生物质真空热解液化制生物油及真空化学活化制活性炭研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能是可再生能源十分重要的组成部分,资源丰富,是取之不尽、用之不竭的可持续利用能源。生物质能源的开发利用是缓解我国能源和环境压力,建立可持续发展能源系统的有效措施。热化学技术是生物质高效利用的主要途径,是国内外专家学者密切关注的研究开发热点。其中,生物质热裂解技术由于可以将低品位的生物质能转化为高品质的液体燃料或高附加值产品而受到广泛关注。在生物质各种热化学转化过程中,热解过程的研究是最基本的内容,通过对生物质热解过程变化规律及其影响因素的研究,为实现高效热转化利用生物质能技术提供科学依据和帮助。
     本研究采用真空热重分析仪和自制的真空热解实验装置,对益阳地区7种农林废弃生物质进行了真空热重、真空热解液化和真空化学活化等实验研究,以探讨生物质真空热解特性行为和生物质真空化学活化法制备活性炭的规律等,主要内容包括以下几个方面:
     (1)对7种生物质进行了真空热重分析,考察了不同生物质原料、升温速率对生物质真空热解反应的影响。结果表明,7种生物质真空热解规律基本一致。热解过程主要分3个阶段:自由水解吸附及抽取物析出阶段、热裂解急剧失重阶段和残余物缓慢分解阶段。相同条件下7种生物质总失重率大小顺序为:杉木屑>玉米秸秆>松木屑>刺桐木屑>豆秆>稻壳>花生壳。其中林业生物质的最大峰值温度、热解速率、起始分解温度、热稳定性均大于农业生物质。热解温度为500℃时,7种生物质的真空热解反应基本完成。随着升温速率的增加,生物质的热重曲线右移,峰值温度向高温方向偏移,生物质真空热分解的主反应温度区间增宽。杉木屑真空热解反应近似为一级反应。
     (2)以杉木屑为原料,进行了真空热解液化实验研究,探讨了过程参数对热解产物的影响。结果表明,杉木屑真空热解液化较佳热解温度为500℃,较佳体系压力为20kPa,较佳保温时间为60min。与快速热解相比,杉木屑真空热解在较低的升温速率下也能得到较高的生物油产率。真空热解产物以生物油为主,在较佳工艺条件下杉木屑真空热解制备生物油的产率可达67%以上。不同热解条件下制得生物油样品的主要化学成分及其相对含量差别较大,通过选择合适的热解参数可获取附加值较高的生物油,以提高生物油的应用价值。杉木屑真空热解炭已经具有初步的孔隙结构,孔隙以微孔为主,具备进一步扩展的潜力,是优良的制备活性炭的原材料。
     (3)以7种生物质为原料,进行了真空热解液化制取生物油的实验研究,考察了生物质种类对真空热解产物产率、生物油理化性质的影响。7种生物质的真空热解产物均以生物油为主,生物油产率均在55%以上。其中林业生物质的生物油产率较农业生物质高,杉木屑的生物油产率最高,为67.25%,玉米秸秆的生物油产率最低,为55.46%。7种生物油的pH值为1.82~3.24,pH_(林业生物油)<pH_(农业生物油),密度为1.0163~1.1670,ρ_(林业生物油)>ρ_(农业生物油),粘度较小,为2.29~7.36mm~2/s,η_(林业生物油)>η_(农业生物油)。7种生物油所含化合物类型相似,但具体化学组分及其相对含量有一定的差别,如稻壳生物油中呋喃衍生物相对含量最高,为22.8%,杉木屑生物油中呋喃衍生物含量最少,仅为0.99%。杉木屑生物油中苯酚及其衍生物的相对含量最高达72.81%,豆秆生物油中这类化合物的相对含量最少,为23.97%。仅杉木屑生物油中检测出具有抗菌、健胃、麻醉、降血压等药理作用的丁香酚。
     (4)根据原料的化学组成、分子结构以及真空热解产物生物油组分的结构,对生物质真空热解制备生物油的机理进行了初步探讨,得出生物油主要组分的形成机理。
     (5)采用自制的真空热解装置,以氯化锌为活化剂,对7种生物质进行了真空化学活化法制备活性炭以及以杉木屑为原料常压化学活化法制备活性炭的实验研究。讨论了体系压力、活化条件等过程参数对活性炭性能的影响。结果表明,7种生物质的活性炭产率在40%左右。杉木屑是制备活性炭的最适宜原料。杉木屑真空化学活化制备活性炭的最佳反应体系压力为20.5kPa。在较佳工艺条件下通过真空化学活化,可以同时得到性能优良的活性炭和高附加值的生物油。活性炭以微孔结构为主,比表面积为1070.59m~2/g,微孔体积为0.5581cm~3/g,平均孔径为2.085nm,碘吸附值和亚甲基蓝吸附值分别为1142.92mg/g和131.24mg/g。杉木屑真空条件下制备的活性炭,其对氮气的吸附等温线均属于Ⅰ类型吸附等温线,可以使用Langmiur方程描述。随反应体系压力的下降,所得活性炭对氮气的吸附平衡常数增大。真空化学活化法制得活性炭的孔结构特性和吸附性能优于常压化学活化法制备的活性炭。
Biomass energy is a very important part of the renewable energy. The biomass resources are very abundant,inexhaustible and sustainable in the world.The exploitation and utilization of the biomass energy is an effective method for relieving the pressure of the shortage of conventional energy resources and environment pollution in China. Thermochemical conversion is the major way for high efficient utilization of biomass and a hot point of research both in China and abroad.Biomass pyrolysis technology has been paid great attention through which low-quality biomass can be converted to higher quality liquid fuel or high add-value products.Pyrolysis process is the most essential content in a variety of thermochemical conversion processes of biomass.From the study of the changing rules and influence factors during the biomass pyrolysis process,it provides scientific basis and help to achieve efficient biomass thermal conversion technology.
     In this study,TGA and self-made vacuum pyrolysis apparatus were used to detect the characteristics of biomass pyrolysis liquation and the rules of preparation of activated carbon under vacuum.The seven kinds of common agricultural and forestry waste biomass were from Yiyang. The main contents studied are as follows:
     (1) TGA was used to detect the influence of biomass species and heating rate on the pyrolysis reaction.The results show that the vacuum pyrolysis laws of seven kinds of biomass are almost the same.There are three stages mainly:free hydrolysis adsorption and precipitation extraction stage,rapid weight loss stage of pyrolysis,and slow decomposition stage of residue.The order of total weight loss rate of biomass under the same condition is as follows:fir sawdust>corn stalk>pine sawdust>erythrina sawdust>bean stalk>rice husk>peanut shell.The maximum peak temperature,thermal decomposition rate,the initial decomposition temperature and thermal stability of forestry biomass are higher than that of agricultural biomass.Vacuum pyrolysis reaction almostly complete when the temperature is 500℃.As the heating rate increased,the TG curves shift to right,peak temperature shift to high temperature,the temperature range of main reaction widen. The pyrolysis of fir sawdust under vacuum keeps the first order reaction rules approximately.
     (2) Fir sawdust was taken as raw material to study the biomass vacuum pyrolysis liquation.The influence of process parameters on the pyrolysis products was researched.The results show that the optimum conditions of pyrolysis as follows:pyrolysis temperature is 500℃,the system pressure is 20kPa,and holding time is 60min.Compared with fast pyrolysis,vacuum pyrolysis of fir sawdust can also get a higher yield of bio-oil with a lower heating rate.The pyrolysis product is mainly bio-oil and the yield of bio-oil can reach to above 67%under better preparation condition.There are larger differences of the main chemical composition and its relative content when the pyrolysis parameters are different.We can get bio-oil with higher additional value by choosing appropriate pyrolysis parameters.The vacuum pyrolysis carbon already has an initial pore structure,and the pores are mainly micropores,which can be excellent raw materials for activated carbon preparation.
