生物质(秸秆)气合成甲醇工艺及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是结合河南省科技厅科技攻关项目“低热值农业废弃物燃气催化合成甲醇技术研究”进行的。通过对“生物质合成甲醇技术研究进展”、“生物质(秸秆)热化学法制甲醇合成气试验”、“秸秆类生物质催化合成甲醇试验”、“秸秆合成气制甲醇工艺条件优化试验”、“秸秆合成气合成甲醇的动力学和热力学试验”等方面的系统研究,获得了一系列关于生物质(秸秆)气合成甲醇技术方面的相关数据和规律性认识,为我国秸秆类生物质合成甲醇技术领域的研究开发和应用进行了有益的探讨研究。主要研究成果如下:
     1、查阅了国内外大量相关研究资料,对以下内容进行了系统详细的文献综合分析研究。①生物质气化技术研究概况;②生物质制甲醇技术工艺类型;③影响生物质制气技术的因素;④生物质制甲醇合成气的技术研究现状;⑤生物质合成甲醇催化剂的研究概况;⑥现有生物质气化催化制甲醇技术存在的问题。
     2、研究了下吸式固定床气化炉生产的玉米秸秆低热值燃气的脱硫、除氧、分解焦油、净化、配氢等技术工艺,制备出合成甲醇的优质秸秆合成气。
     3、以直流流动等温积分反应器为试验装置,使用国产C301铜基催化剂,在5MPa压力下对秸秆合成气催化合成甲醇技术进行试验研究,寻找影响CO转化率、CO_2转化率、甲醇时空收率的重要因素,通过试验数据处理,找出了它们之间的规律。
     4、对秸秆合成气催化合成甲醇技术工艺进行试验研究,对影响催化合成工艺技术参数如压力、温度、催化剂、催化剂粒度、合成气进口流量、
    
    河南农业大学博十学位论文
    秸秆合成气组成等进行逐一优化试验。优选出秸秆合成气生产甲醇的最佳
    技术工艺方案。为生物质(秸秆)气制甲醇中试研究提供了科学和实用的
    参考依据。
     5、对秸秆合成气催化合成甲醇动力学特性进行试验研究。建立了L一H
    型本征动力学模型,优选出动力学模型参数,并对模型进行统计检验和方
    差分析,结果表明动力学模型高度显著,该模型方程反映了秸秆合成气合
    成甲醇体系的动力学变化规律。
     6、应用SHBwR状态方程,研究了加压下秸秆合成气甲醇合成体系的
    总反应热、平衡常数及平衡体系组成。为生物质(秸秆)气合成甲醇的中
    试设备设计制造提供基础参数。
     本文是以解决农业废弃物(玉米秸秆)高新转换技术难题为目的的研
    究论文,着力点放在基础研究上,因为国内利用秸秆作原料气合成甲醇方
    面的研究尚无报道,因此论文在试验方面只能借鉴以天然气、煤等为原料
    合成甲醇方面的研究成果,难免在方法上有不当之处,但研究取得的结果
    对秸秆合成气合成甲醇的技术中试和合成设备设计起到有效的指导作用。
The research is linked with Henan Provincial Department of Science and Technology Research Project "Studies on Technologies of Methanol Synthesis from Fuel gas (Low Heat Value )of Agricultural Residues". Through the systematic study of "research progresses of biomass methanol synthesis technology", "tests of methanol syngas production from biomass (straw) by the thermochemical method ", "catalytic tests of methanol synthesis from straw biomass ", "technology optimum tests of methanol production from straw syngas ", "kinetic and thermodynamic characteristics tests of methanol synthesis from straw syngas ",data related to methanol synthesis technology of biomass (straw ) gas have been achieved, and the rules concluded. The major achievements are :
    1. After reading a large number of technical materials , the author made a comprehensive study on the following fields:(1) gasification technology of biomass; (2)technical processes of methanol production from biomass; (3)factors that have impact to biomass gasification process; (4)existing technology methanol syngas production from biomass and current situation of research; (5)catalyst research of biomass for methanol synthesis; (6)Problems occurred in existing gasifiable and catalytic technologies of biomass methanol.
