用户名: 密码: 验证码:
从莽草酸出发合成井冈霉醇胺和一些手性环氧中间体以及氯化铜促进的肟与腙再生成醛酮的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文由下面三部分构成:
     (1)第一部分描述了从莽草酸出发合成糖苷酶抑制剂井冈霉醇胺(+)-valiolamine及其差向异构体(-)-1-epi-valiolamine:
     从莽草酸出发,经过成酯反应,以97%的收率得到莽草酸乙酯I-B-2,它与SOCl2在DMF溶液中反应,由于莽草酸乙酯I-B-2的3位羟基活性较高,能被氯取代,而4、5位的羟基则被甲酰化,以91%的收率,立体专一性地得到3位氯代产物I-B-3;莽草酸乙酯I-B-2与苯甲醛反应形成缩醛I-B-21后经NBS开环(两步一锅法),以90%的收率得到溴代产物I-B-22。I-B-3与I-B-22都可以在碱的作用下,脱去保护基,分子内取代,得到3、4位环氧化合物I-B-4。化合物I-B-4经过甲磺酰化后得到I-B-5,它在三氟醋酸与水混合溶液中,会发生环氧开环反应,以93%的收率单一地得到二醇化合物I-B-6。此化合物在醋酸存在下与叠氮钠在DMSO中反应,会经过一个SN2反应机理,以83%的收率得到叠氮取代化合物I-B-7a,其5位的构型发生转化;而在乙醇溶液中,会先发生分子内取代反应得到环氧化合物,接着环氧被叠氮基开环,以84%的收率得到化合物1-B-7b,其5位的构型保持不变。接着在I-B-7a和I-B-7b的烯丙位羟基用T3DPS基团保护,并还原酯基,再用乙酰基保护其它羟基后得到化合物I-B-9a和I-B-9b。I-B-9a和I-B-9b的双键经RuCl3/NaIO4作用双羟化后得到多羟基化合物1-B-10a和I-B-10b,最后脱去保护基并用Pd/C还原叠氮基成胺基,就合成了井冈霉醇胺(+)-valiolamine I-A-1及其差向异构体(-)-1-epi-valiolamine I-A-4。从莽草酸出发,分别经过十二步,最终以35%的总收率得到了化合物I-A-1,并以30%的总收率得到化合物1-A-4。
     (2)第二部分描述了从莽草酸出发合成四个重要手性环氧中间体(H-A-1、Ⅱ-A-2、Ⅱ-A-3、 Ⅱ-A-4):
     (a)莽草酸成甲酯后,利用二氯亚砜保护莽草酸甲酯3、4位羟基,得到环状亚硫酸酯II-B-1,把其5位羟基甲磺酰化后,以96%的收率得到化合物11-B-2,在碳酸钾的作用下,脱去其亚硫酸酯,分子内取代,以90%的收率合成了环氧化合物II-A-1;
     (b)用酸脱去化合物II-B-2上的亚硫酸酯后,以95%的收率得到二羟基化合物II-B-7,利用其烯丙位位阻小的特性,选择性地把3位羟磺酰化,以86%的收率得到化合物II-B-8,它在BzOH/Et3N (3:2)作用下,3位以上的OTs基团被OBz基团取代,构型发生翻转,以85%的收率得到化合物II-B-9,最后在碱的作用下脱去苯甲酰基,分子内取代,以93%的收率得到环氧化合物II-A-2。
     (c)化合物II-B-1的5位羟基苯甲酰化得到化合物11-B-11,用酸脱去亚硫酸酯后得到二羟基化合物II-B-12,经双甲磺酰化反应,得到化合物II-B-13,利用其烯丙位的高活性,在AcOH和DBU的混合物(3:1)的作用下,化合物II-B-133位的OMs基团被OAc基团取代,以86%的收率得到化合物11-B-14,它在碱的作用下脱去乙酰基和苯甲酰基,分子内取代,以90%的收率得到环氧化合物II-A-3。
     (d)化合物II-B-12的3位位阻小,选择性地用对氯苯甲酰氯对II-B-12的3位羟基进行酰化,以88%的收率得到化合物II-B-18,其4位上的羟基经甲烷磺酰化得到化合物II-B-19,在碱的作用下,脱去保护基,分子内成环,以90%的收率合成了环氧化合物II-A-4。
     总之,以莽草酸为原料,经过四步反应,以79%的总收率得到环氧化合物11-A-1,经过七步反应,分别以56%、64%、65%的总收率得到脱水莽草酸甲酯类手性环氧化合物Ⅱ-A-2、Ⅱ-A-3、Ⅱ-A-4。
     (3)第三部分描述了氯化铜使肟、腙转化为羰基化合物的绿色化学方法:
     研究了不同取代的肟、腙在各种铜盐催化下,于不同溶剂中进行水解,生成相应的羰基化合物的方法。其中最佳条件是在二当量氯化铜的作用下,于乙腈和水(4:1)的混合溶剂中回流。不取代的肟、腙经水解以85-98%的收率得到相应的羰基化合物。此方法对各种敏感基团(含硫基团、醛基等)没有影响,反应条件温和、收率高,后处理简单。且反应中的氯化铜经回收后能继续循环利用,符合绿色化学概念。
This dissertation contains the following three parts:
     (1) In the first part,(+)-valiolamine and its epimer (-)-1-epi-valiolamine were synthesized from the naturally abundant (-)-shikimic acid:
     Starting from (-)-shikimic acid, ethyl shikimate I-B-2was first prepared in97%yield, and then was treated with thionyl chloride in N,N-dimethylformamide (DMF). Because of the better reaction of the hydroxyl group at the allylic (C-3) position than the other two hydroxyls at C-4and C-5, a highly regioselective chlorination of the C-3hydroxyl took place. Then, both hydroxyls at C-4and C-5were masked by formyl groups. As a result, compound I-B-3was obtained in91%yield. Ethyl shikimate I-B-2was first treated with PhCHO to give an acetal I-B-21, which was then treated with NBS to afford bromide I-B-22in90%yield. When both compounds I-B-3and I-B-22were treated with K2CO3,3,4-epoxido compound I-B-4could be