油页岩干馏残渣与生物质混烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油页岩作为常规油气的重要补充资源,在全球资源战略中的地位日益彰显。油页岩干馏过程中产生大量的残渣,既浪费了能源资源,又对环境造成极大威胁,已成为油页岩开发利用中的瓶颈问题。本文提出以高热值生物质与干馏残渣混烧的方法,通过理论与实验研究,深入探讨了油页岩干馏残渣与生物质的混烧特性。
     详细分析了油页岩干馏残渣与生物质基础燃料特性。基于热重分析方法,对油页岩干馏残渣与生物质的混合燃烧特性进行了大量实验研究,深入探讨了燃料种类、混合比及升温速率等因素对混合物燃烧特性的影响。研究结果表明,随着生物质掺混比例增加,干馏残渣与生物质混合燃料的着火温度及燃尽温度降低,燃烧速率增加,从而改善了干馏残渣的燃烧特性。随着升温速率的增加,TG曲线向高温侧移动,燃尽温度升高;DTG曲线上的失水峰、挥发分释放燃烧峰以及固定碳燃烧峰逐渐变宽,并且各峰峰值随升温速率的增加而变大。
     理论上,基于单扫描率法Coats-Redfern方程、等转化率法KAS方程与DAEM模型,详细研究了油页岩干馏残渣与生物质混烧过程中的动力学特性。研究结果表明,运用等转化率两种方法获得的动力学特性相近,而单扫描率法求解结果与等转化率法相比在数值上存在一定的差别,但所呈现出的规律性是一致的。
     详细研究了油页岩干馏残渣与生物质混烧过程中的协同作用,揭示了混合比、升温速率、生物质种类等因素对混烧特性的相互影响规律。基于Avrami转化动力学理论,对样品燃烧的热失重过程进行了模拟。模拟结果与采用动力学方法获得的活化自由能表征的规律相一致,为进一步探索油页岩干馏残渣与生物质多组分燃烧特性提供了理论基础。
     在混烧机理研究的基础上,完成了油页岩干馏残渣与玉米秸秆颗粒的循环流化床混烧实验。系统研究了燃料配比、一次风率等因素对炉膛温度、底渣、返料、飞灰可燃物含量及燃烧效率的影响。结果表明,在油页岩干馏残渣中掺入一定比例玉米秸秆颗粒完全可以稳定、高效地燃烧。
     基于欧拉双流体封闭模型,对一台已投运的65t/h燃油页岩高低差速循环流化床锅炉进行了数值模拟并用实际运行数据进行验证。设计开发了一台130t/h燃用桦甸油页岩干馏残渣与玉米秸秆颗粒的高低差速循环流化床锅炉,运用所建立模型对该锅炉流动特性进行了模拟预测。
As the important supplementary energy of conventional oil and gas resources, oilshale shows more and more important status in the global resource strategy. However,a huge quantity of retorting solid waste will be formed in thermal processing of oilshale in vertical retorts. The retorting solid waste will gradually become thebottleneck in the development and utilization of oil shale. At the same time, it is notonly a waste of energy and resources, but also poses a great threat to the environment.As the low grade fuel with high ash content, low calorific value and low volatile, ithas been shown that circulating fluidized bed combustion of retorting solid wastecould be a promising technology. In this thesis, the co-combustion way of retortingsolid waste with high calorific value biomass has been proposed, and theco-combustion characteristics and interactions between oil shale retorting solid wasteand biomass have been deeply studied in the theory and experiment aspects.
     A detailed analysis of the basic fuel properties of the oil shale retorting solidwaste and biomass has been made. A large number of experimental studies onco-combustion characteristics of retorting solid waste and biomass have beenconducted and the effect of fuel type, mixing ratio and heating rate on co-combustioncharacteristics have been systematically discussed. The TG-DTG results show that,with the increase of biomass mixing proportion, the ignition temperature and burnouttemperature are reduced, and the burning rate are increased, and the combustioncharacteristics get improved. With the increase of the heating rate, the combustion TGcurves shift to the high temperature range, and the ignition temperature, burnouttemperature and the temperature corresponding to the maximum burning rate areincreased. Meanwhile, the dehydration peak, volatile release peak and the fixedcarbon burning peak all get broaden, and all the peak values are increased.
