ORC生物质成型燃料链条炉燃烧及系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球上生物质资源相当丰富,据估算,地球上蕴藏的生物质达18000亿吨,2013年我国可开发为能源的生物质资源约为4亿吨,且随着农林业的发展,生物质资源将越来越多。据估计,到21世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。目前我国生物质燃料成型技术已比较成熟,生物质成型燃料生产能力不断提高,研究进一步扩大生物质成型燃料的应用范围及生物质成型燃料的高效利用技术已成为亟待解决的问题。本文提出采用生物质成型燃料导热油链条炉作为有机朗肯循环(Organic Rankine Cycle, ORC)的驱动热源,将生物质能转换为电能,实现生物质成型燃料的高效利用。为了提高ORC生物质成型燃料导热油链条炉系统的效率,本文完成了如下主要内容的研究:
     (1)通过热重试验,分析了生物质成型燃料燃烧过程中水分蒸发、挥发分析出及燃烧、固定碳燃烧3个过程的基本反应机理,结合计算流体力学、传热学、化学反应动力学等方面的理论和方法,建立了单颗粒生物质成型燃料燃烧过程的二维计算模型,并进行了模拟计算,得到了单颗粒生物质成型燃料燃烧过程的气体成分以及温度分布变化情况。通过试验结果与计算结果的对比,验证了该模型的准确性。单颗粒生物质成型燃料燃烧过程的模拟研究为构建生物质成型燃料导热油链条炉的床层燃烧计算模型奠定了基础。
     (2)构建了生物质成型燃料导热油链条炉的床层燃烧和炉膛燃烧一体化的综合模型,对床层和炉膛的流动、传热和传质过程进行了耦合计算。为验证模型的准确性,采用气相色谱仪测量了某链条炉中生物质床层表面的气体成分分布,并与模拟结果进行对比分析,结果吻合较好。基于该模型,研究了空气预热温度、料层厚度、炉排前进速度、颗粒直径和配风方式对生物质床层燃烧和炉膛燃烧的影响规律,为运行提供了理论依据。
     (3)结合传热学、热力学、流体力学和火用分析方法,建立了生物质成型燃料链条炉系统热力性能的数学模型。应用该模型研究了导热油入口温度、导热油入口流量、二次风温度和二次风速度等影响因素对生物质成型燃料导热油链条炉最终排烟温度、热效率、导热油出口温度、火用效率等主要性能指标的影响规律。研究结果表明各影响因素与系统性能之间存在比较复杂的非线性数学关系,为提高锅炉的性能指标,需要对系统进行多参数的并行优化。
     (4)运用数学规划理论,基于蚁群算法,建立了生物质成型燃料链条炉系统的多参数优化模型,提出了单目标优化、多目标优化或火用经济优化方法,并以系统最终排烟温度、导热油出口温度、热效率、火用效率、年度总成本、年度化净利润评价指标对生物质成型燃料链条炉系统进行了优化,使该系统的有关性能得到极大改善和提高,如经过初步优化设计后系统供热量同为13.95MW的生物质成型燃料链条炉系统的年度化总成本比原设计下降近8.8%,年度化净利润提高近7%。
Biomass resources are very rich and the biomass is about1.8trillion tons on the earth. There are about400million tons biomass resources can be developed into energy in China in2013, and with the development of agroforestry, the biomass resources will be more and more. It is estimated that various kinds of biomass alternative fuels will account for more than40%of total global energy consumption. The production capacity of biomass briquette fuel is increasing with the forming technology is more and more mature, and the next hot issues of the biomass briquette fuel are expansioning the application range and inproving the utilization efficiency. In this paper, the biomass briquette fuel heat-conducting oil chain boiler, which is convert the biomass to the electricity, is used as the driving heat source of organic rankine cycle. This boiler can realize the effective utilization of biomass briquette fuel. In order to improve the efficiency of ORC biomass briquette fuel heat-conducting oil chain boiler system, the main contents are studied in this paper are as follows:
     (1) The reaction mechanisms of water evaporation process, volatile devolatilization and combustion process and fixed carbon combustion process in biomass briquette fuel combustion are analysed according to the thermal test. The two-dimensional mathematical model of combustion process of single particle biomass briquette fuel is established based on the theories and methords of computational fluid dynamics, heat transfer, chemical reaction dynamics. The combustion process of single particle is simulated with this model, and the gas composition and temperature distribution is obtained. The accuracy of this model is verified by comparing the test results with the calculation results. The simulation study of single particle biomass briquette fuel combustion process is the base of the construction of mathematical model in bed of biomass briquette fuel heat-conducting oil chain boiler.