smoothly obtained after deblocking and intermolecular substitution. Methanesulfonylation of epoxide I-B-4gave I-B-5, which then underwent ring-opening in aqueous CF3COOH to give compound I-B-6in93%yield. Compound I-B-6was treated with sodium azide in the presence of0.5equivalent of AcOH by using dimethylsulfoxide (DMSO) as the solvent. A typical SN2-type nucleophilic substitution occurred smoothly to afford compound I-B-7a in83%yield, and the (R) configuration of C-5was inverted to (S) via a Walden-type inversion. In contrast, when compound I-B-6was treated with sodium azide at reflux by using ethanol as the solvent, compound I-B-7b was obtained in84%yield, but the (R) configuration of C-5retained during the substitution. Subsequently, protection of hydroxyl groups at the allyllie (C-3) position of compounds I-B-7a and I-B-7b by TBDPS, reduction of ester groups, and acylation of the other hydroxyl groups smoothly afforded compounds I-B-9a and I-B-9b. Then, Ru-catalyzed asymmetric dihydroxylation of compounds I-B-9a and I-B-9b was proceeded smoothly to afford compounds I-B-10a and I-B-10b. Finally, after removal of all the protecting groups followed by Pd/C-catalyzed hydrogenation of the azido group,(+)-valiolamine I-A-1and (-)-1-epi-valiolamine I-A-4were obtained accordingly.
     In conclusion, by using the naturally abundant (-)-shikimic acid as the starting matrial, the first target compound (+)-valiolamine I-A-1was synthesized via12steps in35%overall yield, and the second target compound (-)-1-epi-valiolamine I-A-4via12steps in30% overall yield.
     (2) In the second part, syntheses of four important chiral epoxy intermediates from the naturally abundant (-)-shikimic acid were described:
     (a) Starting from (-)-shikimic acid, we first prepared cyclic sulfite intermediate Ⅱ-B-1by protecting3,4-dihydroxyl groups with SOCl2Methanesulfonylation of hydroxyl at C-5of compound Ⅱ-B-1gave compound Ⅰ-B-2in96%yield. Compound Ⅱ-B-2was treated with powdered potassium carbonate in anhydrous methanol, and cascade methanolysis of cyclic sulfite and intramolecular SN2-type reaction took place smoothly to afford the desired epoxide Ⅱ-A-1.
     (b) Compound Ⅱ-B-2was treated with aqueous concentrated hydrochloric acid, the cyclic sulfite functional group of compounds Ⅱ-B-2was thus removed, and compound Ⅱ-B-7was obtained in95%yield. Regioselective mono-tosylation of the less-hindered hydroxyl group at C-3of compound Ⅱ-B-7with toluenesulfonyl chloride produced tosylate Ⅱ-B-8. After the treatment of compound Ⅱ-B-8with a mixture of benzoic acid and triethylamine (BzOH/Et3N=3:2), nucleophilic substitution of OTs group at C-3allylic position of compound Ⅱ-B-8afforded benzoate Ⅱ-B-9in85%yield. When compound Ⅱ-B-9was treated with potassium carbonate, epoxide formation and a simultaneous deblocking of benzoyl group took place smoothly to give the desired epoxide Ⅱ-A-2in93%yield.