     In theory, based on the single scan rate method (Coats-Redfern equation),iso-conversional method (KAS equation and DAEM model), the co-combustionkinetic characteristics of retorting solid waste and biomass have been studied in detail.The results show that the dynamic characteristic obtained from iso-conversionalmethod is relatively close, while the difference exists compared with the method ofsingle scan rate method, but the regularity is consistent.
     The synergy of co-combustion process between the oil shale retorting solid waste and biomass has been investigated in detail and the interaction effect of the mixingratio, heating rate, types of biomass and other factors on the co-combustioncharacteristics has been revealed. Based on the Avrami transformation kinetic theory,the TG combustion process is simulated. The simulation results of free energy ofactivation are consistent with that obtained by KAS equation. This provides atheoretical basis for further exploration of co-combustion characteristics ofmulti-component of oil shale retorting solid waste and biomass.
     On the basis of the co-combustion mechanism, the combustion experiment of oilshale retorting solid waste with cornstalk particles is finished on circulation fluidizedbed test pilot. A comprehensive and systematic research of fuel proportion, a primaryair ratio on combustion temperature, slag, recycle, combustible content in fly ash andcombustion efficiency. The results show that, in the oil shale retorting solid wastemixed with a certain proportion of cornstalk particles, it can be completely stable andefficient combustion.
     Based on Euler closed two-fluid model, the numerical simulation for a65t/h oilshale-fired high-low bed CFB boiler that has been put into operation has beenperformed and verified with the actual operating data. A new130t/h oil shale retortingsolid waste-fired and cornstalk particles-fired high-low bed CFB boiler has beendeveloped. The flow characteristics of the boiler have been simulated and predicted.
引文
[1]国家能源局,国家能源科技“十二五”规划(2011-2015),2011-12
    [2]钱家麟,尹亮,王剑秋,等,油页岩-石油的补充能源,北京:中国石化出版社,2008
    [3] Qian Jialin,Li Shuyuan, oil shale, UNESCO Encyclopedia of life sustainablesupport(EOLSS),2003
    [4] Dyni J.R, Geoglogy and resources of some world oil shale desposits, Oil shale,2003,20(3):193~232
    [5]张家强,刘志逊,钱家麟等,中国油页岩产业的可行性,北京:地质出版社,2010
    [6]国土资源部油气资源战略研究中心,全国油页岩资源评价,北京:中国大地出版社,2010
    [7]李术元,马跃,钱家麟,世界油页岩研究开发利用现状——并记2011年国内外三次油页岩会议,中外能源,2012,17:8~14
    [8] V. Shemyakin, A. Karapetov,Experience of oil shale burning in low-temperaturefluidized-bed boilers,oil shale,2003,20(3special):383~387
    [9] M. Veiderma,Estonian oil shale–resources and usage,Oil shale,2003,20(3special):295~303
    [10] P. Kinnunen,Aspects considered in new CFB boiler design for narva powerplants,Oil shale,2003,20(3special):371~374
    [11] J. Hilger,Combined utilization of oil shale energy and oil shale minerals withinthe production of cement and other hydraulic binders,oil shale,2003,20(3special):347~355
    [12] A Raukas, Environmental problems in the Estonian oil shale industry, Energy&Environmental Science,2009,2:723~728
    [13] Yefimov. V, Oil shale processing in Estonia and Russia, Oil Shale,2000,17(4):367~385.