     (2) The comprehensive mathematical model of bed and furnace in biomass briquette fuel heat-conducting oil chain boiler is developed, the process of flow, heat and mass transfer are simulated with this model. In order to verify the model, the distribution of gas component in bed furnace was measured by chromatographic instrument, and the simulated results are in good agreement with the test results. The influence of secondary air temperature, bed thickness, chain velocity, particle size and air distribution mode on combustion of bed and furnace is studied based on this model. This study provides a theoretical basis for the operation.
     (3) The mathematical model of thermal properties of biomass briquette fuel heat-conducting oil chain boiler is developed according to the theories of heat transfer, thermodynamics, fluid mechanics and the method of exergy analysis. The influence of heat-conducting oil temperature and flow, secondary air temperature and velocity on the flue gas temperature, thermal efficiency, outlet heat-conducting oil temperature, exergy efficiency of biomass briquette fuel heat-conducting oil chain boiler was studied with this model. The results indicate that the relationship between the factors and the system performance is a complex nonlinear mathematical relationship. In order to improve the performance of chain boiler, the parallel optimization of multi parameters is necessary.
     (4) By application of mathematical programming theory and ant colony algorithm (ACA), optimization model of biomass briquette fuel heat-conducting oil chain boiler system was suggested, single-objective, multi-objective and exergoeconomic optimization methods were discussed. Optimization design of biomass boiler system was done, the optimization objectives include exhaust temperature, outlet temperature of the heat conduction oil, thermal efficiency and exergy efficiency, annual total cost index, annual net benefit index.The performances of biomass briquette fuel heat-conducting oil chain boiler system were remarkably improved by means of the proposed optimization design method. For example, in a13.95WM biomass briquette fuel heat-conducting oil chain boiler system, the annual total cost came nearly down8.8%and annual net benefit was raised upabout7%after optimized by this method.
引文
[1]姚向君,田宜水.生物质能源资源清洁转化利用技术[M].北京:化学工业出版社,2005:5-7
    [2]谭洪.生物质热裂解机理试验研究[D].杭州:浙江大学,2005:2-4
    [3]袁振宏,吴创之,马隆龙等.生物质能利用原理与技术[M].化学工业出版社,2005:3-4
    [4]刘圣勇,刘小二,王森.不同形态生物质燃烧技术现状和展望[J].新能源产业,2007,(4):23-28
    [5]肖军,段菁春,王华.生物质利用现状[J].安全与环境工程,2003,10(1):11-14
    [6]姜文荣,李骅,何文龙,高翔.生物质成型燃料燃烧特性的研究进展[J].中国农机化,2012,(6):187-190
    [7]戴伟娣,李翔宇.中国生物质领域CDM项目现状及发展趋势[J].生物质化学工程,2007,41(5):57-61
    [8]林维纪,张大雷.生物质固化成型技术及其展望[J].新能源,1999,21(4):16-17
    [9]终树声.西欧三国生物质能技术考察情况[J].农村能源,1997,(5):21-23
    [10]张无敌,刘士清,何彩云.生物质潜力及能源转换[J].新能源,1999,(10):34-35
    [11]张正敏,邓可蕴,Ralph Overend.中国生物质能技术商业化设计[M].中国环境出版社,1998:53-57
    [12]邱陵,郭康权.生物质能转换技术[M].西北大学出版社,1993:23-24
    [13]岳建芝.中国与IEA国家生物质能利用比较研究[D].郑州:河南农业大学,2001:53-57
