴-阳离子有机膨润土吸附水中对硝基苯酚的性能及机理研究.浙江大学学报(理学版).2002,29(3):317-323
    [136]沈学优,卢瑛莹.有机物在水/双阳离子有机膨润土界面的吸附贡献率研究.浙江大学学报(理学版).2003,30(1):69-74
    [137]戚文彬,朱利中.离子型-非离子型混合表面活性剂对显色反应作用的研究及其应用,Ⅳ.用显色剂在胶束相的有效介电常数及分配系数探讨反应机理.化学学报.1987,45(2):707-710
    [138]马培,张丹,何海江.聚乙烯醇-海藻酸钠固定香菇废弃物吸附Pb和Cd的最佳配方.应用与环境生物学报.2009,15(5):724-729

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700