     (3) Seven kinds of biomass were taken as raw material to prepare bio-oils.The effects of biomass species on the yield of the pyrolysis product and the physical and chemical properties of bio-oil were studied. The main product of pyrolysis is bio-oil,and the yield of which is all above 55%.The bio-oil yields of forest biomass are higher than that of agriculture biomass,and for fir sawdust the highest yield is 67.25%and for corn straw the lowest yield is 55.46%.The pH value of bio-oil is 1.82~3.24,and the pH value of the forest bio-oils are less than that of agriculture bio-oil.The density is 1.0163~1.1670,and the density of the forest bio-oils are more than that of agriculture bio-oil.The viscosity is 2.29~7.36,which is small,and the viscosity of the forest bio-oils are more than that of agriculture bio-oil.The types of compounds contained in the bio-oil were similar,but there are some difference in the specific chemical composition and its relative content.For example,the furan derivatives content of the rice husk bio-oil is the highest(22.8%),and that of the fir sawdust is the lowest(0.99%).While relative content of phenol and its derivatives in fir sawdust bio-oil can up to 72.81%,but which in bean stalk bio-oil is only 23.97%.Only fir sawdust bio-oil has eugenol which has antibacterial,stomachic,anesthesia,lowing blood pressure and other pharmacological effects.
     (4) The vacuum pyrolysis mechanism of biomass was studied according to the chemical composition and molecular structure of raw material and the structure of bio-oil components.The formation mechanism of the main components of bio-oil was obtained.
     (5) Activated carbon was prepared from biomass under vacuum by zinc chloride activation.Activated carbons prepared by fir sawdust under atmosphere and vacuum were compared.Effects of system pressure,activation condition and other process parameters on the properties of activated carbon were studied.Results show that the yield of activated carbon is about 40%.Fir sawdust is the most appropriate precursor for activated carbon preparation.The best system pressure of preparing activated carbon from fir sawdust is 20.5kPa.We can get activated carbon with excellent properties and bio-oil with high additional value under better preparation conditions.The mainly structure of activated carbon is microspore.The surface area of prepared activated carbon is 1070.59m~2/g,microspore volume is 0.5581cm~3/g, average pore diameter is 2.085nm,iodine adsorption value and methylene blue adsorption values are 1142.92mg/g and 131.24mg/g respectively.The nitrogen adsorption isotherms of activated carbon prepared from fir sawdust under vacuum are all belong to typeⅠadsorption isotherm,they are can be described by the Langmiur equation。With the system pressure dropped,the nitrogen adsorption equilibrium constant of the activated carbon increased.The pore structure characteristic and adsorption performance of activated carbon prepared under vacuum are better than that of the one prepared under atmosphere.
引文
[1]白轩,王翠艳,王水成.流化床生物质气化工艺研究[J].新能源,1998,20(5):19-24.
    [2]A.Demibas.Biomass resource facilities and biomass conversion processing for fuels and chemicals.Energy conversion and management[J].2001,42(11):1357-1378.
    [3]张无敌,刘士清.生物质能与农村能源及农业发展的关系[J].科技导报,1995,4:57-58.
    [4]lily66_77.能源世界-中国建筑节能网.www.chinagb.net.
    [5]P.Mckendry.Energy production from biomass(part 1):overview of biomass[J].Bioresource Technology,2002,83(1):37-46.
    [6]T.R.Rao,A.Sharma.Pyrolysis rates of biomass materials[J].Energy,1998,23(11):973-978.
    [7]K.Raveendran,A.Ganssh,K.C.Khilar.Influence of mineral matter on biomass pyrolysis characteristics[J].Fuel,1995,74(12):1812-1822.
    [8]T.B.Johansson,H.Kelly,A.N.Reddy,等主编.沈逢吕应中译.可再生能源[M],第一版,北京:石油工业出版社.2000,467-508.
    [9]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    [10]张无敌,周长平,字尚斌.生物质能--未来能源的希望[J].能源研究与利用,1995,(4):3-6.
    [11]杨进基主编.农村发展与能源建设[M],第一版,北京:农业出版社.1992,8.
    [12]A.Beenackers.Solar energy R & D in the European Community series E advanced gasification[M].London:D.Reidel Publishing Company,1986.
    [13]米铁,唐汝江,陈汉平,等.生物质能利用技术及研究进展[J].煤气与热力,2004,24(12):701-705.
    [14]钟浩,谢建,杨宗涛,等.生物质热解气化技术的研究现状及其发展[J].云南师范大学学报,2001,21(1):41-45.
    [15]谢军,吴创之,阴秀丽,等.生物质气化发电技术及应用前景[J].上海电力,2005(1):54-57.
    [16]M.Ni,D.Y.C.Leung,M.K.H.Leung,et al.An overview of hydrogen production from biomass[J].Fuel Processing Technology,2006,87(5):461-472.
    [17]蒋剑春.新技术革命与生物质能源[M].农业技术革命与中国农业现 代化.第一版,北京:科学技术文献出版社,1998,211-215.
    [18]刘克鑫.中国生物质能技术研究与开发[M].第一版,北京:中国科技出版社,1992,99-106.
    [19]陈金琏.未来的燃料——生物质[J].能源工程,2000,(2):19-22.
    [20]肖波,周英彪,李建芳.生物质能循环经济技术[M].化学工业出版社,北京:2006.1-2.
    [21]Allensg,Boocockdgb,Chowhuryaz.In:Biomass Thermal Processing[M].CPL scientific press,1992,90-98.
    [22]孙晓仁,孙怡玲.21世纪世界能源发展的10个趋势[J].科技导报,2004,50-52.
    [23]Fan Zhen.A biomass pyrolysis gasifier application in China rural[J].Fuel Science and Technology,1993,11(1):12-15.
    [24]王孟杰,鲁楠,顾树华,等.中国农村能源行业协会,中国生物质能开发利用与战略[M].第一版,北京:中国农业出版社.
    [25]国家环境保护总局.中国环境状况公报[R],1990-2001.《2004BP世界能源统计年鉴》.2004.6.
    [26]谢克昌,李忠.煤基燃料的制备与应用[J].化工学报,2004,56:6-7.
    [27]谢克昌.新一代煤化工和洁净煤技术利用现状分析与对策建议[J].中国工程学报,2003,5(6):15-24.
    [28]中国统计年鉴[M].G能源生产和消费,7-5煤炭平衡表,北京:中国统计出版社,2000.
    [29]张仁健,王明星,郑循华,等.中国二氧化碳排放源现状分布[J].气候与环境研究,2001,6(3):321-327.
    [30]张铱鈖.煤制液体燃料技术研究开发前景[J].煤炭转化,1997,20(3):30-34.
    [31]王孟杰,鲁楠,顾树华,等.中国农村能源行业协会,中国生物质能开发利用与战略[M],第一版,北京:中国农业出版社.2000,139-145.
    [32]J.Nagel.Biomass in energy,especially in the state of Brandenburg,Germany[J].Ecological Engineering.2000,16(Sup.1),2000:103-110.
    [33]李景明.日本农村可再生能源印象[J].可再生能源,2002,(5):35-38.
    [34]闵恩泽,吴巍,等.绿色化学与化工[M].第一版,北京:化学工业出版社,2000.51-62.