    [14]丁启塑.生物质能转换技术的发展趋势[J].农村能源,1995,(5):20-21
    [15]Center for Biomass Technology-2000 Doanish Bioenergy Solutions-reliable and Efficiency.2001,3:16-17
    [16]Margaret K.M, Pamela L.S. Life cycle Assessment of a Biomass Gasification Combined-Cycle Power System[M].戴林,王革华,占增安译.贡光禹校.中国环境科学出版社,2000:5
    [17]Cliffe K, Patumsawad S. Co-combustion of waste from olive oil production with coal in a fluidized bed[J]. Waste Management,2001,21(1):49-53
    [18]China-European Union Renewable Energy Technology Conference. Beijing China 1999:9
    [19]Faborade M.O, Callaghan J.R. Optimizing the compression/Briquetting of Fibrous Agricultural Materials[J]. Joural of Agricultural Engineering Research.1987,38(4): 245-262
    [20]Dogherty M.J, Wheeler J.A. Compression of staw to High Densities in Closed Cylindrical Dies. Journal of Agriculture Engineering Research,1994,29(1):61-72
    [21]The Center for Biomass Technology. Straw for Energy Production Technology-Environment-Econolgy(Second Edition).1998
    [22]Federov M.F. Study of the process of Compression of Staw[J].Traktory Iselkhoz-mashing,1972,5:21-24
    [23]Osobov V.I. Theoretical Principles of Compressing Fibrous Plant Materials[J]. Thudy Viskhom,1967,55:221-265
    [24]Naidu B.S.K. Biomass Briquetting-An Indian Perpective[M]. Proceedings of the International Workshop on Biomass Briqueting New Delhi, India,1995:45-46
    [25]Dogherty M.J. A Review of the mechanical Behaviour of Straw When Compressed to high Densities[J]. Agric.Engng.Res,1989,44:243-285
    [26]Bellinger P.L, Mccolly H.H. Energy Requirements for Forming Hay Pellets[J]. Agricultural Engineering,1961,42(5):244-247
    [27]Food and Agriculture Organization of Unition Nations[J]. Rural Energy in the Asia-Pouific Region. Combustion and Gasification of Biomass.2002:14-16
    [28]Alferov S.A. Relationships in the Compression of Straw[J]. Selkhozmashina,1957, (3):8-15
    [29]Davies P. Statistical Review of World Energy 2005[R]. London:British Petroleum,2005:78-77
    [30]Warker, Roland.Numerical Simulation of Monolithic Catalysts with a Hetero-generous model and Comparison with Experimental Results from a wood Domestic Boiler[J]. Chemical Engineering and Technology,2000,23(6):43-46
    [31]Heat Exchanger for Biomass Boiler. Machinery and Steel= Mas Chinen and Stahlbau[J].2001,42(18):11-13
    [32]Obernberger I.Decentralized Biomass Combustion State of the Art and Future Development.Biomass and Bioenergy,1998,14(1):91-94
    [33]J.Pagels, M Strand.A Gudmundssom.Characterization of Particle Emission from a Commercially Operated 1MW Biomass Fired Boiler[J].USA,2001,32(1):91-96
    [34]王春光,明邵,文焕.物质压缩成型燃料技术研究综述[J].能源工程,1996:66-67
    [35]李保谦,张百良,马孝琴.液压驱动式秸秆成型技术研究及其产业化[J].2000年国际可再生能源研讨会论文集,2000:112-113
    [36]王民,郭康权.秸秆制作成型燃料的试验研究[J].农业工程学报,1993,9(1):99-103
    [37]张林海,候书林,田宜水,赵立欣,孟海波.生物质固体成型燃料成型工艺进展研究[J].中国农机化,2012,(5):87-100
    [38]姚宗路,田宜水,孟海波.生物质固体成型燃料加工生产线及配套设备[J].农业工程学报,2010,26(13):280-285.
    [39]欧阳双平,侯书林,赵立欣.生物质固体成型燃料环模成型技术研究进展[J].可再生能源,2011,2:14-18.
