蛭石人工湿地脱氮机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文探索了天然蛭石作为人工湿地填料的可行性,并针对城镇生活污水的污染控制,进行了模拟试验与机理研究。将蛭石吸附处理技术应用于人工湿地处理工艺是蛭石应用的新领域,同时,填料的生物再生也是近年来人工湿地污水处理技术的研究热点。本研究内容主要包括:(1)天然蛭石挂膜试验:(2)挂膜后的生物蛭石参数调节试验;(3)生物蛭石脱氮机理探究试验。
     (1)蛭石的挂膜运行试验表明:蛭石具有易挂膜性,2至3周内就能成功实现挂膜,由天然蛭石变为生物蛭石,形成蛭石与微生物之间的协同作用,一方面蛭石对氨氮具有离子交换吸附作用,另一方面微生物对吸附后的氨氮有生物转化作用,使得蛭石对氨氮的去除能力被大大增强。
     (2)挂膜好的生物蛭石柱运行试验表明:在pH=7.89、DO=5.40 mg/L的情况下,系统的运行效果相比之下最好。进水中氨氮和总氮的去除率达到了最大,分别为56%和45%。一般的城镇生活污水都可以达到pH=7.89、DO=5.40 mg/L的条件,所以在不需要额外改变废水溶解氧和碱度的条件下,生物蛭石柱就能达到较好的氮处理效果,处理后的出水,氨氮浓度达到二级污水处理厂的废水排放标准。生物蛭石柱在冬季对于污染物的去除,总的来看效果不及夏季。其中,受影响最大的是对进水中COD的去除,去除率由夏季的69.80%下降到44.18%,其次是T-N从夏季的45.00%降到了冬季的30.00%,氨氮也由夏季的55.00%下降到了44.00%,受季节温度影响最小的是蛭石柱对T-P的去除。
     (3)生物蛭石脱氮机理探究试验表明:在生物蛭石柱中,氮素的转化不符合单一的传统硝化—反硝化理论,也不符合单一的短程硝化理论。通过对试验现象的观察以及对试验数据进行的氮素平衡分析得出,厌氧氨氧化脱氮过程在生物蛭石柱内发生,蛭石表面的高氨氮环境为这一反应提供了可能。然而,传统意义上的硝化—反硝化过程也在生物蛭石柱内进行。挂膜后的生物蛭石柱内,氮素去除是依靠硝化—反硝化和厌氧氨氧化这两种作用共同来完成的。经测定,生物蛭石柱内,上层蛭石的硝化强度最大为4.38×1.0-3 mg/g.h,中部最小为0.63×10-3 mg/g.h,底层硝化速率为1.90×10-3 mg/g.h。反硝化强度则恰好相反,中部最大。所不同的是,厌氧氨氧化反应在生物蛭石柱上部、中部、底部的反应强度相当,平均大约为1.00×10-3 mg/g.h,这说明了厌氧氨氧化菌生长在蛭石生物膜的内层,且在蛭石柱内的分布没有受溶解氧和有机物浓度变化的影响。对生物蛭石柱中基质上生物膜有机质进行测定后,发现基质上生物膜的发育达到了较高的水平,上、中、下层基质生物膜的VSS均值可达到26.41 mg/g,说明蛭石上的生物膜生长良好,蛭石作为生物膜的载体发挥了很好的附着作用。对于特殊功能菌进行计数结果表明,本试验测定的硝化细菌个数与反硝化细菌个数都较少,其数量处于其他人研究结果的下限。
     以上的研究结果对蛭石填料人工湿地技术提供了理论支持。生物量、生物反应强度、微生物数量,这些测定指标因为其特有的特征和性能,可以作为衡量人工湿地发育程度的关键指标,本研究通过测定这些指标对于以后更加深入地阐明人工湿地的净化机理、建立人工湿地评价体系做了有益的探索性的工作。同时,本研究关于厌氧氨氧化脱氮反应在生物蛭石系统中的发现和验证,丰富了现阶段脱氮领域关于厌氧氨氧化反应的研究。
The thesis investigates the possibility of the natural vermiculite to be the constructed wetlands filling; moreover, simulation experiment and the mechanism research for control the pollution because of the living waste water were done. It is the new area for the vermiculite application that the treatment technique of the vermiculite adsorption was applied to constructed wetlands. Recently, bio-regeneration of the filling is the hot point in the technique research on the constructed wetlands. This research contents mainly include:(1) the bio-film growing experiment of the natural vermiculite; (2) the parameter adjusted experiment of the intake with bio-vermiculite pole; (3) the mechanism explored experiment of the N removal of the bio-vermiculite pole.