    2. Purification technologies of cornstalk gas(low heat value) production in the down-flow fixed bed gasifer was experimented, focusing on the desulfurization, deoxy, catalytic cracking of tar, purification, hydrogenation etc. technical processes. Quality straw syngas was produced for methanol synthesis.
    3. The catalytic test of methanol synthesis for straw syngas over a domestic Cu-based catalyst C301 were carried out in a tubular-flow integral and isothermal reactor under pressure of 5MPa. Through changing some conditions of the synthetic reaction, the author has found the factors that influence CO and CO2 conversion and time space yield of CH3OH. By treatment of experimental data, the rules of the linkage among these factors was obtained.
    4. The catalytic techniques of methanol synthesis from straw syngas was experimented, focusing on the impact of pressure, temperature, catalyst, catalyst particle size, syngas flow at entering end, compositions of straw syngas on the technical parameters of synthesis, the optimum technology conditions of methanol production from straw syngas was obtained, the
    
    
    
    study provided the scientific and practical basis to the industrial test of methanol production from biomass (straw) gas.
    5. Dynamical characteristics of methanol synthesis from straw syngas was tested, It established L-H model of the intrinsic kinetics equations and the optimum parameters of the dynamic model equations. The results of statistical test and residue analysis of the model equations showed that the kinetic model equations were highly remarkable. These equations reflect the changing rules of kinetics which straw syngas synthesized methanol.
    6. Using SHBWR state equation, total reaction heat, equilibrium constants and compositions, which straw syngas synthesized methanol under pressure were researched. It provided basic parameters for design and manufacture of industrial test equipment, which straw syngas synthesized methanol.
    The paper is purposed on solving the technical problems occurred in high grade and new transforming technology of agricultural residues (cornstalk). The paper is focused on research of basic theories, because the lack of test reports of methanol synthesis used straw as feed gas, it can only refer to research results of methanol synthesis used natural gas coal and so forth as feed gas in experiments. It is unavoidable that experimental methods of this paper are not the best ones. The achievement, however, has provided effective guidance to the industrial test of straw methanol and synthesis equipment design.
引文
[1] AnastasPT, Warner JC. Green Chemistry. Theory and Practice. Oxford: Oxford Univ. Press, 1998
    [2] 贺亮.生物质转型优化能源技术的开发与利用,新能源.1996,18(1):8~14
    [3] 万仁新,蒋成球.生物质能工程.北京:中国农业出版社,1995
    [4] 中国科学院.2001高技术发展报告.北京:科学出版社,2001
    [5] 霍雅勤.中国能源现状及可持续利用对策.中国能源,1999,2:42~44
    [6] 吴创之,罗曾凡,阴秀丽.农业生物质发电技术应用分析.新能源,1995,17(5):5~11
    [7] 余春江.生物质热解机理和工程应用研究.浙江大学博士学位论文,2000
    [8] Lemasle, Chrysostome. Syngas production from wood by oxygen gasification under pressure. Ind. Ceram. 1985, 795, 434~437
    [9] Goudeau Jean Claude, Bourreau Alain, Souil Francois. An investigation on methanol catalytic synthesis from biomass gases. Energy Res. 1983 (3): 191~202
    [10] Corte P, Lacoste C, Traverse J. P. Gasifition and Catalytic Conversion of biomass by flash pyrolysis. J. Anal. Appl. Pyrolysis, 1985, 7 (4): 323~325
    [11] Lemasle J M. Methanol from wood. Thermochem. Process. Biomass, [Evolved Eur. Workshop], 1st 1983, 151~157
    [12] Mudge LK, Baker EG, Mitchell DH etal. Catalytic steam gasification of biomass for methanol and methane production. Energy Biomass Wastes 1983, 7th, 365~411
    [13] Baker E G, Mudge L K, Wilcox W A. Catalysis of gas phase reactions in steam gasification of biomass. Fundam. Thermochem. /Biomass Convers., [Pap. Int. Conf.], 1982, 863~874
    [14] Baker. E G, Brown M D. Catalytic steam gasification of bagasse for the production of methanol. Energy Biomass Wastes, 1984, 8, 651~674
    [15] Baker E G, Elliott D C, Stevens D J. Transportation fuels from wood. Altern. Energy sources, 1983, 3 (3): 363~376
    [16] Philips VD, Kinoshita CM, Neill DR etal. Thermochemical production ofr methanol from biomass in Hawaii. Applied Energy. 1990, 35 (3): 75~167
    [17] Beenackers A A C M, Van swaaij W P M. Methanol from wood. Int. J. Sol. Energy 1984, 2(5): 349~367
    [18] Beenackers A A C M, Van swaaij W P M. Methanol from wood. Int. J. Sol. Energy 1984, 2(6): 487~519
    [19] Brandon O H, Kinsey D V. Implementation of technologies for the thermochemical processing of biomass. Thermochem. Process. Biomass, [Evolved Eur. Workshop], 1st 1983, 307~311
    [20] Blackadder WH, Rensfelt E. Synthesis gas from wood and peat the Mino Process. Thermochem.