    [40]霍丽丽,侯书林,赵立欣.生物质固体成型燃料技术及设备研究进展[J].安全与环境学报,2009,9(6):27-31
    [41]杨太军,朱柏林.6YK-65型压块机试验研究[J].农业工程学报,1996,27(2):87-90
    [42]徐康富,龙兴.浅谈生物质型煤利用生物质能的意义及环保效益[J].能源研究与利用,1996,(3):3-6
    [43]刘雅琴.大力开发工业锅炉生物质燃烧技术前景分析[J].工业锅炉,1999,(3):2-3
    [44]王方.开发工业炉窑燃用生物质工业型煤[J].工业加热,1998,(1):33-43
    [45]张全国,刘圣勇.燃烧理论及其应用[M].河南科学技术出版社,1993:25-26
    [46]徐通模.燃烧学[M].机械工业出版社,1984:10-11
    [47]徐通模,金定安,温龙.锅炉燃烧设备[M].西安交通大学出版社,1993:11-12
    [48]苏超杰,罗志华,刘圣勇.小麦秸秆成型燃料孔隙率对燃烧效果的影响[J].安徽农业科学,2011,39(8):4594-4595,4648
    [49]王启民,李源,王广涛.秸秆致密成型块压缩密度对层燃反应性的影响[J].沈阳工程学院学报(自然科学版),2010,6(4):293-296,325
    [50]贺业光,杨天华,孙洋.钾对秸秆混煤燃烧特性影响的研究[J].燃料化学学报,2011,39(7):507-512
    [51]Fahmir, Bridgwater A, Darell L.The effect of alkalimetals on combustion and pyrolysis of lolium and festuca grasses switch-grass and willow[J].Fuel,2007,86(10/11):1560-1569
    [52]陈华艳,苏俊林,矫振伟.生物质型煤燃烧特性[J].吉林大学学报(工学版),2008,38(6):1281-1286
    [53]李红艳,欧阳锋.稻壳锅炉房的设计及经济比较[J].粮食与饲料工业,2005,34(1):5-6
    [54]王基壮.锅炉拱型对炉膛传热过程影响的分析[D].大连:大连理工大学,2003:32-33
    [55]王擎,关键,孙东红.卧式煤无烟燃烧锅炉炉内冷态流场的数值模拟[J].中国电机工程学报,2003,23:163-166
    [56]黄竹青,柳文刚,王擎.煤无烟燃烧锅炉炉内冷态流动特性的数值研究[J].东北电力学院学报,2004,24(1):10-14
    [57]钱焕群,缪正清.链条炉炉拱的空气流动数值计算[J].节能,2007(4):20-21
    [58]柏静儒,王擎,孙佰仲.煤无烟燃烧锅炉炉内燃烧特性分析[J].环境污染治理技术与设备,2006,7(8):140-144
    [59]Argo, W.B., J.M. Smith. Heat Transfer in Packed Beds[J].Chemical Engineering Progress,1953,49(8):443-451
    [60]Dixon, A.G., D.L.Cresswell.Theoretical Prediction of Effective Heat Transfer Parameters in Packed Beds[J].AIChE Journal,1979,25(4):663-675
    [61]Fjellerup, J., U. Henriksen, A.D. Jensen. Heat transfer in a fixed bed of straw char[J].Energy and Fuels,2003,17(5).1251-1258
    [62]Yagi, S., D.Kunii.Studies on effective thermal conductivities in packed beds[J]. AIChE Journal,1957,3(3):373-381
    [63]Nijemeisland, M..Verification Studies of Computational Fluid Dynamics in Fixed Bed Heat Transfer[J]. [Master Thesis], Worcester, Chemical Engineering, Worcester Polytechnic Institute,2000:11-12
    [64]Thunman, H., B. Leckner.Co-current and counter-current fixed bed combustion of biofuel-A comparison[J]. Fuel,2003,82(3):275-283
    [65]Johansson, R., H.Thunman, B. Leckner. Sensitivity analysis of a fixed bed combustion model, Energy and Fuels,2007,21(3):1493-1503
    [66]Johansson, R., H. Thunman, B. Leckner. Influence of intraparticle gradients in modeling of fixed bed combustion[J]. Combustion and Flame,2007,149(1-2):49-62
    [67]Johansson.R, H.Thunman, B.Leckner. Influence of intraparticle gradients in modeling of fixed bed combustion[J]. Combustion and Flame,2007,149(1-2):49-62
    [68]Thunman.H, B. Leckner. Modeling of the combustion front in a countercurrent fuel converter[J]. Proceedings of the Combustion Institute,2002,29:511-518
    [69]Thunman.H, B.Leckner. Influence of size and density of fuel on combustion in a packed bed[J]. Proceedings of the Combustion Institute,2005,30:2939-2946