     (c) Protection of hydroxyl group at C-5of compound Ⅱ-B-1with BzCI afforded compound Ⅱ-B-11. Then treatment with aqueous concentrated hydrochloric acid to remove the cyclic sulfite functional group of compounds Ⅱ-B-11provided compound II-B-12. Compound Ⅱ-B-12reacted with methanesulfonyl chloride to produce the bismesylated compound Ⅱ-B-13. Compound Ⅱ-B-13was treated with a mixture of AcOH and DBU (AcOH/DBU=3:1), where a selective SN2-type replacement of the OMs group at C-3position by an OAc group took place smoothly to afford compound Ⅱ-B-14in86%yield. Treatment of compound Ⅱ-B-14with K2CO3furnished the desired epoxide Ⅱ-A-3.
     (d) Compound Ⅱ-B-12was exposed to p-hlorobenzoyl chloride, and selective protection of the less hindered hydroxyl at allylic C-3position took place smoothly to afford compound Ⅱ-B-18in88%yield. Methanesulfonylation of hydroxyl group at C-4of compound Ⅱ-B-18with methanesulfonyl chloride produced compound Ⅱ-B-19. Then removal of the protecting groups followed by an intramolecular substitution finally furnished epoxide Ⅱ-A-4in90%yield.
     In summary, we have successfully developed novel asymmetric syntheses of four useful chiral epoxides Ⅱ-A-1, Ⅱ-A-2, Ⅱ-A-3, Ⅱ-A-4from (-)-shikimic acid in79%(over4steps). 56%(7steps),64%(7steps) and65%(7steps) overall yields, respectively.
     (3) In the third part, we described a green method for the regeneration of carbonyl compounds from oximes and hydrazones by using cupric chloride dihydrate as a recoverable promoter for hydrolysis:
     We investigated the hydrolysis of oximes and hydrazones with various cupric salts in different solvents to obtain the corresponding carbonyl compounds. The best condition was found as follows:2molar equivalent of cupric chloride dihydrate (CuCl2·2H2O) used in an aqueous acetonitrile (CH3CN/H2O=4:1) at reflux. The comesponding carboxyl compounds were obtained in85-98%yields. This method is tolerant with various sensitive groups (sulfides, aldehydes, etc). In addition, cupric salt could readily be recovered in almost quantitative yield via the complete precipitation of Cu(OH)2, which could be reused for the above hydrolysis after being converted int.
引文
[1]Lillelund, V. H.; Jensen, H. H.; Liang, X.F.; Bols, M. Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product Origin. Chem. Rev.2002,102:515-553.
    [2]Groopman, J. E. Current advances in the diagnosis and treatment of AIDS:an introduction. Rev Infect Dis.1990,12:908-911.
    [3]Zitzmann, N.; Mehta, A. S.; Carrouee, S.; Butters, T. D.; Platt, F. M.; McCauley, J.; Blumberg, B. S.; Dwek, R. A.; Block, T. M. Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus:implications for the development of broad spectrum anti-hepatitis virus agents. Proc. Natl. Acad. Sci. U. S.A.1999,96:11878-11882.
    [4]Tuomilehto, J. Controlling glucose and blood pressure in type 2 diabetes. BMJ.2000, 327:394-395.
    [5]Suami, T. Synthetic ventures in pseudo-sugar chemistry. Pure and Appl Chem.1987,59: 1509-1520.
    [6]Compain, P.; Martin, O. R. Carbohydrate mimetics-based glycosyltransferase inhibitors. Bioorg. Med. Chem.2001,9:3077-3092.
    [7]Ogawa, S. Design and synthesis of carba-sugars of biological interest. Trends Glycosci. Glycotechnol.2004,16:33-53.
    [8]Wang, J.; Herdewijn, P. Enantioselective Synthesis and Conformational Study of Cyclohexene Carbocyclic Nucleosides. J. Org. Chem.1999,64:7820-7827.
    [9]Wang, J.; Verbeure, B.; Luyten, I.; Lescrinier, E.; Froeyen, M.; Hendrix, C.; Rosemeyer, H.; Seela, F.; Arschot, A. V.; Herdewijn, P. Cyclohexene nucleic acids (CeNA):serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA.J. Am. Chem. Soc.2000,122:8595-8602.