    
    Press. Biomass, [Evolved Uer. Workshop], 1st 1983: 137~149
    [21] Larson ED. Advanced Technologies for Biomass Conversion to Energy. In 2nd Olle Lindstrom Symposium on Renewable Energy, Bioenergy. 1999, Stockholm, Sweden: Royal Institute of Technology, Stockholm, Sweden.
    [22] Rei Min Hon, Hong CH, YangJY etal. Hydrogen rich synthesis gas from catalytic gasification of biomass. Proc. Pac. Chem. Eng. Congr., 3rd 1983, 3: 431~437
    [23] Palmer Eric R. Gasification of wood for methanol Production. Energy Agric. 1984, 3 (4): 363~375
    [24] Hirano. A, Hon Nami K, Kunito S, Hada M, et al. Temperature effect on continuous gasification of microalgal biomass. Catal. Today, 1998, 45 (1~4): 399~404
    [25] Ohtaguchi Kazahisa. Ongoing biomass energy projects. Kagaku Kogaku, 1999, 63 (3): 144~146
    [26] 铃木勉.生物质的能量转化及催化剂技术.触媒.2000,42(7):521~525
    [27] 小林由则,加幡达雄,前田隆之等.生物质气化制造甲醇体系的开发[J].三菱重工技报.2001,38(2):108~111
    [28] Specht M, Bandi A, Baumgart F, et al. Synthesis of methanol from biomass/CO_2 resources. Greenhouse Gas Control technol, Proc. Int. Conf. 4th, 1998: 723~727
    [29] Plzak Vojtech, Wendt Hartmut. Energetic Utilization ofbiomass. Chem. Ing. Tech. 1992, 64 (12): 1084~1095
    [30] Sailer G, Krumm, W Process chain analysis for methanol manufacture from biomass by mathematic models. Ber. Dtsch. Wiss. Ges. 1996, 9603
    [31] Demirbas Ayhan. Biomass resources for energy and chemical industry. Energy, Educ. Sci Technol, 2000, 5(1): 21~45
    [32] Burton R. J. The New Zealand wood hydrolysis process. Proc. Int. Symp. Ethanol Biomass, 1982, 247~270
    [33] Home Patrick A, Williame Paul T. Reaction of oxygenated biomass pyrolysis model compounds over a ZSM-5 Catalyst. Renewable Energy, 1996, 7 (2): 131~144
    [34] Narvaez Ian, Orio Alberte, Aznar Maria P, et al. Biomass Gasification with air in an Atmospheric Bubbling Fluidized Bed. Ind. Eng Chem. Res. 1996, 35 (7): 2110~2120
    [35] Wyman, Charles E. Biomass derived oxygenates for transportation fuels.Proc. Biomass Conf. Am -Ind, 2nd 1995, 966~975
    [36] Borgwardt Robert H. Methanol Production from Biomass and Natural Gas as Transportation Fuel. Ind Eng. Chem. Res. 1998, 37 (9): 3760~3767
    [37] Berg M, Koningen J, Nilsson T, et al. Upgrading and cleanof gas from biomass gasification for advanced applications. Biomass Energy Environ, Proc. Eur. Bioenergy Conf., 9th 1996, 2, 1056~1061
    [38] Helenal Chum, Ralph P Overend. Biomass and renewable fuels. Fuel Processing Technology. 2001, 71: 187~195
    
    
    [39] Meyer Steinberg, Yuanji Dong, Robert H Borgwardt. The coprocessing of fossil fuels and biomass for CO_2 emission reduction in the transportation sector. Energy Convers. Mgmt. 1993, 34 (9~11): 1015~1022
    [40] Bridgwater A V. Double J M. Fuel, 1991. 70 (10): 1209
    [41] Burton A, de Zutter D, poncelet G et al. Comm Eur Communities Rep, EUR 10004, 1986.