    [70]Ryu.C, D.Shin, S.Choi. Effect of fuel layer mixing in waste bed combustion [J]. Advances in Environmental Research,2001,5(3):259-267
    [71]Shin.D, C.K.Ryu, S.Choi. Computational fluid dynamics evaluation of good combustion performance in waste incinerators [J]. Journal of the Air and Waste Management Association,1998,48:345-351
    [72]Yang Y.B, Robert Newman, Vida Shaifi, Jim Swithenbank, John Ariss. Mathematical modelling of straw combustion in a 38 MWe power plant furnace and effect of operating conditions [J]. Fuel,2006,86:129-142
    [73]Yang.Y.B, V.N.Sharifi, J. Swithenbank. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds[J]. Fuel,2004,83:1553-1562
    [74]Yang.Y.B, Y.R.Goh, R.Zakaria. Mathematical modelling of MSW incineration on a travelling bed[J]. Waste Management,2002,22(4):369-380
    [75]Yang.Y.B, V.N.Sharifi, J.Swithenbank. Converting moving-grate incineration from combustion to gasification-numerical simulation of the burning characteristics [J]. Waste Management,2007,27:645-655
    [76]Yang.Y.B, H. Yamauchi, V. Nasserzadeh. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed[J]. Fuel,2003,82:2205-2221
    [77]Yang.Y.B, V.N.Sharifi, J.Swithenbank. Substoichiometric conversion of biomass and solid wastes to energy in packed beds[J]. AIChE Journal,2006,52(2):809-817
    [78]Ryu C, D.Shin, S.Choi. Combined simulation of combustion and gas flow in a grate-type incinerator [J]. Journal of the Air and Waste Management Association,2002, 52(2):189-197
    [79]Goddard CD, Y.B.Yang, J.Goodfellow. Optimisation study of a large waste-to-energy plant using computational modelling and experimental measurements [J]. Journal of the Energy Institute,2005,78(3):106-116
    [80]季俊杰.燃煤链条锅炉燃烧的数值建模及配风与炉拱的优化设计[J].上海:上海交通大学,2008:29-30
    [81]Howell J R, Perlmutter M. Monte Carlo solution of thermal transfer through radiant medium between gray walls [J]. Journal of Heat Transfer,1964,89:116-122
    [82]Perlmtjtter M, Howell J R. Radiant transfer through a gas between concentric cylinders using Monte Carlo method [J]. Journal of Heat Transfer,1964,89:169-179
    [83]Adams B S, Smith P J. Three-dimensional diserete-ordianates modeling of radiative transfer in a geometrically complex furnaee[J]. Combustion Seience and Teehenology, 1993,88:293-308
    [84]Jamaluddin A S, Smith P J. Predicting radiative transfer in axisymmetric cylindrical enclosure using the discrete ordinates methods[J]. Combustion Science and Technology,1988,62:173-186
    [85]Chui E H, Raithby G D, Hughes P M J. Prediction of radiative transfer in cylindrical enclosures by the finite volume method[J]. Journal of Thermophyics,1992,6(4): 605-611
    [86]Kim M Y, Baek S W. Numerical analysis of conduction, conveetion and radiation in a gradually expanding channel[J]. Numerical Heat Transfer, Part A,1996,29(7): 725-740
    [87]Noble J J. The zone method:explicit matrix relations for total exchange areas[J]. International Journal of Heat and Mass Transfer,1975,18:261-269