    [10]Ferrier, R. J.; Blattner, R.; Clinch, K.; Fumeaux, R. H.; Gardiner, J. M.; Tyler, P. C.; Wightman, R. H.; Williams, N. R. Antibiotics.1. Amino-glycosides and aminocyclitol derivatives. Carbohydr. Chem.1996,28:251-262.
    [11]Arjona, O.; Gomez, A. M.; Lopez, J. C.; Plumet, J. Synthesis and Conformational and Biological Aspects of Carbasugars. Chem. Rev.2007,107:1919-2036.
    [12]Delgado, A. Recent advances in the chemistry of aminocyclitols. Eur. J. Org. Chem. 2008:3893-3906.
    [13]Kameda, Y.; Asano, N.; Yoshikawa, M.; Takeuchi, M.; Yamaguchi, T.; Matsui, K.; Horii, S.; Fukase, H. Valiolamine, a new a-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus.J. Antibiot.1984,37:1301-1307.
    [14]Suami, T.; Ogawa, S. Chemistry of carba-sugars (pseudo-sugars) and their derivatives. Adv. Carbohydr. Chem. Biochem.1990,48:21-90.
    [15]Kurbanoglu, N. I.; Celik, M.; Kilic, H.; Alp, C.; Sahin, E.; Balci, M. Stereospecific synthesis of a dl-gala-aminoquercitol derivative. Tetrahedron.2010,66(19):3485-3489.
    [16]Ela€..Blidi, L.; Assaf, Z.; Campsa€..Bres, F.; Veschambre, H.; ThA(?)ry, V.; Bolte, J.; Lemaire, M. Fructose-1,6-Bisphosphate Aldolase-Mediated Synthesis of Aminocyclitols (Analogues of Valiolamine) and their Evaluation as Glycosidase Inhibitors. ChemCatChem. 2009,1(4):463-471.
    [17]El Blidi, L.; Ahbala, M.; Bolte, J.; Lemaire, M. Straightforward chemo-enzymatic synthesis of new aminocyclitols, analogues of valiolamine and their evaluation as glycosidase inhibitors. Tetrahedron:Asymmetry.2006,17(18):2684-2688.
    [18]Ogawa, S.; Ohishi, Y.; Asada, M.; Tomoda, A.; Takahashi, A.; Ooki, Y; Mori, M.; Itoh, M.; Korenaga, T. Convenient synthesis of (+)-valiolamine and (-)-1-epi-valiolamine from (-)-vibo-quercitol. Org. Biomol. Chem.2004,2:884-889.
    [19]Krijnen, P. A. J.; Hahn, N. E.:Kholova, I.; Baylan, U.; Sipkens, J. A.; Alphen, F. P.; Vonk, A. B. A.; Simsek, S.; Meischi, C.; Schalkwijk, C. G.; Buul, J. D.; Hinsbergh, V. W. M.; Niessen, H. W. M. Loss of DPP4 activity is related to a prothrombogenic status of endothelial cells:implications for the coronary microvasculature of myocardial infarction patients. Basic Res. Cardiol.2012,107:1-13.
    [20]Yang, W.; Lu, J.; Weng, J.; Jia, W.; Ji, L.; Xiao, J.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; Zhu, D.; Ge, J.; Lin, L.; Chen, L.; Guo, X.; Zhao, Z.; Li, Q.; Zhou, Z.; Shan, G.; He, J. Prevalence of diabetes among men and women in china. N. Engl. J. Med.2010,362: 1090-1101.
    [21]Horii, S.; Fukase, H.; Matsuo, T.; Kameda, Y.; Asano, N.; Matsui, K. Synthesis and a-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents. J. Med. Chem.1986,29:1038-1046.
    [22]Krentz, A. J.; Bailey, C. J. Oral antidiabetic agents:Current role in type 2 diabetes mellitus. Drugs.2005,65:385-411.
    [23]张宪锋.微生物转化法裂解井冈霉素生产井冈毒亚基胺 A.中国抗生素杂志.2004,29(4):206-208,243
    [24]Horii, S.; Fukase, H.; Kameda, Y. Stereoselective conversion of valienamine and validamine into valiolamine. Carbohydr. Res.1985,140:185-200.
    [25]Lee, S.; Tornus, I.; Dong, H. J.; Groger, S. Synthesis of [7-H-3]valienamine, [7-H-3]valienone, [7-H-3]valiolamine and [7-H-3]valiolone from validamycin A., J Labelled Compd Rad.1999,42(4):361-372.