    [14] R.Giere,P. Stille, Energy, waste and the environment a geochemical perspective,London:The Geological Society Publishing House,2004,263~284
    [15] Andres Trikkel, Rein Kuusik, Ants Martins,et al,Utilization of Estonian oil shalesemicoke, Fuel Processing Technology,2008,89(8):756~763
    [16] Wang Qing, Bai Jingru, Sun Baizhong, et al. Strategy of Huadian oil shalecomprehensive utilization,2005,22(3):305-316
    [17] X. M. Jiang, X. X. Han, Z. G. Cui. New technology for the comprehensiveutilization of Chinese oil shale resources, Energy,2007,32(5):772-777
    [18] R. Kuusik, A. Martins, T. Pihu,et al,Fluidized-bed combustion of oil shaleretorting solid waste, Oil Shale,2004,21(3):237~248
    [19]孙佰仲,王擎,申鹏宇等,油页岩干馏残渣与烟煤混合燃烧试验研究,煤炭学报,2010,35(3):476~480
    [20]余英,田国政,王志凯等,生物质及其发电技术,北京:中国电力出版社,2008.15~19
    [21] Indrek kulaots, Jilian L. Goldfarb, Eric M.Suuberg. Characterization of Chinese,American and Estonian oil shale semicokes and their sorptive potential, Fuel,2010,89:3300~3306
    [22] Opik I, Golubev N, Kaidalov A, et al, Current status of oil shale processing insolid heat carrier UTT (Galoter) retorts in Estonia, Oil Shale,2001,18(2):99~108
    [23] H.Arro,A.Pihu,I.Opik, Utilization of semi-coke of Estonian shale oil industry,Oil Shale,2002,19(2):117~126
    [24] Kaljuvee T, Kuusik R, Trikkel A, et al, Behavior of sulphur compounds atcombustion of oil shale semicoke, Oil Shale,2003,20(2):113~126
    [25] S.A.Trikkel,R.Kuusik,A.Martins,et al, Utilization of Estonian oil shalesemi-coke, Fuel Processing Technology,2008,89(8):756~763
    [26]王擎,吴吓华,孙佰仲等,桦甸油页岩半焦燃烧反应动力学研究,中国电机工程学报,2006,26(7):29~34
    [27] Wang Qing, Sun Baizhong, Wu Xiahua, et al, Study on combustioncharacteristics of mixtures of huadian oil shale and semicoke. Oil shale,2007,24(2):135-145
    [28]王擎,吴吓华,孙佰仲等,桦甸油页半焦燃烧反应动力学研究,中国电机工程学报,2006,26(7),29-34
    [29]孙佰仲,王擎,李少华等,油页岩及其半焦混合燃料燃烧特性试验研究,中国电机工程学报,2006,26(20):108-112
    [30]孙佰仲,王擎,李少华等,桦甸油页岩及半焦孔结构的特性分析,动力工程,2008,28(1):163~167
    [31]孙佰仲,油页岩及半焦混合燃烧特性理论与试验研究:[博士学位论文],北京;华北电力大学,2009
    [32]柏静儒,豆海强,孙佰仲等,油页岩及半焦及混合燃烧的燃尽特性,动力工程,2007,27(5):815-819
    [33]孙保民,孙佰仲,王擎等,油页岩和半焦着火特性实验研究,中国电机工程学报,2008,28(26):59~64
    [34]韩向新,姜秀民,崔志刚等,油页岩半焦燃烧特性的研究,中国电机工程学报,2005,25(15):106~110
    [35]韩向新,姜秀民,崔志刚等,油页岩半焦热解特性,化工学报,2006,57(1):126~130
    [36]韩向新,油页岩半焦燃烧机理与循环流化床燃烧利用:[博士学位论文],上海;上海交通大学,2007
    [37]崔志刚,油页岩及其半焦流化床燃烧N2O生成机理研究:[博士学位论文],上海;上海交通大学,2010
    [38]申朋宇,基于抚顺式干馏炉油页岩半焦与烟煤混烧特性研究:[硕士学位论文],吉林;东北电力大学,2008
    [39] P. Gayan,J. Adanez,L. F.Diego,et al, Circulating fluidised bed co-combustionof coal and biomass, Fuel,2004,83(3):277~286
    [40] S.G. Sahu, P. Sarkar, N. Chakraborty, et al, Thermogravimetric assessment ofcombustion characteristics of blends of a coal with different biomass chars, FuelProcessing Technology,2010,91(3):369~378
    [41] A. Demirbas.Combustion characteristics of different biomass fuels.Progress inEnergy and Combustion Science,2004,30(2):219~230
    [42] M.Varol, A.T.Atimtay, B.Bay, et al, Investigation of co-combustioncharacteristics of low quality lignite coals and biomass with thermogravimetricanalysis Original Research Article,Thermochimica Acta,2010,510(1–2):195~201
    [43]王智,赵瑞娥,生物质混煤在流化床锅炉中的燃烧特性,电力技术,2010,19(2):65~69
    [44]陈移峰,生物质与煤矸石混合热解与燃烧特性试验研究:[硕士学位论文],重庆;重庆大学,2007.