    [35]A.L.Cukierman,P.A.Della Rocca,P.R.Bonelli,et al.On the study of thermochemical biomass conversion[J].Trends in Chemical Engineering, 1996,(3):129-144.
    [36]US Department of Energy.Electricity from biomass:National Biomass Power Program[M].Five Year Plan.US Department of Energy,Washington DC.1993.
    [37]X.Deglise,P.Magne.Pyrolysis and industrial charcoal[M].In Biomass-Regemerable Energy,ed.D.O.Hall & R.P.Overend,John Wiley,New York.1987.
    [38]蒋大龙.生物质发电在中国大有可为[J].宏观经济研究,2007,10.
    [39]蒋建新,陈晓阳.能源林与林木生物转化能源化研究进展[J].世界林业研究,2005,18(6).
    [40]M.Kyriakos,M.Enzo.Energy from biomass and waste:the contribution of utility scale biomass gasification plants[J].Biomass and bioenergy[J].1998,15(3):195-200.
    [41]辛欣.生物质能--未来全球能源的新亮点[J].节能与环保,2005,(10):15-17.
    [42]M.M.Kucuk,A.Demirba.Biomass conversion process[J].Energy Convers,1997,38(2):151-165.
    [43]蒋剑春,徐建华.林业剩余物制造颗粒成型燃料技术研究[J].林产化学与工业,1999,19(3):35-37.
    [44]吴相淦主编.农村能源[M].第一版,北京:农业出版社,1988.
    [45]张塞主编.中国统计年鉴1994[M].第一版,北京:中国统计出版社,1994.
    [46]蒋剑春等.木质压缩成型燃料技术设备的引进和开发[M].森林能源研究,第一版,北京:中国科学技术出版社,1991.258-264.
    [47]徐冰燕.中国生物质气化技术的发展与前景[J].太阳能学报,1999,(10):162-168.
    [48]马隆龙,肖艳京.生物质气化发电[J].能源工程,2000,(2):4-9.
    [49]高先声.生物质能源的利用和生物质气化[J].太阳能,2002,(1):5-8.
    [50]P.Mckendry.Energy production from biomass(part 2):Conversion technologies[J].Bioresource Technology,2002,83(1):47-54.
    [51]Y.Wang,C.M.Kinoshita.In advances in thermoehemieal biomass conversion[J].Bioresource Technology,1994,(44):280-287.
    [52]R.Maggi,B.Delmon.Comparison between slow and flash pyrolysis oil from biomass[J].Fuel,1994,73(5):671-676.
    [53]G.Maschio,C.Koufopanos,A.Lucchesi.Pyrolysis,a promising route for biomass utilization[J].Bioresource Technology,1992,42(3):219-231.
    [54]Y.Minowa.Oil production from algal cellulose of Dunaliella tertiolecta by direct 72 thermochemical liquefaction[J].Fuel,1995,74(12):1735-1738.
    [55]林维纪,张大雷.生物质固化成型技术的几个问题[J].农村能源,1998,6:16-17.
    [56]E.D.Larson.Technology for electricity and fuels from biomass[J].Annu.Rev.Energy Environ.,1993,(18):567-630.
    [57]刘石彩,蒋剑春,陶渊博,等.生物质固化制造成型炭技术研究[J].林产化工通讯,2002,36(2):3-5.
    [58]T.Yoshida,Y.Matsumura.Gasification of cellulose,xylan and lignin mixtures in supercritical water[J].Ind.Eng.Chem.Res.,2001,40(23):5469-5474.
    [59]X.Xu,Y.Matsumura,J.Stenberg,et al.Carbon-catalyzed gasification of organic feedstocks in supercritical water[J].Ind.Eng.Chem.Res.,1996,35:2522-2530.
    [60]M.J.Antal,S.G.Allen,D.Schulman,et al.Biomass Gasification in supercritical water[J].Ind.Eng.Chem.Res.,2000,39:4040-4053.
    [61]D.C.Elliott,M.R.Phelps,Jr L.J.Sealock,et al.Chemical processing in high-pressure aqueous environments:Continuous-flow reator process development experiments for organics destruction[J].Ind.Eng.Chem.Res.,1994,33:566-574.
    [62]G.Chen,J.Andries,H.Splietho,et al.Biomass gasification integrated with pyrolysis in a circulating fluidized bed[J].Solar Energy,2004,76(1-3):345-349.
    [63]M.F.Demirbas,M.Balat.Recent advances on the production and utilization trends of bio-uels:A global perspective[J].Energy Conversion and Management,2006(47):2371-2381.
    [64]P.A.M.Claassen,J.B.van Lier,A.M.Lopez Contreras.et al.Utilization of biomass for the supply of energy carders[J].Appl Microbiol Biotechnol,1999,52:741-755.
    [65]常杰.生物质液化技术的研究进展[J].现代化工,23(9):13-18.
    [66]陈辉,陆善祥.生物质制燃料乙醇[J].石油化工,2007,36(2):107-117.
    [67]姜洪涛,李会泉,张懿.生物质高压液化制生物原油研究进展[J].化工进展,2006,25(1):8-13.
    [68]郭艳,王垚,魏飞,等.生物质快速裂解液化技术的研究进展[J].化工进展,2001,20(8):13-17.
    [69]A.V.Bridgewater.Principles and practice of biomass fast pyrolysis processes for liquids[J].Journal of Analytical and Applied Pyrolysis,1999,51(1-2):3-22.
    [70]刘荣厚,牛卫生,张大雷,编著.生物质热化学转换技术[M].北京:化学工业出版社,2005.160.
    [71]C.Roy.Notes de Cours 《Traitement des dechets solides》,Departement de Genie Chimique,University of Laval.2002.
    [72]T.Y.Ba.Colloidal properties of bio-oil obtained by vacuum pyrolysis of softwood bark residues[D].Quebec:University of Laval,2003.9.
    [73]A.V.Bridgwater,M.L.Cottam.Opportunities for biomass pyrolysis liquids production and upgrading[J].Energy and Fuels,1992,6(2):113-120.
    [74]A.M.C.Janse,P.Marten Biesheuvel,W.Prins,et al.A novel interconnected fluidised bed for the combined flash pyrolysis of biomass and combustion of char[J].Chemical Engineering Joural,2000,76(1):77-86.
    [75]J.Zandersons,J.Gravitis,A.Kokorevics,et al.Studies of the Brazilian sugarcane bagasse carbonization process and products properties[J].Biomass and Bioenergy,1999,17(3):209-219.
    [76]J.N.Murwanashyaka,H.Pakdel,C.Roy.Step-wise and one-step vacuum pyrolysis of birch-derived biomass to monitor the evolution of phenols[J].Journal of Analytical and Applied Pyrolysis,2001,60(2):219-231.
    [77]刘守新,张世润.生物质的快速热解[J].林产化学与工业,2004,24(3):95-101.
    [78]J.Lede.Solar thermochemical conversion of biomass[J].Solar Energy,1999,65(1):3-13.
    [79]A.V.Bridgwater,D.Meier,D.Radlein.An overview of fast pyrolysis of biomass[J].Organic Geochemistry,1999,30(12):1479-1493.
    [80]M.Ikura,M Stanciulescu,E.Hogan.Emulsification of pyrolysis derived bio-oil in diesel fuel[J].Biomass and Bioenergy,2003,24(3):221-232.
    [81]F.Goudriaan,D.G.R.Peferoen.Liquid fuels from biomass via an hydrothermal process[J].Chemical Engineering Science,1990,45(17):2729-2734.