    [26]Shing, T. K. M.; Wan, L. H. Enantiospecific syntheses of valiolamine and its (1R), (2R), (1R,2R) diastereomers from (-)-quinic acid. Angew. Chem., Int. Ed. Engl.1995,34:1643-1645.
    [27]Shing, T. K. M.; Cui, Y. X.; Tang, Y. Facile syntheses of pseudo-a-D-glucopyranose and pseudo-a-D-mannopyranose. J. Chem. Soc, Chem. Commun.1991:756-757.
    [28]Shing, T. K. M.; Wan, L. H. (-)-quinic acid in organic synthesis.7. Facile syntheses of valiolamine and its diastereomers from (-)-quinic acid. Nucleophilic substitution reactions of 5-(hydroxymethyl)cyclohexane-1,2,3,4,5-pentol. J. Org. Chem.1996,61(24):8468-8479.
    [29]Hayashida, M.; Sakairi, N.; Kuzuhara, H. Novel Synthesis of Penta-N,O-Acetylvaliolamine.y. Carbohydr. Chem.1988,7(1):83-94.
    [30]Fukase, HL; Horii, S. Synthesis of a branched-chain inosose derivative, a versatile synthon of N-substituted valiolamine derivatives from D-glucose. J. Org. Chem.1992,57: 3642-3650.
    [31]Kuzuhara, H.; Fletcher, H. G., Jr. Syntheses with partially benzylated sugars. VⅧ. Substitution at carbon-5 in aldose. The synthesis of 5-O-methyl-D-glucofuranose derivatives. J. Org. Chem.1967,32:2531-2534.
    [32]Hanessian, S.; Ugolini, A. Synthesis of a chiral 1,7-dioxaspiro[5,5]undecene. A model for the spiroacetal subunit of avermectin Bla. Carbohydr. Res.1984,130:261-269.
    [33]Fukase, H.; Horii, S. Synthesis of valiolamine and its N-substituted derivatives AO-128, validoxylamine G, and validamycin G via branched-chain inosose derivatives. J. Org. Chem. 1992,57:3651-3658.
    [34]Ohtake, H.; Ikegami, S. Facile ring transformation from gluconolactone to cyclitol derivative via spiro sugar ortho ester. Org. Lett.2000,2(4):457-460.
    [35]Ohtake, H.; Li, X. L.; Shiro, M.; Ikegami, S. A highly efficient and shortcut synthesis of cyclitol derivatives via spiro sugar ortho esters. Tetrahedron.2000,56(37):7109-7122.
    [36]Shing, T. K.; Cheng, H. M. Intramolecular direct aldol reactions of sugar diketones: syntheses of valiolamine and validoxylamine G. Org. Lett.2008,10(18):4137-4139.
    [37]Sellier, O.; Van de Weghe, P.; Le Nouen, D.; Strehler, C.; Eustache, J. Ring closing metathesis as an efficient approach to branched cyclitols and aminocyclitols:a short synthesis of valiolamine. Tetrahedron Lett.1999,40(5):853-856.
    [38]Ogawa, S.; Kanto, M. Synthesis of valiolamine and some precursors for bioactive carbaglycosylamines from (-)-vibo-quercitol produced by biogenesis of myo-inositol. J. Nat. Prod.2007,70(3):493-497.
    [39]Jagdhane, R. C; Shashidhar, M. S. A formal synthesis of valiolamine from myo-inositol. Tetrahedron.2011, 67(41):7963-7970.
    [40]Yu, J.; Spencer, J. B. Stereoselective Deoxygenation of myo-inositol Monotosylates with Lithium Triethylborohydride. J. Org. Chem.1996,61:3234-3235.
    [41]Lo, H.-J.; Chen, C.-Y.; Zheng, W.-L.; Yeh, S.-M.; Yan, T.-H. A C2-Symmetric Pool Based Flexible Strategy:An Enantioconvergent Synthesis of (+)-Valiolamine and (+)-Valienamine. Eur. J. Org. Chem.2012,2012(14):2780-2785.
    [42]Ogawa, S.; Shibata, Y. A synthesis of DL-penta-N,O-acetylvaliolamine. Chem. Lett. 1985:1581-1582.
    [43]Ogawa, S.; Toyokuni, T.; Omata, M.; Chida, N.; Suami, T. Pseudosugars.5. Synthesis of DL-validatol and DL-deoxyvalidatol and their epimers. Bull. Chem. Soc. Jpn.1980,53: 455-457.