     (1) the bio-film growing experiment on the natural vermiculite is shown as follows: It is easy for the natural vermiculite to be the carrier of the bio-film, becoming the bio-vermiculite, which comes into being the assimilation and transformation between the vermiculite and bacteria in 2-3 weeks. On the one hand there is the ion exchange adsorption to the ammonia nitrogen owing to the vermiculite; on the other hand, the adsorbed NH4+ can be transformed by the microbe, thus the ability of removal of the NH4+ for vermiculite can be greatly strengthened。
     (2) the parameter adjusted experiment of the intake bio-vermiculite is shown:the best effect can be gained under the given condition of pH=7.89, DO=5.40 mg/L, which makes the removal rate of the ammonia nitrogen and the total nitrogen best, 56.00%,45.00%, respectively. The normal living waste water can conveniently attain the condition of pH=7.89, DO=5.40 mg/L. So bio-vermiculite pole has the better treatment effect of removal of nitrogen under unnecessary extra adjustment of the intake parameter. The outtake can attain theⅡrank standard of the national waste water integrated outflow standard. The treatment effect in the summer is better than in the winter. All of them, it causes the removal of COD most remarkably affected from summer of 69.80% to 44.18% in winter, secondly, that of T-N from 45.00% of the summer to the winter of 30.00%, and then that of ammonia nitrogen from 44.00% by 55.00% of the summer. Meanwhile, the effect rate of the T-P is also hardly affected.
     (3) the mechanism explored experiment of the N removal for the bio-vermiculite is also shown:in the bio-vermiculite pole, the transformation of nitrogen doesn't agree with the traditional theory of the nitrification and the denitrification as well as the single and short process nitrification. According to the analyzing of the nitrogen balance and observing the experimental phenomena, the anaerobic ammonia oxidation, has happened in the pole. The condition of the high ammonia nitrogen at the vermiculite surface makes the reaction possible. However, the reaction of the traditional nitrification and denitrifi cation also happens in the pole. According to the results of determination, the most intensity of nitrification of the bio-vermiculite is 4.38×10-3 mg/g.h in the upper layer; that of the least in the middle is 0.63×10-3 mg/g.h, and 1.90×10-3 mg/g.h at the bottom. While the intensity of the denitrification in the pole is opposite against that of the nitrification, and the most intensity of denitrification is in the middle. Moreover the intensity of anaerobic ammonia oxidation is almost equal, average 1.00×10-3mg/g.h. This explains that the anaerobic ammonia oxidation bacteria grows in the bio-film endothecium, and the inner layer can not be affected by the organic substance and DO. According to the test results of VSS of the bio-film in the substance of the pole, the bio-film on the filling grows well, the average VSS 26.41 mg/g. Thus, as the carrier of the bio-vermiculite, the natural vermiculite plays a good adhering function. The results of counting the special function bacterium show that the amount of the denitrification and nitrification bacterium are little, at the floor level of the other investigation.
     The research results offer the theoretical support for the constructed wetlands used vermiculite as filling. At the same time, the indexes of biomass, the intensity reaction, the microorganism quantity, which can be the key index to measure the developmental degree of the constructed wetlands because of its special characteristic and function, are determined in this study, thus it is helpful to clarify the decontamination mechanism of the constructed wetlands and establish the evaluated the system. The discovery and validation concerning on verifications anaerobic ammonia oxidation reaction in the bio-vermiculite system make the field of current removal nitrogen on anaerobic ammonia oxidation reaction rich.