    [88]Naraghi M H N, Chung B T F. A unified matrix formulation for the zone method:a stoehastie approach[J]. International Journal of Heat and Mass Transfer,1985,81: 245-251
    [89]Fleek J A. The calculation of nonlinear radiation transport by a Monte Carlo method: Statistical Physics[J]. Methods in Computation Physics,1961,1:43-63
    [90]胡廼一,孙昭星.燃烧室辐射传热Monte Carlo解法的误差分析[J].中国电机工程学报,1985,5(2):25-33
    [91]魏小林,徐通模,惠世恩.用改进的离散坐标法计算炉内三维辐射传热[J].燃烧科 学与技术,2000,6(2):140-145
    [92]贺志宏,刘林华,谈和平.炉内辐射换热过程的有限体积法[J].动力工程,1999,19(4):265-268
    [93]马金凤,吴景兴,邹天舒.中储式制粉系统锅炉掺烧褐煤技术的研究[J].动力工程,2008,28(1):14-18
    [94]史达明,周曦.电站锅炉传热对流特性的理论分析[J].中国电机工程学报,1992,12(4):69-72
    [95]张勇.船用增压锅炉的炉膛炉膛对流传热计算[J].热能动力工程,2007,22(6):634-637
    [96]赵林凤,王文欢,宗仰炜.煤/气混烧电站锅炉对流受热面传热特性的研究[J].上海电力学院学报,2007,23(4):341-344
    [97]黄祖毅,张衍国,李清海.废弃物焚烧锅炉内错列管束的对流换热特性[J].中国电机工程学报,2003,23(4):181-184
    [98]赵铁成,沈月芬,朱国桢.电站锅炉锅筒温度场计算-三维非稳态变物性材料不均匀导热问题有限元分析[J].中国电机工程学报,1997,17(4):217-220
    [99]张海林,杨善让,王升龙.锅炉尾部受热面积灰层有效导热系数的热逾渗模型[J].中国电机工程学报,2005,25(2):135-138
    [100]王为术,陈飞,刘美玲.电站锅炉膜式水冷壁温度场特性的数值计算[J].水利电力机械,2007,29(12):23-27
    [101]Ayhan Demirbas. Biomass resources facilities and biomass conversion processing for fuels and chemicals[J]. Energy conversion and management, 2001, (42):1357-1378
    [102]孙振钧.中国生物质产业及发展取向[J].农业工程学报,2004,20(5):1-5
    [103]盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J].农业工程学报,2004,20(2):242-245
    [104]车战斌.生物质就地及时压缩成型技术-Highzones技术[J].中国能源,2005,27(1):28-31
    [105]Lars Nikolaisen, Cansten Nielsen, Mogens GLarsen. Straw for energy produetion [M]. Denmark,1998:11-13
    [106]Obernberger. Deeentralized biomass combustion state of the art and future development J]. Biomass and Bioenergy.1998,14(1):94-96
    [107]翠苹,李定凯,王凤印,杨启容.生物质成型颗粒燃料燃烧特性的试验研究[J].农业工程学报,2006,10(22):174-177
    [108]傅维标,张恩仲.煤焦非均相着火温度与煤种的通用关系及判别指标[J].动力工程,1993(4):13
    [109]缪岩.利用工业分析值研究煤的燃烧特性[J].东北电力技术,1998(5):1-6
    [110]Lu Yi, Sun Ke, Cheng Gong. Silicon-based materials from rice husks and their applications [J]. Ind Eng Chem Res,2001,40(25):5861-5877
    [111]阎维平,鲁许鳌,沈冶,袁光福.混燃的稻壳飞灰特性的试验研究[J].热能动力工程,2010,25(2):234-248
    [112]Mare P. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fuisibility correlations [J]. Biomass and Bioenergy,2005,28: 275-283
    [113]李志合,易维明.生物质能源利用及发展[J].山东工程学院学报,2000,14:34-38
    [114]乐园,李龙生.秸秆类生物质燃烧特性的研究[J].新能源及工艺,2006,4:30-34
    [115]刘伟军,王佐民,于晓东.生物质型煤燃烧机理分析和燃烧速率试验研究[J].煤炭转化,1998,21(4):52-57
    [116]刘圣勇,赵迎芳,张百良.生物质成型燃料燃烧理论分析[J].能源研究与利用,2002,(6):26-28
    [117]张玉柱,艾立群.钢铁冶金过程的数学解析与模拟[M].北京:冶金工业出版社,1997,96-99
    [118]周萍,周乃君,蒋爱华.传递过程原理及其数值仿真[M].长沙:中南大学出版社,2006:65-68
    [119]Salour D, Jenkins B M, Vafei M. Control of in bed agglomeration by fuel blending in a pilot scale straw and wood fueled AFBC[J]. Biomass and Bioenergy,1993,4(2): 117-133
    [120]Yao Bin Yang, Vida N.Sharifi, Jim Swithenbank. Coverting moving-grate incineration from combustion to gasification-numerical simulation of the burning characteristics[J]. Waste Management,2007,27:645-655