    [45]李诗媛,吕清刚,矫维红等,生物质成型燃料循环流化床试验研究,燃烧科学与技术,2009,15(1):54~58
    [46]李诗媛,矫维红,吕清刚,不同床料流化床生物质燃烧粘结机理研究,工程热物理学报,2009,30(5):869~872
    [47]尹晓路,刁立章,秸秆原料对循环流化床燃烧的影响,能源工程,2006,(4):69~71
    [48]王擎,王海刚,孙佰仲等,油页岩及其半焦混烧特性的热重试验研究和动力学分析,化工学报,2007,58(11):2882~2888
    [49] A. K. Sadhukhan, P. Gupta, T. Goyal, et al, Modelling of pyrolysis ofcoal–biomass blends using thermogravimetric analysis, Bioresource Technology,2008,99(17):8022~8026
    [50] H. Haykiri-Acma,S. Yaman, Interaction between biomass and different rankcoals during co-pyrolysis, Renewable Energy,2010,35(1):288~292
    [51] Qing Wang, Haigang Wang, Baizhong Sun, et al, Interactions between oil shaleand its semi-coke during co-combustion, Fuel,2009,88(8):1520-1529
    [52] J. Cai, R. Liu, Weibull mixture model for modeling nonisothermal kinetics ofthermally stimulated solid-state reactions: application to simulated and realkinetic conversion data, The Journal of Physical Chemistry B,2007,111(36):10681~10686
    [53]岺可法,倪明江,骆仲泱等,循环流化床锅炉理论设计与运行,北京:中国电力出版社,1998
    [54]程易,气固两相流动数值模拟及其非线性动力学分析:[博士学位论文],北京;清华大学,2000
    [55] Adnan Almuttahar, Fariborz Taghipour, Computational fluid dynamics of highdensity circulating fluidized bed riser: Study of modeling parameters, PowderTechnology,2008,185:11~23
    [56]万晓涛,郑雨,魏飞等,循环流化床提升管气固湍流的计算流体力学模拟—k-ε-Θ-kp-εp参数双流体模型,化工学报,2002,53(5):461~468
    [57]蔡杰,凡凤仙,袁竹林,循环流化床气固两相流颗粒分布的数值模拟,中国电机工程学报,2007,27(20):71~75
    [58] Yurong He, Tianyu Wang, Niels Deen, et al, Discrete particle modeling ofgranular temperature distribution in a bubbling fluidized bed, Particuology,2012,10(4):428-437
    [59]李静海,欧阳洁,高士秋等,颗粒流体复杂系统的多尺度模拟,北京:科学出版社,2005
    [60] N. Yang, W. Wang, W. Ge, et al, CFD simulation of concurrent-up gas-solidflow in circulating fluidized beds with structure dependent drag coefficient,Chemical Engineering Journal,2003,96(1-3):71~80
    [61]钊丽,徐向东,差速循环床的数学模型研究,清华大学学报,1998,38(4):72~75
    [62]孙学信,燃煤锅炉燃烧试验技术与方法,北京:中国电力出版社,2002.59~82
    [63]喻秋梅,庞亚军,陈宏国,煤燃烧试验中着火点确定方法的讨论,华北电力技术,2001,7:9~10
    [64]胡荣祖,史启祯,热分析动力学,北京:科技出版社,2008.1~173
    [65]蔡炳新,基础物理化学,北京:科技出版社,2006.339~427
    [66] M. J. Starink. The determination of activation energy from linear heating rateexperiment: a comparison of the accuracy of isoconversion methods,Thermochimica Acta,2003,404(2):163~176
    [67]刘旭光,李宝庆,DAEM模型研究大同煤及其半焦的气化动力学,燃料化学学报,2000,28(4):289~293
    [68]刘旭光,李宝庆,分布活化能模型的理论分析及其在半焦气化模拟蒸馏体系中的应用,燃料化学学报,2001,29(1):54~59
    [69] H. Yinnon, D. R. Uhlmann, Applications of thermoanalytical techniques to thestudy of crystallization kinetics in glass-forming liquids, part I: theory, Journal ofNon-crystalline Solids,1983,54:253~275
    [70] Nasser Afify, Calorimetric study on the crystallization of a Se0.8Te0.2chalcogenide glass, Journal of Non-crystalline Solids,1992,142:247~259
    [71] Eric E. Finney, Richard G. Finke, Is there a minimal chemical mechanismunderlying classica avrami-erofe’ev treatments of phase-transformation kineticdata, Chemistry of Materials,2009,21(19):4692~4705
    [72]边际,浅谈一台35t/h差速流化床锅炉的设计,江西能源,2005,4:33~34
    [73]方昕,75t/h差速流化床锅炉的设计,能源研究与管理,2009,1:43~44
    [74]桂北芳,高低差速锅炉在设计运行中关键技术问题探讨,工业锅炉,2006,3:18~22
    [75]陈玉村,陈晗霞,余更孙,浅谈65t/h燃低劣油页岩差速流化床锅炉的设计,工业锅炉,2008,5:15~17
    [76]秦兵,陈晗霞,邓勇,高低差速床锅炉内循环流体动力特性及技术特点,工业锅炉,2007,3:23~25
    [77]孙雷,谈低热值油页岩95t/h锅炉的设计,能源研究与管理,2011,3:52-54
    [78] M.P.Schwarz, The role of computational fluid dynamics in process modeling,6thAusIMM Extractive Metallurgy Conf,1994,31~36
    [79] R.D. LaNAUZE. A Circulating Fluidized Bed, Powder Technology,197615(1):117-127.