    [82]D.Radlein,J.Piskorz,P.Majerski.Method of producing slow-release nitrogenous organic fertilizer from biomass[P].US Patent,5 676 727,1997-10-14.
    [83]P.Das,A.Ganesh.Bio-oil from pyrolysis of cashew nut shell--a near fuel[J].Biomass and Bioenergy,2003,25(1):113-117.
    [84]F.Goudriaan,D.G.R.Peferoen.Liquid fuels from biomass via an hydrothermal process[J].Chemical Engineering Science,1990,45(17):2729-2734.
    [85]G.Lopez Juste,J.J.Salva Monfort.Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor[J]. Biomass and Bioenergy, 2000,19(2): 119-128.
    [86] J. Pastor-Villegas, C.J. Duran-Valle. Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon, 2002, 40(3): 397-402.
    [87] S. K. Ryu, H. Jin, D. Gondy et al . Activation of carbon fibers by steam and carbon dioxide[J]. Carbon, 1993, 31(5):841-842.
    [88] A. V. Bridgewater, M. L. Cottam. Opportunities for biomass pyrolysis liquid production and upgrading[J], Energy and Fuel, 1992, (6): 47-52.
    [89] F. Nativel. The biotechnology facilities at soustons for biomass conversion[J]. Solar Energy, 1992, (11): 21-23.
    [90] D. C. Elliott, D. Beckman, A. V. Bridgwater et al. Developments in directs thermochemical liquefaction of biomass [J]. Energy & Fuel, 1991, 5(3): 399-410.
    [91] A. K. Tripathi, P. V. Rlyer, T. C. Kandpal. A financial evaluation of biomass gasifier based power generation in India[J], Bioresource Technology, 1997, 61(1): 53-59.
    [92] P. A. Jensen, B. Sander, K. Dam-Johansen. Pretreatment of straw for power production by pyrolysis and char wash[J]. Biomass & Energy, 2001, 20(6): 431-446.
    [93] J. Yan, P. Alvfors, L. Eidensten, et al. A Future for biomass (Future biomass based power generation)[J]. Mechanical Engineering, 1997,119(10).
    [94] A. Ganesh, R. Banerjee. Biomass pyrolysis for power generation-a potential technology[J]. Renewable Energy, 2001, 22(1-3): 9-14.
    [95] R. Fabry J. G. Goudeau Thermal conversion of biomass and waste by combustion and pyrolysis/gasification-CEC Directorate-General for energy demonstration programme[J], In: Biomass for Energy and Industry, Ed. by Grassi G at all 1987,274-282.
    [96] J. Herguido, J. Corella, J. Gonzalez-Saiz. Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale effect of the type of feedstock[J]. Ind. Eng. Chem. Res., 1992, (31): 1274-1282.
    [97] E. Fercher, H. Hofbauer, T. Fleck, et al. Two years experience with the FICFB-gasification process[M]. In: Proceedings of the 10th European conference and technology exhibition, Wurzburg, June. 1998.
    [98] S. S. Donald, P. Jan, A. B. Maurice et al. The role of temperature in the fast pyrolysis of cellulose and wood[J].Ind.Eng.Chem.Res.,1988,27(1):8.
    [99]J.P.Diobold,A.V.Bridgewater.Overview of fast pyrolysis of biomass for the production In:Bridgwater A.V.and Boocock D.G B.ed.Developmentin Thermochemical Biomass Conversion[M].Vol.1,London:Chapman & Hall,1997.
    [100]C.M.Kinoshita,Y.Wang,P.K.Takahashi.Chemical equilibrium computations for gasification of biomass to produce methanol[J],Energy Sources,1991,13(3):361-368.
    [101]R.N.Theodore,B.H.Jack,P.L.John et al.Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood[J],Ind.Eng.Chem.Process Dev.,1985,24(3):836.
    [102]I.Boukis,L.Gabriel,V.Vassilatos,et al.Biomass flash pyrolysis in a circulating fluidized bed reactor.(Center Renewable Energy Sources Greece).Biomass Energy,Enuiron Agric[J],Ind,Proc Eur.Biomass Conf.8th 1994(Pub.1995),(3):1887-1893.
    [103]Zhang Guangbul,Zhao Hanxhang,Wu Zhengliang.Apparatus for comprehensive conversion of biomass to charcoal and oil and gas[J],Faming Zhuanli Shenqing Gongkai Shuomingshr CN.1,100,745(CI.D10B53/00) 29 Mar 1995.Appl 93,115,517,22 Sep 1993:9 pp.
    [104]W.J.Frederick,M.Hupa,T.Uusikartano.Volatiles and char carbon yields during black liquor pyrolyisis[J].Bioresource Technology,1994,48(1):59-64.
    [105]J.Li,A.R.P.Van Heiningen.Kinetics of CO2 gasification of fast pyrolyisis black liquor char[J],Ind.Eng.Chem.Res.1990,29(9):1776-1785.
    [106]P.Mckeough,V.Arpiainen,E.Venelampi,et al.Rapid pyrolyisis of krart black liquor[J].Paperi ja Puu,1994,76(10):650-656.
    [107]D.S.Scott,J.Piskorz.The continuous flash pyrolysis of biomass[J].Canadian journal of chemical engineering,1984,62(33):404-412.
    [108]J.P.Diebold,A.V.Bridgwater.Over view of fast pyrolysis of biomass for the production of liquidfuels,In:De velopments in Thermochemical Biomass Conversion[M].Blackie,1997:5-26.
    [109]易维明,柏雪源,何芳,等.利用热等离子体进行生物质液化技术的研究[J].山东工程学院学报,2000,3:9-12.
    [110]K.Rabeendran,A.Ganesh,K.C.Khilar.Pyrolysis characteristic of biomass and biomass components[J].Fuel,1996,75(8):987-998.
    [111]乔国朝,王述祥.生物质热解液化技术研究现状及展望[J].林业机械与木 工设备,2005,33(5):4-7.
    [113]姚福生,易维明,柏雪源,等.生物质快速热解液化技术[J].中国工程科学,2001,3(4):63-67.
    [114]林木森,蒋剑春.生物质快速热解技术现状[J].生物质化学工程,2006,40(1):21-26.
    [115]柏雪源,易维明,王丽红,等.玉米秸秆在等离子体加热流化床上的快速热解液化研究[J].农业工程学报,2005,21(12):127-130.
    [116]江淑琴.生物质燃料的燃烧与热解特性[J].太阳能学报,1995,16(1):23-27.
    [117]王述洋,谭文英.生物质液化燃油的开发前景和可持续发展意义[J].科技导报,2000,(6):52-55.
    [118]李文,李宝庆.生物质的热解与液体产物的精制[J].新能源,1997,(10):22-27.
    [119]翼星,郗小林,孔林河,等.生物柴油技术进展与产业前景[J].中国工程学报,2002,4(9):86-93.
    [120]颜涌捷.生物质液体燃料的现状和发展[J].太阳能学报,1999,(10):177-181.
    [121]杨敏,宋晓锐,邓彭飞,等.生物质的裂解及液化[J].林产化学与工业,2000,20(4):35-37.
    [122]M.E.Boucher,A.Chaala,C.Roy.Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines:I.Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase[J].Biomass and Bioenergy,2000,19(5):337-350.
    [123]J.N.Murwanashyaka,H.Pakdel,C.Roy.Seperation of syringol from birch wood-derived vacuum pyrolysis oil[J].Separation and Purification Technology,2001,24(1-2):155-165.
    [124]M.Garcia-perez,A.Chaala,C.Roy,Vacuum pyrolysis of sugarcane bagasse[J].Journal of Analytical and Applied Pyrolysis,2002,65(2):111-136.