    [42] Chin LY, Engel A J. 3 rd Syrup Biotechnol Energy Prod Conserv, 1981. 171.
    [43] Boocock D G B, Mackay D, Lee P. Can J Chem Eng, 1982. 60: 802
    [44] Burkhard Klopries et al. Catalytic hydroliquefaction ofbiomass. Fuel, 1990. 69 (4): 448~455
    [45] Kaufman J A, Gupta D V, Szatkowski T S et al. Chem-Ing-Tech, 1974. 46: 609
    [46] Bridgwater A V. Biomass, 1990. 22: 279
    [47] Kovac R J, Gorton C W, O'Nell D J et al. In: Proc of the 1987 Biomass Thermochemical Conversion Contractors' Review Meeting. Springfield, VA, 1987. 23~40
    [48] Stevens D J. ACS Preprints (Div of fuel Chem), 1987. 32 (2): 223
    [49] Sakada et al. The Chem Eng. J, 1981. 22: 221
    [50] James E. Ind Eng Chem. Pro Des, Dex, 1975. 14 (1): 64
    [51] Marls P et al. Ind End Chem Res, 1993. 32: 1
    [52] Biodesu F et al. The Can J, Chem Eng, 1993. 71 : 8
    [53] Pattabbi Raman et al. Ind Eng Chem Pro Des Dev, 1981. 20: 636
    [54] Burugupaili et al. Ind Eng Chem Res, 1988. 27: 304
    [55] Sleven R et al. Ind Eng Chem Pro Des Dev, 1980, 19: 312
    [56] Kowopanos C A et al. The Can J Chem Eng, 1991, 69: 8
    [57] Pan Weping J Anal, ApplPyrolysis, 1989, 16 (2): 117
    [58] Kinoshita, Charles M et al. Energy sources, 1991, 13 (3): 361
    [59] Bridgwater A V, Bridge S A. Biomass Pyrolysis Liquids Upgrading and Tilisation. Amsterdam: Elsevier, 1991, 11~23
    [60] Bridgwater A V, Evans G D. An Assessment of Thermochemical Conversion System for Processing Biomass and Refuse.. Harwell: ETSU, 1993
    [61] Baldauf W, Balfans U, Rupp M. 7th European Conference on Biomass for Energy and Environment, Agriculture and Industry, Gmbh Germany, 1994, 1405
    [62] Rejal B, Evans R J, Milne TA, et al. Energy from Biomass and wastes XV. Washington D C: IGT, 1992, 855~861
    [63] Enans R J, Milne T A. ACS Symposium Series No 376. Washington DC: American Chemical Society, 1998, 311~325
    [64] Milne T A, Enans R J, Filley J. Research in Thermochemical Biomass Conversion. London: Elsevier Applied Science, 1998, 910
    
    
    [65] Koyama M, et al. Journal of the National Chemical Laboratory to industry, 1991, 86 (6): 197
    [66] Conti L, Scano G, Boufala J, et al. Advances in Thermochemical Biomass Conversion, Blackie, 1994, 1460~1465
    [67] Allen S G, Boocock D G B, Chowhury A Z. Biomass Thermal Processing. Newbury, UK: C P L Scientific Press, 1992, 90~97
    [68] Boocock D G, Chordhury A, Kosiak L, et al. R Seminar, Energy Mines and Resources. Proceedings of 7th Canadian Bioenergy, Canada, 1989, 693~715