    [121]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002:35-36
    [122]Fluent公司.Fluent软件内部自带数据库,2006
    [123]斯穆特L.D, P.J.史密斯.煤的燃烧与气化[M].北京:科学出版社,1992:25-27
    [124]Hobbs.M.L. Modeling countercurrent fixed-bed coal gasification[J]. Department of Chemical Engineering, Brigham Young University,1990:2-4
    [125]Mare P. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fuisibility correlations [J]. Biomass and Bioenergy,2005,28: 275-283
    [126]H Kaufmann, Th Nussbaumer, L Baxter. Deposit formation on a single cylinder during[J]. Combustion of Herbaceous Biomass Fuel.2000,79(2):180-187
    [127]X.Jiang, C.Zheng, Y.Che. Physical structure and combustion properties of super fine pulverized coal particle[J]. Fuel,2002,81:793-797
    [128]Paul A.Morgan, Struan D. Robertson, John F. Unsworth.Combustion studies by thermogravimetric analysis:1.Coal oxidation [J]. Fuel,1986,65:1546-1551
    [129]Paul A.Morgan, Struan D. Robertson, John F. Unsworth. Combustion studies by thermogravimetric analysis:2.Coal oxidation [J]. Fuel,1987,66:210-215
    [130]Yang YB, Nasserzadeh V, Goodfellow J, Sharifi VN, Swithenbank J, Chartier J. Optimisation study of a large waste-energy plant using computational modelling and experimental measurements [J]. J Energy Inst,2005,78:106-16
    [131]张品,杜海亮,王苑,罗永浩.基于床层下降的链条炉数值模型与计算[J].热能动力工程,2012,27(3):324-328
    [132]王苑,张品,林鹏云.链条炉飞灰沉积的数值模型与计算[J].热能动力工程,2011,26(2):207-211
    [133]Wurzenberger J.C, Wallner S, Raupenstrauch H. Thermal conversion of biomass: comprehensive reactor and particle modeling[J]. AICHE Journal,2002,48(10): 2398-2411
    [134]Yang.Y.B, V.N. Sharifi, J. Swithenbank.Substoichiometric conversion of biomass and solid waster to energy in packed beds [J]. AIChE Journal,2006,52(2):809-817
    [135]Shin.D, S.Choi. Combustion of simulated waste particle in a fixed bed[J]. Combustion and Flame,2000,121(1):167-180
    [136]Merrick.D. Mathematical models of the thermal decomposition of coal-l.the evolution of volatile matter[J], Fuel,1983,62(5):534-539
    [137]于娟.挥发份、CO火焰与炭粒燃烧的互相作用及其模化[M].上海;上海交通大学,2003:25-27
    [138]赵坚行.燃烧的数值模拟[M].北京,科学出版社,2002:69-71
    [139]李文艳.电站锅炉煤粉燃烧过程及结渣的数值模拟[D].北京:华北电力大学,2002:75-77
    [140]FLUENT(Inc), Fluent 6.3 User Guide,2006
    [141]张风坡.城市垃圾清洁焚烧过程数值模拟研究[D].哈尔滨:哈尔滨工程大学,2005:47-50
    [142]徐旭常,毛建雄,曾瑞良.燃烧理论与燃烧设备[M].北京:机械工业出版社,1990:47-116
    [143]柏静儒,王擎,孙佰仲.煤无烟燃烧锅炉炉内燃烧特性分析[J].环境污染治理技术与设备,2006,7(8):140-144
    [144]Coppalle.A, P.Vervisch. The total emissivities of high-temperature flames[J]. Combustion and Flame,1983,49:101-108
    [145]Smith.T.F, Z.F.Shen, J.N.Friedman. Evaluation of coefficients for the weighted sum of gray gases model[J]. Journal of Heat Transfer, ASME,1982,104(4):602-608
    [146]Ryu. C, D. Shin, S. Choi. Combined simulation of combustion and gas flow in a grate-type incinerator[J]. Journal of the Air and Waste Management Association, 2002,52(2):189-197
    [147]林鹏.秸秆类生物质层燃燃烧特性的实验研究[D].上海:上海交通大学,2008:35-38