    [125]M.Garcia-perez.A.Chaala,H.Pakdel,et al.Vacuum pyrolysis of softwood and hardwood biomass Comparison between product yields and bio-oil properties[J].J.Anal.Appl.Pyrolysis,2007,78(1):104-116.
    [126]P.Das,A.Ganesh.Bio-oil from pyrolysis of cashew nut shell--a near fuel[J].Biomass and Bioenergy,2003,25(1):113-117.
    [127]P.Das,T.Sreelatha,A.Ganesh.Bio oil from pyrolysis of cashew nutshell-characterisation and related properties[J].Biomass and Bioenergy,2004, 27(3): 265-275.
    [128] P. Das, A. Ganesh, P. Wangikar. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products[J]. Biomass and Bioenergy, 2004, 27(5): 445-457.
    [129] C. Roy, J. Yang, D. Blanchette, et al. Development of a novel vacuum pyrolysis reactor with improved heat transfer potential. In: Bridgwater AV, Boocock DGB, editors. Proceedings of Developments in Thermochemical Biomass Conversion. London: Blackie Academic and Professional; 1996. p. 15-19.
    [130] J. Yang, D. Blanchette, B. de Caumia, et al. Modelling, scale up and demonstration of vacuum pyrolysis reactor[J]. Proc. of Progress in Thermochemical Biomass Conversion, Tyrol, Austria, 17-22 September, 2000.
    [131] C. Roy, D. Blanchette, B.de Caumia. Horizontal moving and stirred bed reactor. Canadian Patent claim number 2 196 841, US Patent number PET /IB98/00224, January 30,1998.
    [132] C. Roy, B. de Caumia, P. Plante, et al. Production of liquids from biomass by vacuum pyrolysis-Development of data base for continuous Process[J]. Proc. of Energy from Biomass and Wastes Ⅶ, January 24-28, Lake Buena Vista, Florida, 1983, pp. 1147-1170.
    [133] R. Lemieux, C. Roy, D. B. Caumia et al. Preliminary engineering data for scale up of a biomass vacuum pyrolysis reactor[J]. ACS preprints(Div.of Fuel Chem), 1987, 32(2): 12-20.
    [134] Wu Feng-chin, Tseng Ru-ling, Hu Chi-chang. Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons[J], Microporous and Mesoporous Materials, 2005, 80(1-3): 95-106.
    [135] M. Olivares-Marin, C. Fernandez-Gonzalez, A. Macias-Garcia, et al. Preparation of activated carbon from cherry stones by chemical activation with potassium hydroxide[J]. Applied Surface Science, 2006, 252(17): 5980-5983.
    [136] A. Klijanienko, E. Lorenc-Grabowska, G. Gryglewicz. Development of mesoporosity during phosphoric acid activation of wood in steam atmosphere[J]. Bioresource Technology, 2008, 99(15): 7208-7214.
    [137] I. Ahmed-Hared, J. L. Dirion, S. Salvador, et al. Pyrolysis of wood impregnated with phosphoric acid for the production of activated carbon: kinetics and porosity development studies[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1-2): 101-105.
    [138]李东艳,周花蕾,田亚峻,等.用无烟煤制备高比表面积活性炭的研究[J].稀有金属材料与工程,2007,36(z1):583-586.
    [139]马蓉,张丽芳,张双全,等.太西无烟煤制备微孔活性炭的实验研究[J].新型炭材料,2004,19(1):57-60.
    [140]A.F.Martins,A.de L.Cardoso,J.A.Stahl,et al.Low temperature conversion of rice husks,eucalyptus sawdust and peach stones for the production of carbon-like adsorbent[J].Bioresource Technology,2007,98(5):1095-1100.
    [141]陈健,李庭琛,颜涌捷,等.生物质裂解残炭制备活性炭[J].华东理工大学学报,2005,31(6):821-824.
    [142]S.Ismadji,Y.Sudaryanto,S.B.Hartona,et al.Activated carbon from char obtained from vacuum pyrolysis of teak sawdust:pore structure development and characterization[J].Bioresource Technology,2005,96(12):1364-1369.
    [143]N.Z.Cao,H.Darmstadt,C.Roy.Activated Carbon Produced from Charcoal Obtained by Vacuum Pyrolysis of Softwood Bark Residues[J].Energy & Fuels,2001,15:1263-1269.
    [144]A.C.Lua,T.Yang.Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells[J].Journal of Colloid and Interface Science,2004,276(2):364-372.
    [145]H.Darmstadt,D.Pantea,L.Summchen,et al.Surface and bulk chemistry of charcoal obtained by vacuum pyrolysis of bark:influence of feedstock moisture content[J].Journal of Analytical and Applied Pyrolysis,2000,53(1):1-17.
    [146]R.Kandiyoti,J.I.Lazaridis,B.Dyrvold,et al.Pyrolysis of a ZnCI_2-impregnated coal in an inert atmosphere[J].Fuel,1984,63(11):1583-1587.[147]D.Kalderis,S.Bethanis,P.Paraskeva,et al.Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times[J].Bioresource Technology,2008,99(15):6809-6816.
    [148]M.Imamoglu,O.Tekir.Removal of copper(Ⅱ) and lead(Ⅱ) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks[J].Desalination,2008,228:108-113.
    [149]F.Suarez-Garcia,A.Martinez-Alonso,J.M.D.Tascon.Activated carbon fibers from Nomex by chemical activation with phosphoric acid[J].Carbon,2004,42(8-9):1419-1426.
    [150]F.Suarez-Garcia,A.Martinez-Alonso,J.M.D.Tascon.Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation.Temperature and time effects[J].Microporous and Mesoporous Materials,2004,75(1-2):73-80.
    [151]D.Adinata,W.M.A.W.Daud,M.K.Aroua.Preparation and characterization of activated carbon from palm shell by chemical activation with K_2CO_3[J].Bioresource Technology,2007,98(1):145-149.
    [152]A.Perrin,A.Celzard,A.Albiniak,et al.NaOH activation of anthracites:effect of temperature on pore textures and methane storage ability[J].Carbon,2004,42(14):2855-2866.
    [153]L.Zubizarreta,A.Arenillas,J.P.Pirard,et al.Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH[J].Microporous and Mesoporous Materials,2008,115(3):480-490.
    [154]J.V.Nabais,P.Carrott,M.M.L.Ribeiro-Carrott,et al.Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor:The coffee endocarp[J].Bioresource Technology,2008,99(15):7224-7231.
    [155]J.W.Kim,M.H.Sohn,D.S.Kim,S.M.Sohn,et al.Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu~(2+)ion[J].Journal of Hazardous Materials,2001,85(3):301-315.
    [156]L.Monser,M.Ben Amor,M.Ksibi.Purification of wet phosphoric acid using modified activated carbon[J].Chemical Engineering and Processing,1999,38(3):267-271.
    [157]苏伟,周理,周亚平.椰壳炭制备高比表面积活性炭的研究[J].林产化学与工业,2006,26(2):49-52.
    [158]袁文辉,叶振华.高吸附性能油焦活性炭的制备和性能研究[J].离子交换于吸附,1998,14(3):256-260.
    [159]L.Zhou,Y.Sun,Y.P.Zhou.Enhancement of the methane storage on activated carbon by pre-adsorbed water[J].AIChE,2002,48(10):2412-2416.
    [160]Y.Sun,Y.P.Zhou,L.Zhou,et al.Storage of hydrogen-methane mixture in the complex sorbent of activated carbon-TiMn1.5 alloy[J].Chemical Physics Letters,2002,(3-4):287-292.