    [69] Meier D, Rupp M. Biomass Pyrolysis Liquids Upgrading and Utilsation. London and New York: Elsevier Applied Science, 1991, 93~99
    [70] Anmar M, Elamin A, Rezzoug S, et al. 7th European Conference on Biomass for Energy and Enviroment, Agriculture and Industry, Gmbh Germany, 1994, 1405
    [71] Bridgewater A V, Grassi G, BertiniI. 1st European Forum on Lectricity Production from Biomass, EC, 1992, 97
    [72] Wang D, Czemilk S, Montane D, et al. Ind Eng Chem Res, 1997, 36: 1507
    [73] Chum H L, Diebold J P, Black S K. Energy from Biomass andWastes XV. Washington D C: IGT, 1991, 531~541
    [74] Piskorz J, Scott D S, Radlein D, et al. Biomass Thermal Processing. Newbury, UK: CPL Scientific Pres, 1992, 64
    [75] Longley C J, Howard J, Morrison A E. Biomass Thermal Processing. Newbury, U K: CPL Scientific Press. 1992, 179
    [76] Scott D S, Piskorz J, Radlein D. Energy from Biomass and Wastes X V. Orlando, FL: IGT, 1993
    [77] Steinberg M. Efficient natural gas technologes: A response to global warming. CHEMTECH, 1999, 29 (1) : 31~36
    [78] Teinberg M. Application to CH_3OH synthesis by reacting the Hydrogen with CO_2 recovered from coal burning power plant stack gases can significantly reduce CO_2 from the utility and transportation sectors. Int. J. Hydrogen. Energy, 1998, 23 (6): 419~425
    [79] Pena/M A, Gomez J P, Fierro J LG. New catalytic routes for syngas and H_2 production. Appl. Catal A: General, 1996; 144: 7~57
    [80] Marchioma M, Larni M. Synthesizing CH_3OH at lower temperature. CHEMTECH, 1997; 27 (4): 27~32
    [81] Gatti A, Prins R. Basic metal oxide as CO catalysts in the conversion of synthesis gas to CH_3OH on supported Pd catalysts. J. Catal, 1998; 75 (2): 302~311
    [82] Stahl S S, Labinger J A, Bercaw J E. Homogeneous oxidation of alkanes by electro-philic late transition metals. Angew. Chem Ind, Ed, 1998; 37: 2180~2192
    [83] Taylor S H, Hargreaves J A J, et al. Applied Catalysis A: General, 1995. (126): 287~296
    [84] Chinchen G C, Denny P J, et al. Applied Catalysis, 1988, 36: 1~65
    
    
    [85] Maitra L M, Campbell I, Tayler R J. Applied Catalysis A: General, 1992. (85): 27~46
    [86] Otsuka K, Wang Y, Yamanaka I. Direct partial oxidation of CH_4 to synthesis gas by CeO_2. J. Catal, 1998; 175 (2): 152~160
    [87] Tsipouriari V A, Zhang Z. Catalytic partial oxidation of CH_4 to syngas over Ni-based catalysis. J. Catal, 1998; 179: 283~291
    [88] Mamasidou K G, Vasulos I A. Catalytic partial oxidation of CH_4 to syngas in pilot-plant scale spouted-bedreactor. Chem, Eng. Sci., 1999; 54: 3691~3699
    [89] Koening G. Methanol by catalytic oxidation of CH_4. Ger, Offen, DE 3, 101, 024 (1982)