    [80] K.-J Marschall, L. Mleczko, CFD modeling of an internally circulatingfluidized-bed reactor, Chemical Engineering Science,1999,54:2085-2093
    [81] Yuqing Feng, Tim Swenser-Simth, Peter J.Witt, et al, CFD modeling ofgas–solid flow in an internally circulating fluidized bed, Powder Technology,2012,219:78~85
    [82]王庆功,差速循环流化床内流动特性的数值模拟:[硕士学位论文],哈尔滨;哈尔滨工业大学,2011
    [83]田凤国,章川,范浩杰等,内循环流化床颗粒流动特性的数值模拟,上海交通大学学报,2007,41(3):347~351
    [84] B.E. Launder, D.B. Spalding, Lectures in mathematical models of turbulence,Academic Press,1972
    [85] Ananias G, Tomboulidesa, Steven A. Orzag, A quasi-two-dimensionalbenchmark problem for low mach number compressible. Journal ofComputational Physics,1998,146(2):691~700
    [86] S.B. Savage, D.J. Jeffrey, The stress tensor in a granular flow at high shear rates,Journal of Fluid Mechanics,1981,110:255~272
    [87] J.T. Jenkins, S.B. Savage, A theory for the rapid flow of identical, smooth, nearlyelastic, spherical particles, Journal of Fluid Mechanics,1983,130:187~202
    [88] K.K. Lun, S.B. Savage, D.J. Jeffrey, et al, Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in a generalflowfield, Journal of Fluid Mechanics,1984,140:223~256
    [89] P.C. Johnson, R. Jackson, Frictional-collisional constitutive relations for granularmaterials, with application to plane shearing, J. Fluid Mech.1987,176:67~93
    [90] J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory ofgranular flow, AICHE Journal,1990,36(4):523~538
    [91] M. Syamlal, W.Rogers, T.J. O’Brien, MFIX Documentation: Theory Guide, USDepartment of Energy,1993
    [92] D.G. Schaeffer, Instability in the evolution equations describing incompressiblegranular flow, Journal of Differential Equations,1987,66:19~50
    [93] F. Taghipour, N. Ellis, C. Wong, Experimental and computational study ofgas–solid fluidized bed hydrodynamics, Chemical Engineering Science,2005,60(24):6857~6867
    [94] S. Cloete, S. Amini, S.T. Johansen, A fine resolution parametric study on thenumerical simulation of gas-solid flows in a periodic riser section, PowderTechnology,2011,205:103-111
    [95] Ernst-Ulrich Hartge, Lars Ratschow, Reiner Wischnewski, et al, CFD simulationof a circulating fluidized bed riser, Particuology,2009,7(4):283~296
    [96] M. Syamlal, T.J. O’Brien, Computer simulation of bubbles in a fluidized bed,AIChE Symp, Ser,1989
    [97] D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theorydescriptions, Academic Press, San Diego,1994
    [98] L. Huilin, D. Gidaspow, Hydrodynamics of binary fluidization in a riser: CFDsimulation using two granular temperatures. Chemical Engineering Science,2003,58(16):3777~3792
    [99] L. Huilin, Size segregation of binary mixture of solids in bubbling fluidized beds,Powder Technology,2003,134:86~97
    [100] C. Wen, Y.H. Yu, Mechanics of fluidization, Chemical Engineering ProgressSymposium Series,1966,62:100~111
    [101] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog,1952,48(2):89~94
    [102] Z. Nan, L. Bona, W. Wei, et al,3D CFD simulation of hydrodynamics of a150MWe circulating fluidized bed boiler, Chemical Engineering Journal,2010,162(2):821~828
    [103] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Pub,1980.
    [104] Li. J, J. Kuipers, Gas-particle interactions in dense gas-fluidized beds, Chemicalengineering science,2003,58(3):711~718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700