    [161]L.Zhou,C.Z.Lv,S.J.Bian et al.Pure hydrogen from the dry gas of refineries via a novel pressure swing adsorption process[J].Ind.Eng.Chem.Res.,2002,41(21):5290-5297.
    [162]L.Zhou,W.C.Guo,Y.P.Zhou.A feasibility study of separating CH_4/N_2 by adsorption[J].Chinese J.Chem.Eng.,2002,10(5):558-561.
    [163]T.Morimoto,K.Hiratsuka,Y.Sanada et al.Electric double-layer capacitor using organic electrolyte[J].Journal of Power Sources,1996,60(2):239-247.
    [164]K.Xu,M.S.Ding,T.Richard Jow.A better quantification of electrochemical stability limits for electrolytes in double layer capacitors[J],Electrochimica Acta,2001,46(12):1823-1827.
    [165]孟庆函,李开喜,宋燕,等.石油焦基活性炭电极电容特性研究[J].新型碳材料,2001,16(4):18-22.
    [166]刘洪波,常俊玲,张红波.双电层电容器高比表面积活性炭的研究[J].电子元件与材料,2002,21(2):19-22.
    [167]张玲,常俊玲,刘洪波,等.基于竹节的双电层电容器用高比表面积活性炭的研究[J].炭素,2002,109(1):11-15.
    [168]乔文明,刘朗.高比表面积活性炭的研究与应用[J].新型碳材料,1996,11(1):25-31.
    [169]Y.H.Hu and E.Ruckenstein.The catalytic reaction of NO over Cu supported on meso-carbon microbeads of ultrahigh surface area[J].J.Catalysis,1997,172(1):110-117.
    [170]T.Otowa,Y.Nojima,T.Miyazaki.Development of KOH activated high surface area carbon and its application to drinking water purification[J].Carbon,1997,35(9):1315-1319.
    [171]乔文明,查庆芳,凌立成,等.氧化沥青的活化研究[J].炭素技术,1994(3):1-5.
    [172]常俊玲,刘洪波,张红波,等.石油焦基高比表面积活性炭处理含铬废水的研究[J].炭素技术,2001,116(5):20-23.
    [173]Z.H.Hu,L.Lei,Y.J.Li,et al.Chromium adsorption on high-performance activated carbons from aqueous solution[J].Separation and Purification Technology,2003,13(1):13-18.
    [174]S.Karagoz,T.Tay,S.Ucar,et al.Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption[J].Bioresource Technology,2008,99(14):6214-6222.
    [175]J.V.Nabais,P.Carrott,M.M.L.Ribeiro Carrott et al.Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor:The coffee endocarp[J].Bioresource Technology,2008,99(15):7224-7231.
    [176]I.A.W.Tan,A.L.Ahmad,B.H.Hameed.Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology[J].Chemical Engineering Journal,2008,137(3):462-470.
    [177]A.Aworn,P.Thiravetyan,W.Nakbanpote.Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores[J].J.Anal.Appl.Pyrolysis,2008,82(2):279-285.
    [178]I.A.W.Tan,A.L.Ahmad,B.H.Hameed.Preparation of activated carbon from coconut husk:Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology[J].Journal of Hazardous Materials,2008,153(1-2):709-717.
    [179]W.Li,L.B.Zhang,J.H.Peng,et al.Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation[J].Industrial crops and products,2008,27(3):341-347.
    [180]O.W.Achaw,G.Afrane.The evolution of the pore structure of coconut shells during the preparation of coconut shell-based activated carbons[J].Microporous and Mesoporous Materials,2008,112(1-3):284-290.
    [181]A.Castro-Muniz,A.Martinez-Alonso,J.M.D.Tascon.Microporosity and mesoporosity of PPTA-derived carbons.Effect of PPTA thermal pretreatment[J].Microporous and Mesoporous Materials,2008,114(1-3):185-192.
    [182]樊希安,彭金辉,秦文峰,等.微波辐射在制备竹节活性炭中的应用研究[J].离子交换与吸附,2003,19(3):254-261.
    [183]彭金辉,张世敏.微波辐照蚕豆杆制取活性炭[J].林产化学与工业[J],1999,19(1):81-82.
    [184]彭金辉,张世敏,张利波.微波辐照瓜子壳制造活性炭[J].资源开发与市场,1999,15(5):259-260.
    [185]彭金辉,张利波,张世敏,等.微波加热烟杆制备微孔活性炭的研究[J].材料科学与工程学报,2006,24(1):57-61.
    [186]彭金辉,张世敏,张利波.微波辐照玉米芯制取活性炭[J].林产化工通讯,1999,33(3):22-24.
    [187]王娴婷.槟榔渣制备活性炭[J].材料科学与工程学报,2006,24(3):454-455.
    [188]任铮伟,徐清,陈明强,等.流化床生物质快速裂解制液体燃料的研究[J].太阳能学报,2002,23(4):462-466.
    [189]A.Garcia-Garcia,A.Gregorio,C.Franco,et al.Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production[J].Bioresource Technology,2003,88(1):27-32.
    [190]陈健,李庭琛,颜涌捷,等.生物质裂解残炭制备活性炭[J].华东理工大学学报,2005,31(6):821-824.
    [191]A.C.Lua,T.Yang.Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions[J].Journal of Colloid and Interface Science,2005,290(2):505-513.
    [192]刘荣厚,牛卫生,张大雷,编著.生物质热化学转换技术[M].北京:化学工业出版社,2005.155.
    [193]刘一星等.木质废弃物再生循环利用技术[M].北京:化学工业出版社,2005.
    [194]国家林业局.2002年全国林业统计主要指标[EB/OL].http://www.forestry.gov.cn/lytj.
    [195]Y.Solantausta,N.Nylund,M.Westerholm,et al.Wood-pyrolysis oil as fuel in a diesel-power plant[J].Bioresource technology,1993,46(1-2):177-188.
    [196]M.L.Boroson,J.B.Howard,W.A.Peters.Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars[J].A.I.Ch.E.Journal,1989,35(1):120-128.
    [197]周粮模.气相色谱新技术[M].北京:科学出版社,1994.
    [198]J.Toth.Adsorption:theory,modeling,and analysis[M].New York:Marcel Dekker,Inc,2002,175.
    [199]N.A.Seaton,J.P.R.B.Walton,N.Quirke.A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements[J].1989,27(16):853-861.
    [200]M.Kruk,M.Jaroniec,Y.Bereznitski.Adsorption study of porous structure development in carbon blacks[J].Journal of Colloid and Interface Science,1996,182(1):282-288.
    [201]C.Lastoskie,K.E.Gubbins,N.Quirke.Pore size distribution analysis of microporous carbons:A density functional theory approach[J].Journal of Physical Chemistry,1993,97(18):4786-4796.
    [202]K.S.W.Sing.Porosity in carbons:characterization and applications[M].New York:Halsted Press,1995.
    [203]Z.Y.Ryu,J.T.Zheng,M.Z.Wang et al.Characterization of pore size distributions on carbonaceous adsorbents by DFT[J].Carbon,1999,37(8):1257-1264.
    [204] S. J. Gregg, K. S. W. Sing. Adsorption surface area and porosity[M]. 2~(nd) ed. Suffolk: St Edmundsbury Press, 1982, 25.
    [205] F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by powders and porous solids[M]. London: Academic Press, 1999,165-179.
    [206] K. S. W. Sing. Adsorption methods for the characterization of porous materials[J]. J.Coll. Int. Sci., 1998, 76-77(1): 3-11.