    [90] Lu G Q, Wang S. Ni-based catalysts for CO_2 reforming of CH_4 CHEMETECH, 1999; (1): 37~43
    [91] Wang S, Lu G Q M. CO_2 reforming of CH_4 on Ni catalysts Appl. Catal, B. 1998; 16 (3): 269~277
    [92] Choudhary V R, Uphade B S. Simultaneoas steam and CO_2 refoeming of CH_4 to ayngas over NiO/MgO/SA-5205 in presence and absence of oxygen. Appl. Catal, A: General, 1998; 168 (1): 33~46
    [93] 郭建维,宋晓锐,催英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报,2001.29(4):319~322
    [94] 苏学泳,王智微,程从明等.生物质在流化床中的热解和气化研究[J].燃料化学学报,2000(4):298~305
    [95] 郭艳,魏飞,王谣等.应用裂解气相色谱对生物质快速裂解反应条件的研究[J].燃料化学学报,2000.(5):415~419
    [96] 余春江,骆仲泱,张文楠等。碱金属及相关无机元素在生物质热解中的转化析出[J].燃料化学学报,2000(5):420~425
    [97] 侯文武,吕子安,李晓辉等.生物质热解产物中焦油的催化裂解[J].燃料化学学报,2001(1):70~75
    [98] 张荣乐,李国辉,周敬米.生物质基合成气的净化[J].煤炭转化,2000,23(3):85~88
    [99] 张无敌,夏朝凤,宋洪川.生物质热解气化技术的评价[J].节能,1998.(3):37~40
    [100] 赵雅明,王翠艳,白轩.流化床生物质气化工艺中的典型相关分析[J].鞍山师院学报,1999.1(3):33~36
    [101] 王翠艳,白轩,王永威.流化床生物质气化试验研究[J].农村能源,1998.(2):24~26
    [102] 孙立.固定床气化器中生物质原料的热解气化特性[J].山东科学,1998.11(4):1~7
    [103] 董宏林,P.F.RANDERSON,F.M.SLATER.生物质能源转换新技术及其应用[J].宁夏农村科技,1999,(6):11~17
    [104] 吴创之,徐冰燕,罗曾凡等.生物质中热值气化技术的分析及探讨[J].煤气与热力,1995.15(2):8~14
    [105] 郭庆杰,张锴,刘振宇等.生物质的流化床转化[J].煤炭转化,1998.21(3):33~37
    [106] 房倚天,周政,王洋等.循环流化床燃烧及气化反应数学模型的概述[J].化学工业与工程,1998,15(3):29~37
    
    
    [107] 杨励丹,李海军,鲍亦令等.生物质系在流化床中燃烧时的烧结现象[J].新能源,1997.19(8):13~17
    [108] 吴亭亭,曹建勤,魏敦崧等.反应条件对生物质焦气化反应动力学的影响[J].华东理工大学学报,1998.24(5):559~562
    [109] 张无敌,宋洪川,钱卫芳等.我国生物质能源转换技术开发利用现状[J].能源研究与利用,2000.(2):3~6
    [110] 艾元方,蒋绍坚,邓胜祥.生物质燃料及其高温空气气化[J].能源工程,2000.(4):15~17
    [111] 喻霞,魏敦崧.生物质固定床气化过程的研究[J].煤气与热力,2000.20(4):243~246
    [112] 刘延米,朱肚维,胡浩权.以麦秆为原料制取合成氨原料气的实验研究[J].煤炭化,2000.23(2):92~95
    [113] 荣桂安.生物质能源的转化及应用[J].氮肥设计,1996.34(2):39~42.
    [114] 宋晓锐,黄仲涛,催英德等.生物质能通过热化学加工的开发利用[J].现代化工,2000.20(2):7~9
    [115] 孙立.新能源技术的发展与展望[J].山东能源,1997(1):38~45.
    [116] 李天文,曹永生.甲醇合成工艺进展[J].现代化工,1999.(9):8~11
    [117] 朱长赢,王霭玲,陆智玄等.合成甲醇工艺学(Ⅳ)[J].煤化工,1991.(1):49~61
    [118] 汤洪良,柴国墉.关于甲醇工业有关问题的分析[J].煤化工.1991.(2):1~5
    [119] 洪传庆,王琼,张祖硕等.铜基合成甲醇催化剂的研究Ⅱ[J].燃料化学学报,1985,(1):39~48
    [120] 钱伯章.甲醇工业科技开发动向[J].中国化工信息,1997.(32):10
    [121] 苏栋根.汽车尾气净化催化剂的进展及市场分析[J].现代化工,1999.(8):36~38
    [122] 王桂轮,李成岳.甲醇合成路线及其进展[J].现代化工,2000.20(8):25~27
    [123] Taylor S H, Hargreaves J A J, et al. Applied Catalysis A: General, 1995. (126): 287~296
    [124] Chinchen G C, Denny P J, et al. Applied Catalysis, 1988, 36: 1~65
    [125] Maitra L M, Campbell I, Tayler R J. Applied Catalysis A: General, 1992. (85): 27~46
    [126] 邝生鲁,肖稳发.甲烷转化为甲醇作运输燃料的系统[J].天然气工业,2000.(1):86~89