引文
[1]国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究[M].第一版.北京:中国环境科学出版社,2001.
    [2]张智,林艳,梁健.水体富营养化及其治理措施[J].重庆环境科学,2002,24(3):73—76.
    [3]金相灿,等.中国湖泊富营养化调查[M].第一版.北京:中国环境出版社,1990.
    [4]徐亚同.废水中氮磷的处理[M].第一版.上海:华东师范大学出版社,1996.
    [5]郑兴灿.污水除磷脱氮技术与应用[M].第一版.北京:中国建筑工业出版社,1998.
    [6]孙锦宜.含氨氮废水处理技术与应用[M].第一版.北京:化学工业出版社,2003.
    [7]刘钰畴.污水脱氮技术浅析[J].有色冶金设计与研究,2002,23(1):26—29.
    [8]张小玲.生物膜内亚硝化过程及反硝化特性研究[D].西安:西安建筑科技大学,2001.09—13.
    [9]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].第一版.北京:中国环境科学出版社,1999.
    [10]王凯军,贾立敏.城市污水生物处理新技术开发与应用[M].第一版.北京:化学工业出版社,2001.
    [11]冯生华.城市中小型污水处理厂的建设与管理[M].第一版.北京:化学工业出版社,2001.
    [12]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学工业出版社,2004.5.
    [13]Straous M, Van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(ANAMMOX) process in different configuration[J]. Water Research,1997,31(8):1955-1962.
    [14]Mulder A, van de Graaf, Robertson L A,et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol Ecol,1995,16(3):177-183.
    [15]Van de Graaf, Mulder A, de Bruijin P. Anaerobic oxidation of ammonium is a biologically mediated process[J].Appl Environ Microbiol,1995,61(11):1246-1251
    [16]Khalil R.The global sources of Nitrous Oxide[J]. Journal of Geophysical Research,1992,97(D13):14651-14660.
    [17]Knowles R.Denitrification[J].16 Microbid Rev,1982,46:43-70.
    [18]Voets J P,et al. Revmoval of nitrogen from highly nitrogenous wasterwater[J].JWPCF,1975,47:394-398.
    [19]张鹏,周琪,屈计宁.同时硝化与反硝化研究进展[J].重庆环境科学,2001,23(6):20—24.
    [20]Jetten M.S.M, et al. Towards a more sustainable municipal wastewater treament system[J].Water Sci Rev,1997,23(9):171-180.
    [21]Jetten M.S.M,Strous M, et al. The anaerobio oxidation of ammoniun [J].FEMS Microbiol Rev,1999,22:421-437.
    [22]吕锡武,李峰,稻森悠平.氨氮废水处理过程中的好氧反硝化研究[J].给水排水,26(4):141—201.
    [23]Bortorre G, et al. Biological anoxic phosphorus removal the DEPHANOX process[J]. Wat Sci Tech,1996,34(1-2):119-128.
    [24]Baker P,Dold P.Denitrification behaviorin biological excess phosphorus removalactivated sludge system[J].Water Research,1996,30:769-780.
    [25]Kubat T, Murnleitner E, van Loosdrecht M C M, et al.Occurrence of denitrifying phosphorus removing bacteriain modified UCT-type wastewater. treatment plants[J].
    [26]Water Research,1997,31(4);777-786.
    [27]Kubat T, Murnleitner E, van Loosdrecht M C M, et al. A metabolic model for the biological phosphorus removal by denitrifuing organisms [J].
    [28]Biotech Bioeng,1996,52(6):685-695.
    [29]Kubat T, Murnleitner E, van Loosdrecht M C M, et al. Effect of nitrate on phosphorus release in biological phosphorus system[J].Wat Sci Tech,1994,30(6):263-269.