    [207] S. Bruauer, P. H. Emmett, E. Teller. Adsorption of gases in multimolecular layers[J]. J. Amer. Chem. Soc, 1938, 60:309.
    [208] F. Rouquerol, J. Rouqerol, K.Sing. Adsorption by powders and porous solids[M]. London: Academic Press, 1999.
    [209] K. Sing. The use of nitrogen adsorption for the characterization of porous materials[J]. Colloids and Surfaces A, 2001,187-188:3-9.
    [210] F. Rodriguez-Reinoso, J. D. Lopez-Gonzalez, C. Berenguer. Activated carbons from almond shells. I. Preparation and characterization by nitrogen adsorption[J]. Carbon, 1982,20(6): 513-518.
    [211] L. T. Vlaev, I. G. Markovska, L. A. Lyubchev. Non-isothermal kinetics of pyrolysis of rice husk [J]. Thermochimica Acta, 2003,406(1-2): 1-7.
    [212] 蒋剑春,沈兆邦.生物质热解动力学的研究[J].林产化学与工业, 2003,23(4): 1-6.
    [213] M. J. Antal, G. Varhegyi. Cellulose pyrolysis kinetics: the current state of knowledge[J]. Ind.Eng.Chem.Res., 1995, 34: 703-717.
    [214] D. P. Koullas, N. Nikolaou, E. G. Koukios. Modelling non-isothermal kinetics of biomass prepyrolysis at low pressure[J]. Bioresource Technology, 1998, 63(3): 261-266.
    [215] R. S. Miller, J. Bellan. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics[J].Combustion Science and Technology, 1997, (126): 97-137.
    [216] H. C. Rung. A mathematical model of wood pyrolysis[J].Combustion and flame, 1972, (18): 185-187.
    [217] H. Bockhom, A. Homung. Investigation of the kinetics of thermal deyralltion of commodity plastic[J].Combustion Science and Technology, 1996,116-129.
    [218] N. A. Liu, W. Fan, R. Dobashi et al. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 2002,(63): 303-325.
    [219]齐国利,董芃.生物质热解的动力学特性研究[J].电站系统工程,2006,22(5):12-14.
    [220]李志合,易维明,修双宁,等.生物质闪速热解挥发特性的模型研究[J].农业机械学报,2005,21(10):1-4.
    [221]赖艳华,吕明新,马春元,等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):401.
    [222]于娟,章明川,沈轶,等.生物质热解特性的热重分析[J].上海交通大学学报,2002,36(10):5741-8741.
    [223]程世庆,尚琳琳,张海清.生物质的热解过程及其动力学规律[J].煤炭学报,2006,31(4):501-505.
    [224]崔亚兵,陈晓平,顾利锋.常压及加压条件下生物质热解特性的热重研究[J].锅炉技术,2004,35(4):21-51.
    [225]沈永兵,肖军,沈来宏.木质类生物质的热重分析研究[J].能源研究与利用,2005,3.
    [226]G.Varhegyi,P.Szabo,M.W.Shu-lai.Kinetics of thermal decomposition of cellulose in sealed vessels at elevated pressures.effects of the presence of water on reaction mechanism[J].J.Anal.Appl.pyrolysis,1993,(26):159-174.
    [227]朱恂,李刚,冯云鹏,等.重庆地区7种生物质的成分分析及热重实验[J].重庆大学学报(自然科学版),2006,29(8):44-48.
    [228]段佳,罗永浩,陆方,等.生物质废弃物热解特性的热重分析研究[J].工业加热,2006,35(3):10-13.
    [229]热重分析时的分解起始温度的标定http://www.bylm.net.
    [230]姚燕,王树荣,郑赟,等.基于热红联用分析的木质素热裂解动力学研究[J].燃烧科学与技术,2007,13(1):50-54.
    [231]M.Gronli,M.J.Antal,G Varhegyi.A round-robin study of cellulose pyrolysis kinetics by thermogravimetry[J].Ind.Eng.Chem.Res.,1999,38(6):2235-2244.
    [232]陈镜泓,李传儒.热分析及其应用[M].第一版,北京:科学出版社,1985,96-158.
    [233]A.K.Gupta,P.Muller.Pyrolysis of paper and cardboard in inert and oxidative environments[J].Journal of Propulsion & Power,1999,15(2):187-194.
    [234]A.K.Galwey,M.E.Brown.A theoretical ju stification for the application of the Arrhenius equation to kinetics of solid state reactions(mainly ionic crystals)[J].Proc.R.Soc.Lond.A.,1995,450,501-512.
    [235]T.P.Prasad,S.B.Kanungo,H.S.Ray.Non-isothermal kinetics:some merits and limitations[J].Thermochimica Acta 1992,203(89),503-514.
    [236]J.H.Flynn,L.A.Wall.General treatment of the thermogravimetry of polymers[J].J.Research Nat.Bur.Stand.-A Phys.Chem.1966,70A,487-523.
    [237]J.Zsako.Kinetic analysis of thermogravimetrie data[J].J.Phys.Chem.,1968,72,2406-2411.
    [238]A.W.Coats,J.P.Redfern.Kinetic parameters from thermogravimetrie data[J].Nature 1964,201,68-69.
    [239]C.D.Doyle.Kinetic analysis of thermogravimetrie data[J].J.Appl.Polymer Sci.,1961,5,285.
    [240]A.Broido.A simple,sensitive graphical method of treating thermogravimetric analysis data[J].J.Polymer Sci.,1969,A-2,7,1761-1773.
    [241]T.Ozawa.A new method of analyzing thermogravimetric data[J].Bull.Chem.Soc.Jpn.,1965,38,1881-1886.
    [242]E.S.Freeman,B.Carroll.The application of thermoanalytical techniques to reaction kinetics.The thermogravimetric evaluation of the kinetics of the decomposition of calciumo oxalate monohydrate[J].J.Phys.Chem.,1958,62,394-397.
    [243]A.E.Newkirk.Thermogravimetric Measurements[J].Anal.Chem.1960,32(12):1558-1563.
    [244]B.N.N.Achar,G.W.Brindley,J.H.Sharp.Proc.Int.Clay.Conf.,Jerusalem,1966,1-67.
    [245]J.Vachuska,M.Voboril.Kinetic data computation from non-isothermal thermogravimetric curves of non-univorm heating rate[J].Thermochimica Acta,1971,2,379-392.
    [246]H.L.Friedman.Kinetics of thermal degradation of char-forming plastics from thermogravimetry.Application to a phenolic plastic[J].J.Polymer Sci.,1963,6,183-195.
    [247]刘乃安.生物质材料热解失重动力学及其分析方法研究[D].合肥:中国科学技术大学,2000.
    [248]何芳,易维明,柏雪源,等.几种生物质热解反应动力学模型的比较[M].太阳能学报,2003,24(6):771-775.
    [249]A.V.Bridgwater,G.V.C.Peacocke.Fast pyrolysis processes for biomass[J].Renewable and Sustainable Energy Reviews,2000,4(1):1-73.
    [250]M.E.Boucher,A.Chaala,C.Roy.Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines:Ⅰ.Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase[J].Biomass and Bioenergy,2000,19(5):337-350.
    [251]徐绍平,刘娟,李世光,等.杏核热解生物油萃取-柱层析分离分析和制备工艺[J].大连理工大学学报,2005,45(4):505-510.
    [252]郭艳,王垚,魏飞,等.杨树快速裂解过程机理研究[J].高效化学工程学报,2001,15(5):440-445.