    [148]黄祥新.层燃炉中的推迟配风法及空气二次利用原理[J].工业锅炉,1999,60(4):33-35
    [149]常兵.配风方式对层燃炉燃烧特性影响试验研究[D].上海:上海交通大学,2007:52-55
    [150]周春艳,马晓茜,毛恺.配风方式对垃圾焚烧炉燃烧效率的影响分析[J].煤气与热力,2003,23(7):395-399
    [151]鞠占英.分段送风对链条炉燃烧的影响[J].锅炉制造,2002(3):57-58
    [152]张元忠,何若敏,徐开义,余德祖.试论链条炉排配风问题[J].动力工程,1983, (5):52-59
    [153]王君儒,黄逸胜,刘建华.链条炉燃烧无烟煤的炉拱与配风研究[J].节能,1995(7):29-31
    [154]赵志宽,贺东伟.链条炉燃烧合理配风[J].应用能源技术,2004,86(2):23-24
    [155]王乃计,纪任山,小林斡,冈直树.模拟链条锅炉层状煤燃烧方法研究[J].洁净煤技术,2003,9(2):38-42
    [156]郑航,张学宏.炉前成型煤的特征及其燃烧特性[J].锅炉技术,1998(7):23-27
    [157]Nadziakiewicz. J, M. Kozio. Co-combustion of sludge with coal[J]. Applied Energy, 2003,75:239-248
    [158]王方,刘准,刘宝东.链条炉内型煤着火过程的试验研究[J].热能动力工程,1989,4(5):40-46
    [159]赵广播,栾积毅,董芃.链条炉内块粒型煤着火时间的实验研究[J].煤炭转化,2003,26(2):52-55
    [160]Starley,GP, F.W.Bradshaw, C.S.Carrel. The influence of Bed-Region Stoichiome-try on Nitric Oxide Formation in Fixed-Bed Coal Combustion[J]. Combustion and flame,1985,59:197-211
    [161]Livingston W.R, M.C.Birch. The control of NOx emissions from stoker-fired boilers[J]. Combustion and Emission Control Ⅱ.in Proceedings of the Second International conference on Combustion and Emissions Control. London,1995:2-4
    [162]Ford,N, M.J.Cooke, M.D.Pet. The use of a laboratory fixed-grate furnace to simulate industrial stoker-fired plant[J]. Journal of the Institute of Energy,1992,65(9): 137-143
    [163]季俊杰.燃煤链条锅炉燃烧的数值建模及配风与炉拱的优化设计[J].上海交通大学博士论文,2008:45-47
    [164]冯俊凯,沈幼庭,杨昌瑞.锅炉原理及计算[M].北京:科学出版社,2003:85-87
    [165]范永胜.600MW超临界机组直流锅炉的全工况建模与仿真研究[D].南京:东南大学,1997:15-20
    [166]吕崇德,范永胜,蔡瑞忠.我国电站仿真技术进展与建模理论研究[J].中国工程科学,1999,1(1):99-103
    [167]Mark Enns. Comparison of Dynamic Models of Superheater[A]. Transactions of the ASNE, Series C, No.4,1962:225-245
    [168]魏丽东.基于图形组态的超临界机组汽水系统数学建模与仿真[D].南京:河海大学,2006:65-67
    [169]华北电力大学仿控所.过程算法[M].华北电力大学仿控所,1993:22-24
    [170]钟崴,许跃敏,童水光.动态绑定技术研究与应用[J].计算机工程,2000,9:81-83
    [171]Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization[M]. New York: Wiley Press,1996:25-28
    [172]洪秉钧,胡克定.大容量直流锅炉机理建模和数学仿真[J].动力工程,1986,1:15-18
    [173]李士勇,陈永强,李研.蚁群算法及其应用[M].哈尔滨工业大学出版社,2004:15-18
    [174]乐群星,魏法杰.蚁群算法的基本原理及其研究发展现状[J].北京航空航天大学学报,2005,18(4):5-8
    [175]王芳.蚁群算法的原理及其应用[J].潍坊教育学院学报,2005,18(2):70-72
    [176]Casarosa C, Franco A. Thermodynamic optimization of the operative parameters for the heat recovery in combined plants[J]. International Journal of Applied Thermodynamics,2001,4(1):43-52
    [177]B.Naugheten. Economicassessment of combined cycle gas turbines in Australia, some effects of microeconomicreform and technological change[J]. Energy Policy,2003,31 (3):225-245
    [178]M.S.Peters, K.D.Timmerhaus. Plant Design and Economics for Chemical Engineers[J]. New York:4th ed.,McGraw-Hill,1991:125-145
    [179]K.M.Lee, S.F.Kuo, M.L.Chen. Parameters Analysis on Organic Rankine Cycle Energy Recovery System[J]. Energy Convers.Mgmt,1988,28(2):129-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700