    [44]Ogawa, S.; Shibata, Y. Synthetic studies on the validamycins. Part ⅩⅢ. Synthesis of DL-penta-N,O-acetylvaliolamine and related branched-chain aminocyclitols. Carbohydr. Res.1986,148:257-263.
    [45]Fischer, H. O. L.; Dangschat, G. Quinic acid and derivatives. IV. Degradation of quinic acid to citric acid. Helv. Chim. Acta.1934,17:1196-1200.
    [46]Karrer, P.; Link, K. P. Acyl derivatives of quinic acid. Helv. Chim. Acta.1927,10: 794-799.
    [47]Ghosh, S.; Chisti, Y.; Banerjee, U. C. Production of shikimic acid. Biotechnol Adv. 2012,30:1425-1431.
    [48]Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol.2012,63:73-105.
    [49]Herrmann, K.; Entus, R. In Shikimate pathway:aromatic amino acids and beyond, Handbook of Plant Science (John Wiley & Sons Ltd.):887-892.
    [50]Ran, N.; Draths, K. M.; Frost, J. W. Creation of a shikimate pathway variant. J. Am. Chem. Soc.2004,126:6856-6857.
    [51]Jung M. Conversion of shikimic acid into 2-crotonyloxym ethyl-(4R,5R,6S)-4,5,6-trihydroxy-cyclohex-2-ene analogous to a glyoxalase I inhibitor. J. Antibiot.1987,40:720-722.
    [52]孙快麟,李润荪,雷兴翰.若干莽草酸衍生物的合成和生物活性研究.药学学报, 1990,25(1):73--76.
    [53]Huang F. Xiu Q. Anti-platelet and anti-thrombotic effects of triacetyl shikimic acid in rats. Journal of Cardiovascular Pharmacology.2002,39(2):262-270.
    [54]马怡,孙建宁,徐秋萍等.莽草酸对血小板聚集和凝血的抑制作用.药学学报,2000,35(1):1-3.
    [55]孙文燕,孙建宁等.异亚丙基莽草酸对大脑中动脉缺血再灌注大鼠的保护作用.北京中医药大学学报.2005,28(3):34-37.
    [56]Ma Yi, Xu Qiu Ping, Sun Jian Ning. Antagonistic effects of shikimic acid against focal cerebral ischemia injury inrats Subjected to middle cerebral artery thrombosis. Acta Pharmacologica Sinica.1999,20(8):696-700.
    [57]Ohira, H.; Torii, N.; Aida, T. M.; Watanabe, M.; Smith Jr, R. L. Rapid separation of shikimic acid from Chinese star anise (Illicium verum Hook, f.) with hot water extraction. Sep. Purif. Technol.2009,69(1):102-108.
    [58]廖洪利.八角茴香中莽草酸的提取.成都医学院学报.2006,1(2):130-13 1
    [59]姚菁华.响应面法优化莽草酸微波辅助提取工艺.北京化工大学学报:自然科学版.2009,36(B11):14-17
    [60]梁颖.八角茴香中莽草酸的超声提取工艺研究.科技资讯.2010,(18):228,230
    [61]White, J. D.; Cammack, J. H.; Sakuma, K.; Rewcastle, G. W.; Widener, R. K. Transformations of Quinic Acid. Asymmetric Synthesis and Absolute Configuration of Mycosporin I and Mycosporin-gly. J. Org. Chem.1995,60:3600-3611.
    [62]Plietker, B.; Niggemann, M. An Improved Protocol for the RuO4-Catalyzed Dihydroxylation of Olefins. Org. Lett.2003,5:3353-3356.
    [63]Shing, T. K. M.; Kwong, C. S. K.; Cheung, A. W. C.; Kok, S. H. L; Yu, Z.; Li, J.; Cheng, C. H. K. Facile, Efficient, and Enantiospecific Syntheses of 1,1'-N-Linked Pseudodisaccharides as a New Class of Glycosidase Inhibitors. J. Am. Chem. Soc.2004,126: 15990-15992.
    [64]Gibson, F. Preparation of chorismic acid. Methods Enzymol.1970,17:362-364.
    [65]Edwards, J. M.; Jackman, L. M. Chorismic acid. A branch point intermediate in aromatic biosynthesis. Aust. J. Chem.1965,18:1227-1239.
    [66]Pawlak, J. L.; Padykula, R. E.; Kronis, J. D.; Aleksejczyk, R. A.; Berchtold, G. A. Structural requirements for catalysis by chorismate mutase. J. Am. Chem. Soc.1989,111(9): 3374-3381.