    [30]曹长青,等.反硝化除磷过程中的影响因素探讨[J].中国排水给水,2005,21(7):22—25.
    [31]吴军见,朱延美,王栋,等.固定化细胞技术在废水治理中的应用及降解动力学研究进展[J].辽宁化工,2002,31(1):20—25.
    [32]徐向阳.固定化细胞技术在废水处理中的应用[J].中国排水给水,1992,8(2):39—43.
    [33]王新,李培军,巩宗强,等.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120—122.
    [34]谭佑铭,罗启芳.固定化微生物反硝化菌去除水中的硝酸盐的研究[J].环境与健康杂志,2001,18(6):371—373.
    [35]张彤,曹国民,赵庆祥.固定化微生物脱氮技术进展[J].城市环境与城市生态,2000,13(2):17—20.
    [36]马兆昆.13碳纤维的微生物固着机制及在污水处理中的应用.
    [37]O Incc,B Kasa pgil ince, T Donnelly. Attchment,strength and perforumance of a porous media in an upflow anaerobic filter treating dairy wastewater[J].Wat Sci Tech,2000,41(4-5):261-270.
    [38]Breitenbucher K,Siegel M,Knupfer A,Radke M.Open pore sintered glass as a high-efficiency support medium in bioreactors:new results and long term expressed achieved in high-rate anaerobic digestion [J]. Wat Sci Tech,2000,22(1-2):25-32.; [39]Kavase M, Nomura T, Ma jima T. An anaerobic fixed bed reactor with a porous ceramic carrier [J]. Wat Sci Tech,1998,21(4-5): 77-86.
    [40]Cordoba P R, Sineriz F. characteristics of packing for anaerobic filter [J]. Envir Tech Lett,1990,1:213-218.
    [41]Van Den Berg L, Kennedy K J. Support materials foe stationary fixed films reactors for high-rate mehanogenic fermentation [J]. Biotech Lett,1981,3(4): 165-170.
    [42]朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学学报,2000,22(5):95.
    [43]周定,王建龙.固定化细胞在废水处理中的应用及前景[J].环境科学,1993,14(5):51—54.
    [44]House C H. Combining constructed wetland and aquatic and soil filter for reclamation and reuse of water[J]. Ecol Eng,1999,12:27-38.
    [45]Ays, e(Bayar) Muhammetoglu, Selc, uk Soyupak, A three-dimensional water
    quality-macrophyte interaction model for shallow lakes[J]. Ecological Modelling, 2000,133:161-180.
    [46]诸惠昌,等.新型废水处理工艺—人工湿的的设计方法[J].环境科学,1993,14(2):.39—43.
    [47]Habel R, et al. Constructed wetlands in Eurpe, Kadiec R H, et al. Selected proceedings the 4 TH international conference on wetland system to water pollution control[J]. Water Science Technology,1995,32[3]:306-315.
    [48]Brown D S, et al. Inventory of constructed wetland, the united states to water pollution control[J]. Water Science Technology,1994,29[4]:309-318.
    [49]Juwarlar A S, et al. Domestic wastewater treatment in India, Kadie R H, et al. Selected proceedings the 4 TH international conference on wetland system to water pollution control[J]. Water Science Technology,1995,32[3]:291-294.
    [50]Reed S C, Brown D S. constructed wetland design the first generation[J]. Water Research,1992,64(6):776-781.
    [51]Andrew P Knuzic. Natural treatment systems[J]. Wat Env Res,1994,66(4): 357-361.
    [52]朱彤,许振成,胡康萍,等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5)17—22.
    [53]Hans Brix. Use of constructed wetland in water pollution control:history development, present status and future perspectives [J]. Wat Sci Tech,1994,30(8): 209-223.
    [54]James J, Sartoris, Joan S Thullen, Larry B, et al. Investigation of nitrogen transformation in a southern California constructed wastewater treatment[J]. Ecological Engineering,2000,14:49-65.