    [253]姚向君,田宜水编著.生物质能资源清洁转化利用技术[M],北京:化学工业出版社,2005.
    [254]章思规主编.实用精细化学品手册(有机卷下)[M].北京:化学工业出版社,1996.1433.
    [255]章思规主编.实用精细化学品手册(有机卷上)[M].北京:化学工业出版社,1996.1333.
    [256]章思规主编.实用精细化学品手册(有机卷上)[M].北京:化学工业出版社,1996.1334.
    [257]柯舍列夫,柯尔涅夫,布卡诺夫,《橡胶工艺学》,王秀华等译,陕西科学技术出版社,西安,1986.
    [258]柴国梁.炭黑[J].上海化工,2000(21):30-33.
    [36]炭黑工业研究设计所编著,《炭黑产生基本知识》,化学工业出版社,北京,1980.
    [259]武文洁,张淑萍,王万森,等.以稻壳为原料制备活性炭研究[J].天津化工,2006,20(6):27-30.
    [260]黄律先,郭幼庭,吴新华等人主编.《木材热解工艺学》,北京:中国林业出版社.1991.
    [261]N.Cao,H.Darmstadt,C.Roy.Activated carbon produced from charcoal obtained by vacuum pyrolysis of softwood bark residues[J].Energy & Fuels,2001,15:1263-1269.
    [262]H.Darmstadt,M.Garcia-Perez,A.Chaala et al.Co-pyrolysis under vacuum of sugar cane bagasse and petroleum residue,Properties of the char and activated char products[J].Carbon,2001,39(6):815-825.
    [263]王琦,刘倩,贺博,等.流化床生物质快速热解制取生物油试验研究[J].工程热物理学报,2008,29(5):885-888.
    [264]O.Onay,O.M.Kockar.Slow,fast,and flash pyrolysis of rapeseed[J].Renewable Energy,2003,28(15):2417-2433.
    [265]C.Ac(?)kgoz,O.Onay,O.M.Kockar.Fast pyrolysis of linseed:product yields and compositions[J].Journal of Analytical and Applied Pyrolysis,2004,71(2):417-429.
    [266]W.T.Tsal,M.K.Lee,Y.M.Chang.Fast pyrolysis of rice straw,sugarcane bagasse and coconut shell in an induction-heating reactor[J].Journal of Analytical and Applied Pyrolysis,2006,76(1-2):230-237.
    [267]陆强,朱锡锋,李全新,等.生物质快速热解制备液体燃料[J].化学进展,2007,19(7-8):1064-1071.
    [268]董芃,齐国利,王丽,等.生物质快速热解制取生物质油[J].太阳能学报,2007,28(2):223-226.
    [269]陈祎,罗永浩,陆方,等.生物质废弃物的热解研究[J].燃料化学学报,2007,35(3):370-374.
    [270]刘世锋,王述洋,白雪双.生物质闪速热解技术及生物油的应用[J].林业劳动安全,2006.19(1):29-34.
    [271]P.Das,A.Ganesh,P.Wangikar.Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products[J].Biomass and Bioenergy,2004,27(5):445-457.
    [272]胡宏纹主编.有机化学[M].北京:高等教育出版社,1990.258-263.
    [273]J.A.Russell,R.K.Miller,P.M.Molton.Formation of aromatic compounds from condensation reactions of cellulose degradation products[J].Biomass,1983,3(1):43-57.
    [274]R.Alen,E.Kuoppala,P.Oesch.Formation of the main degradation compound groups from wood and its components during pyrolysis.Journal of Analytical and Applied Pyrolysis[J].1996,36(2):137-148.
    [275]陈洪章.纤维素生物技术[M].北京,化学工业出版社.2005,10.
    [276]蒋挺大.木质素[M].北京,化学工业出版社,2009.
    [277]顾瑞军,谢益民.木素-碳水化合物复合体的形成机理及化学结构的研究(Ⅰ)-综纤维素存在下DHP的合成[J].造纸科学与技术,2001,20(5):1.
    [278]杨海涛,谢益民,范建云,等.-(13)C同位素标记法研究木质素与木聚糖的连接[J].林产化学与工业,2007,27(1):11.
    [279]苏琪,谢益民,顾瑞军,等.木素-碳水化合物复合体的形成机理及化学结构的研究(Ⅱ)-微晶纤维素和松柏醇-β-D葡萄糖苷存在下DHP的合成[J].造纸科学与技术,2002,21(5):9.
    [280]E.Sendzikiene,V.Makareviciene,P.Janulis.Oxidation stability of biodiesel fuel produced from fatty wastes[J].Polish Journal of Envirmental Studies,2005, 14(3):335-339.
    [281]S.P.Kai,K.Eeva,L.Fagereas,et al.Characterization of biomass-based flash pyrolysis oils[J].Biomass and Bioenergy,1998,14(2):103-113.
    [282]J.W哈斯勃.林秋华译.活性炭的净化[M].中国建筑工业出版社,1980.
    [283]沈曾民,张文辉,张学军,等.活性炭材料的制备与应用[M].北京:化学工业出版社,2006.
    [284]王秀芳.高比表面积活性炭的制备、表征及应用[D].华南理工大学,2003.
    [285]王曾辉,高晋生.碳素材料[M],华东化工学院出版社,1991.176-255.
    [286]傅献彩,沈文霞,姚天扬编.物理化学.第四版,北京:高等化学出版社.934-978,P938.
    [287]蒋宏,陈远钊,张良等.白酒糟制备活性炭的初步研究[J].酿酒科技,2006,(3):97-100.
    [288]吴新华.活性炭生产工艺原理与设计[M].北京:中国林业出版社,1994.
    [289]武文洁,张淑萍,王万森,等.以稻壳为原料制备活性炭研究[J].天津化工,2006,20(6):27-30.
    [290]N.Ogata,T.Baba,T.Shibata.Demonstration of antidiarrheal and antimotility effects of wood creosote[J].Pharmacology,1993,46(3):173-180.
    [291]R.Guha,D.Das,P.D.Grover,et al.Germicidal activity of tar distillate obtained from pyrolysis of rice husk[J].Biol.Wastes,1987,21(2):93-100.
    [292]L.P.Azhar,E.D.Levin,G.A.Taskina.Herbicidal effect of oils obtained from lignin sedimentation tar[J].Izv.Vuz.Lesnoi Zh.,1974,17:159.
    [293]L.P.Azhar,E.D.Levin,N.A.Sokolova.Antiseptic properties of oil obtained from lignin sedimentation tar[J].Izv.Vuz.Lesnoi Zh.,1972,15:118.
    [294]J.N.Murwanashyaka,H.Pakdel,C.Roy.Seperation of syringol from birch wood-derived vacuum pyrolysis oil[J].Separation and Purification Technology,2001,24(1-2):155-165.
    [295]M.E.Rather,S.S.Smetanina,V.E.Kovalev,et al.Preparation of syntosans based phenols of soluble resin and wood-resin pyrolysate[J].Izv.Vyssh.Uchebn.Zaved.Lesn.Zh.,1979,23:72.
    [296]A.Rijkuris,S.Biseniece,V.N.Sergeeva.Preparation of azo dyes from thermolysis tar[J],Chemical Abstracts,1979,90,153480.
    [297]R.Garalevicius,V.Medzevicius,V.I.Roshchupkin,et al.Composition for preparing a heat-insulating material.USSR Patent(1978),SU 339173.
    [298]M.D.Guillen,M.L.Ibargoitia.New components with potential antioxidant and organoleptic properties detected for the first time in liquid smoke flavouring preparations[J].J.Agric.Food Chem.,1998,46:1276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700