    [67]Gustin, D. J.; Hilvert, D. Chemoenzymatic Synthesis of Isotopically Labeled Chorismic Acids.J. Org. Chem.1999,64(13):4935-4938.
    [68]Hoare, J. H.; Policastro, P. P.; Berchtold, G. A. Improved synthesis of racemic chorismic acid. Claisen rearrangement of 4-epi-chorismic acid and dimethyl 4-epi-chorismate. J. Am. Chem. Soc.1983,105(20):6264-6267.
    [69]Pawlak, J. L.; Berchtold, G. A. Total synthesis of (-)-chorismic acid and (-)-shikimic acid. J. Org. Chem.1987,52(9):1765-1771.
    [70]Kim, C. G.; Kirschning, A.; Bergon, P.; Ahn, Y.; Wang, J. J.; Shibuya, M.; Floss, H. G. Formation of 3-amino-5-hydroxybenzoic acid, the precursor of mC7N units in ansamycin antibiotics, by a new variant of the shikimate pathway. J. Am. Chem. Soc.1992,114(12): 4941-4943.
    [71]Kim, C. U.; Lew, W.; Williams, M. A.; Zhang, L.; Liu, H.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Tai, C. Y.; Mendel, D. B.; Laver, W. G.; Stevens, R. C. Influenza Neuraminidase Inhibitors Possessing a Novel Hydrophobic Interaction in the Enzyme Active Site:Design, Synthesis, and Structural Analysis of Carbocyclic Sialic Acid Analogs with Potent Anti-Influenza Activity. J. Am. Chem. Soc.1997,119:681-690.
    [72]Tan, D. S.; Foley, M. A.; Shair, M. D.; Schreiber, S. L. Stereoselective Synthesis of over Two Million Compounds Having Structural Features Both Reminiscent of Natural Products and Compatible with Miniaturized Cell-Based Assays.J. Am. Chem. Soc.1998, 120(33):8565-8566.
    [73]Rigby, J. H.; Maharoof, U. S. M.; Mateo, M. E. Studies on the Narciclasine Alkaloids: Total Synthesis of (+)-Narciclasine and (+)-Pancratistatin. J. Am. Chem. Soc.2000,122(28): 6624-6628.
    [74]Sanchez-Abella, L.; Fernandez, S.; Armesto, N.; Ferrero, M.; Gotor, V. Novel and Efficient Syntheses of (-)-Methyl 4-epi-Shikimate and 4,5-Epoxy-Quinic and-Shikimic Acid Derivatives as Key Precursors to Prepare New Analogues.J. Org. Chem.2006,71(14): 5396-5399.
    [75]McGowan, D. A.; Berchtold, G. A. (-)-Methyl cis-3-hydroxy-4,5-oxycyclohex-1-enecarboxylate:stereospecific formation from and conversion to (-)-methyl shikimate; complex formation with bis(carbomethoxy)hydrazine.J. Org. Chem.1981,46(11):2381-2383.
    [76]Yoshida, N.; Ogasawara, K. An Enantioconvergent Route to (-)-Shikimic Acid via a Palladium-Mediated Elimination Reaction. Org. Lett.2000,2(10):1461-1463.
    [77]Wood, H. B.; Ganem, B. Short chemical synthesis of (-)-chorismic acid from (-)-shikimic acid.J. Am. Chem. Soc.1990,112(24):8907-8909.
    [78]Liu, A.; Liu, Z. Z.; Zou, Z. M.; Chen, S. Z.; Xu. L. Z.; Yang, S. L. Synthesis of (+)-zeylenone from shikimic acid. Tetrahedron.2004,60(16):3689-3694.
    [79]Carlsen, P. H. J.; Aase, K. Nucleophilic addition to cyclic 1,2-sulfites. Acta Chem. Scand.1993,47:617-619.
    [80]Garner, H. K.; Lucas, H. J. Preparation and hydrolysis of some acetals and esters of D(-)-2,3-butanediol. J. Am. Chem. Soc.1950,72:5497-5501.
    [81]Shi, X.-X.; Shen, C.-L.; Yao, J.-Z.; Nie, L.-D.; Quan, N. Inversion of secondary chiral alcohols in toluene with the tunable complex of R.3NR'COOH. Tetrahedron:Asymmetry 2010,21:277-284.
    [82]Green, T. W. W., P. G. M. Protective groups in organic synthesis. Wiley.New York. 1999.
    [83]Bandgar, B. P.; Kunde, L. B.; Thote, J. L. Synthetic methods.6. Deoximation with N-haloamides. Synth. Commun.1991,27:1149-1152.