    [55]吴晓磊.污染物质在人工湿地中的流向.中国给水排水.1994,10(1).
    [56]Kivaisi A K. The potential for constructed wetlands for waste water treament and reuse in developing countries:a review[J]. Ecological Engineering,2001,16: 545-560.
    [57]Drizo A, Frost C A, Grace J. Physico-chemical screening of hosphate-removing substrates for use in constructed wetland systems[J]. Wat Res,1999,33(7): 3595-3602.
    [58]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51- 59.
    [59]籍国东,孙铁衍,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2).
    [61]王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004.1.
    [62]梁威,吴振斌.人工湿地对污水中的氮磷的去除机制研究进展[J].环境科学与动态,2000.(3):32-37.
    [63]贺锋,吴振斌,陶箐等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005.26(1):47-50.
    [64]雉维国,王世和,黄娟等.潜流人工湿地低温域脱氮效果研究[J].中国排水给水,2005.21(8):37-40.
    [65]牛晓音,葛滢,常杰等.黑麦草在净化富营养化水的人工湿地生态工程中的作用[J].湿地科学,2004.2(3):202-207.
    [66]李旭东,周琪,张荣社等.三种人工湿地脱氮除磷效果比较研究[J].地学前缘(中国地质大学,北京;北京大学),2005.12(特刊):73—76.
    [67]唐翀鹏,张旭,李广贺.沸石—茭白复合床技术脱氮中试研究[J].环境污染治理技术与设备,2004.2:52—55.
    [68]张曦,吴为中,温东辉等.控制滇池流域降雨径流污染的沸石吸附技术[J].农业环境科学学报,2003.22(2):181—184.
    [69]张虎成,田卫,俞穆清等.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备,2004.5(2):11—15.
    [70]崔理华,朱夕珍,骆世明等.煤渣—草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报,2003.14(4):597—600.
    [71]Yingfeng Lin, Shuren Jing, Tiwen Wang, et al. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J]. Environmental Pollution,2002,119:413-420.
    [72]Yingfeng Lin, Shuren Jing, Tiwen Wang, et al. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J]. Environmental Pollution,2002,119:413-420.
    [73]Van Ocstrom A J. Nitrogen removal constructed wetlands treating nitrified meat
    processing effluent[J]. Wat Sci Tech,1995,32(3):137-147.
    [74]Xue Y, Kovaeie D A, David M B, et al. In site measurements of denitrification in constructed wetlands[J]. J. Environ. Qual,1999,28(1):263-269.
    [75]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49 55.
    [76]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1718—1723.
    [77]成水平,夏宜王争.香蒲、灯心草人工湿地的研究-Ⅰ.净化污水的空间[J].湖泊科学,1998,10(1):62-66.
    [78]丁延华.污水芦苇湿地处理系统示范工程的研究[J].环境科学,1992,13(2):5—8.
    [79]熊明彪,何建平,等.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(4):145-148.
    [80]张荣社,李广贺,周琪等.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005.26(4):83—86.
    [81]刘春常,夏汉平,简曙光等.人工湿地处理生活污水研究—以深圳石岩河人工湿地为例[J].生态环境,2005.14(4):536—539.
    [82]张甲耀,夏盛林,邱克明,等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报,1999,19(3):323—327.
    [83]P E Lim, T F Wong, D V Lim. Oxygen demand, nitrogen and copper removal by free-watersurface and subsurface-flow constructed wetlands under tropical conditions [J]. Environment International,2001,26:425-431.
    [84]赵桂瑜,杨永兴,杨长明.人工湿地污水处理系统脱氮机理研究进展[J].四川环境,2005,24(5):64—67.
    [85]陈秀荣,周琪.人工湿地脱氮除磷特性研究[J].环境污染与防治,2005,27(7):526-529.
    [86]熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展[J].2005,3(3):228—234.