    [127] 周小燕.浅谈天然气直接制甲醇的发展前景[J].石油化工动态,2000,8(3):44~47
    [128] 马兵.我国甲醇工业现状与未来[J].现代化工,2000.20(7):1~5
    [129] 王熙庭.甲醇工业催化剂进展[J].中国化工信息,1999.(9):7
    [130] 罗来涛,李松军,邓庚凤.Sm_2O_3对Ni/sepiolite甲烷化催化剂的影响[J].燃料化学学报,2001,29(4):302~304
    [131] 房德仁,李海洋,李士芹等.近十年甲醇合成技术进展(上)[J].上海化工:2000(12):32~35
    [132] 房德仁,李海洋,李士芹等.近十年甲醇合成技术进展(下)[J].上海化工.2000(13):33~35
    [133] 赵玉龙,白亮,胡蕴青等.沉淀法CuCr催化剂/CH_3ONa体系的浆态相低温甲醇合成性能[J].燃料化学学报,2001,29(4):360~362
    [134] 王存文,朱炳辰,丁百全等.三相床甲醇合成新工艺工程开发研究[J].化学工程,2001,29(4):51~54
    
    
    [135] 高俊文,张勇.LC308型合成甲醇催化剂的工厂模式[J].工业催化,2000,8(5)48~51
    [136] 黄晓江,刘宝山,李好管.甲醇的技术进展及市场分析[J].煤化工,2001(3):9~14
    [137] 中国能源研究会农村能源专业委员会《中国农村地区可持续发展能源战略研究》课题组,中国农村地区可持续发展能源战略研究报告.1997
    [138] 顾树华,段茂盛.中国生物质资源概况及其能源利用,小型生物质发电技术研究会.吉林长春,1998
    [139] Li J and A. Zhou. Biomass Resource Assessment for China. In 4th Biomass Conference of the American. 1999
    [140] Chiaramonti D and G Grassi. Rural Village Strategy. Biomass for Rural Development-China. Renewable Energy World. 2000, 3 (3): 98~109
    [141] MOA/DOE Project Expert Team. Biomass Energy Conversion Technologies in China: Development and Evaluation, China Environmental Science Press, 1998
    [142] Boyles DT. J. Chem. Tech. Biotechnol. 1986, 36: 495~499
    [143] Bridgwater A V. ed, Thermochemical Processing of biomass. London: Butter worths. 1984
    [144] Zhong C L, Peters C J, de Swaan Arons J. Thermodynamic studies on the hydrothermal upgrading (HTU) Process for the conversion of Biomass. First annual report. Delft: Delft University of Technology Press, 1999
    [145] Van de Beld L. Gasification of Biomass with oxygen rich air in a reverse-flow, slagging gasifer. In.. Proceedings of International Symposium on the Untilization of Biomass in View of the cooperation between The Netherlands and Japan in the Area of Sustainable Technology. Amsterdam: Nov. 30-Dec.1, 1999, 262~273
    [146] 宋维端,肖任坚,房鼎业.甲醇工学[M].北京:化学工业出版社.1991.129~130
    [147] 房鼎业,姚佩芳,朱炳辰.甲醇生产技术及进展[M].上海:华东化工学院出版社,1990
    [148] 汪荣鑫.数理统计.西安:西安交通大学出版社,1986
    [149] Natta G, Mazzanti G, Pasquon I. La chimica e L' Industria (Milauo), 1955, 37: 1035
    [150] 徐伟成.化工应用数学.北京:化学工业出版社,1982
    [151] 江体乾.化工数据处理.北京:化学工业出版社,1984
    [152] 张均利.加压合成甲醇反应宏观动力学研究.华东化工学院硕士论文,1986
    [153] 朱明交.甲醇合成动力学和数学模型的研究.华东化工学院硕士论文,1985
    [154] 李建伟,李成岳,蒋小川等.C302铜基催化剂上甲醇合成的动力学研究[J].催化学报,2000,21(6):551~555
    [155] Starling K. Fluid Thermodynamic Properties for Light Petroleum Systems. Gulf Publishing Co. 1975
    [156] 宋维端,朱炳辰,络赞椿等.应用 SHBWR状态方程计算加压下甲醇合成的反应热和平衡常数.华东化工学院学报,1981,(1):11~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700