    [87]李智等.人工湿地基质微生物和酶活性的空间分布[J].浙江林业科技,2005.24(3):1—5.
    [88]钟定胜,罗华铭.填料在自由水面人工湿地中的应用[J].环境与开发,2000.15(1):16—18.
    [89]李旭东,周琪,张荣社等.三种人工湿地脱氮除磷效果比较研究[J].地学前缘(中国地质大学,北京;北京大学),2005.12(特刊):73—76.
    [90]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002.21(10):603—605.
    [91]崔理华,朱夕珍,骆世明等.煤渣—草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报,2003.14(4):597—600.
    [92]胡曰利,吴晓芙,聂发辉.天然蛭石对污水中氨氮吸附去除率的影响[J].中南林学院学报,2004.24(1):29—33.
    [93]范轶,丁富新,胡宇华等.多孔载体存在下脱氮技术[J].清华大学学报(自然科学版),2001.41(12):59—61.
    [94]安立超,薛涛,孙静等.新型沸石填料间歇硝化反应器的研究[J].环境污染治理技术与设备,2003.9:89—91.
    [95]张荣社,周琪,李旭东等.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备,2002.12:9—11.
    [97]张荣社,周琪,李旭东等.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备,2002.12:9—11.
    [98]吴振斌,周巧红,贺锋等.构建湿地中试系统基质剖面微生物活性的研究[J].中国环境科学,2003.23(4):422—426.
    [99]刘国玉,赵月龙.污水生物脱氮方法研究[J].科技情报开发与经济,2003.13(4):80-81.
    [100]雉维国,王世和,黄娟等.潜流人工湿地低温域脱氮效果研究[J].中国排水给水,2005.21(8):37—40.
    [101]黄蕾,瞿建平,蒋鑫焱等.三种水生植物在不同季节去污能力的对比研究[J].环境保护科学,2005.31(129):44—47.
    [102]温东辉.天然沸石吸附—生物再生技术及在滇池流域暴雨径流污染控制中的试验与机理研究[M].北京:中国环境科学出版社,2003.11.
    [103]徐乐中.pH值碱度对脱氮除磷效果的影响及其控制方法[J].排水给水,1996.1:10—13.
    [104]梁威,吴振斌.人工湿地对污水中的氮磷的去除机制研究进展[J].环境科学与动态,2000.(3):32—37.
    [105]黄蕾,瞿建平,蒋鑫焱等.三种水生植物在不同季节去污能力的对比研究[J]. 环境保护科学,2005.31(129):44—47.
    [106]中国国家技术监督局.GB 8978-1996《污水综合排放标准》[S].北京:中国标准出版社,1996.
    [107]李今.人工湿地与城市水体中生物膜特性及功能研究[D].成都:中国科学院研究生院(水生生物研究所),2005.12-02.
    [108]吴振斌,梁威,成水平等.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报,2001.21(5):622—624.
    [109]李今,马剑敏,张征.复合垂直流人工湿地中基质生物膜特性[J].长江流域资源与环境,2006.15(1):54-57.
    [110]赵庆良.开封市河流水质变化趋势与水环境容量研究[D].开封:河南大学,2003.07-16.
    [111]刘焱,杨平,方冶华.生物流化床中生物膜特性与反应器效率的关系[J].环境科学进展,1998.07(05):113-122.
    [112]中国科学院南京土壤研究所微生物室编.土壤微生物研究法[M].北京:科学出版社,1985.4.
    [113]贺锋,吴振斌,陶箐等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005.26(1):47—50.
    [114]梁威,吴振斌,詹发萃等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004.16(4):312—317.
    [115]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001.17(2):193—198.
    [116]王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究[J].环境科学学报,2006.26(2):225-229.
    [117]张曦,吴为中,温东辉等.生物沸石床污水脱氮效果及机理[J].环境科学,2003.24(5):75—80.
    [118]丁晔.不同基质垂直流人工湿地处理猪场废水的应用研究[D].杭州:浙江大学,2005.07-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700