    [84]Corsaro, A.; Chiacchio, U.; Pistara, V. Regeneration of carbonyl compounds from the corresponding oximes. Synthesis.2001:1903-1931.
    [85]Ulven, T.; Carlsen, P. H. J. A method for the selective hydrolysis of ketone hydrazones in the presence of acetals. Eur.J. Org. Chem.2000:3971-3972.
    [86]Cava, M. P.; Litle, R. L.; Napier, D. R. Condensed cyclobutane aromatic systems. V. The synthesis of some a-diazoindanones:ring contraction in the indan series.J. Am. Chem. Soc.1958,80:2257-2263.
    [87]Barton, D. H. R.; Beaton, J. M. Synthesis of aldosterone acetate.J. Am. Chem. Soc. 1961,53:4083-4089.
    [88]Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. A new photochemical reaction. J. Am. Chem. Soc.1961,83:4076-4083.
    [89]Watanabe, Y.; Morimoto, S.; Adachi, T.; Kashimura, M.; Asaka, T. Chemical modification of erythromycins. IX. Selective methylation at the C-6 hydroxyl group of erythromycin A oxime derivatives and preparation of clarithromycin. J. Antibiot.1993,46: 647-660.
    [90]Ryu, I.; Kuriyama, H.; Miyazato, H.; Minakata, S.; Komatsu, M.; Yoon, J.-Y.; Kim, S. Zinc-Induced Deoximation of α,α'-Dioxo-Type Oximes and Oxime Ethers Leading to α,β-Diketo Esters. Bull. Chem. Soc. Jpn.2004,77(7):1407-1408.
    [91]Enders, D.; Wortmann, L.; Peters, R. Recovery of Carbonyl Compounds from N, N-Dialkylhydrazones. Acc. Chem. Res.2000,33:157-169.
    [92]Kabalka, G. W.; Pace, R. D.; Wadgaonkar, P. P. The palladium assisted transfer reduction of α,β-unsaturated nitroalkenes to oximes using ammonium formate. Synth. Commun.1990,20:2453-2458.
    [93]Lee, S. Y.; Lee, B. S.; Lee, C.-W.; Oh, D. Y. Synthesis of 4-oxo-2-alkenylphosphonates via nitrile oxide cycloaddition:y-Acylation of allylic phosphonates. J. Org. Chem.2000,65: 256-257.
    [94]Czekelius, C.; Carreira, E. M. Convenient transformation of optically active nitroalkanes into chiral aldoximes and nitriles. Angew. Chem., Int. Ed.2005,44:612-615.
    [95]Domingo, L. R.; Picher, M. T.; Arroyo, P.; Saez, J. A.1,3-Dipolar Cycloadditions of Electrophilically Activated Benzonitrile N-Oxides. Polar Cycloaddition versus Oxime Formation. J. Org. Chem.2006,71:9319-9330.
    [96]Wang, K.; Qian, X.; Cui, J. One step from nitro to oxime:a convenient preparation of unsaturated oximes by the reduction of the corresponding vinylnitro compounds. Tetrahedron.2009,65:10377-10382.
    [97]Corsaro, A.; Chiacchio, M. A.; Pistara, V. Regeneration of carbonyl compounds from the corresponding oximes. An update until to 2008. Curr. Org. Chem.2009,13:482-501.
    [98]Pines, S. H.; Chemerda, J. M.; Kozlowski, M. A. Cleavage of oximes with bisulfite. A general procedure.J. Org. Chem.1966,31:3446-3447.
    [99]Ranu, B. C.; Sarkar, D. C. A simple, efficient, and highly selective method for the regeneration of carbonyl compounds from oximes and semicarbazones. J. Org. Chem.1988, 53:878-879.
    [100]Curini, M.; Rosati, O.; Pisani, E. Heterogeneous catalysis in carbonyl regeneration from oximes, semicarbazones, and tosylhydrazones by zirconium sulfophenyl phosphonate. Synlett.1996:333-334.
    [101]Shirini, F.; Zolfigol, M. A.; Mallakpour, B.; Mallakpour, S. E.; Hajipour, A. R.; Baltork,1. M. A mild and efficient method for cleavage of C:N using Mg(HSO4)2 in the presence of wet SiO2. Tetrahedron Lett.2002,43:1555-1556.
    [102]Shirini, F.; Zolfigol, M. A.; Safari, A.; Mohammadpoor-Baltork, I.; Mirjalili, B. F. Regeneration of carbonyl compounds by cleavage of C:N bonds under mild and completely heterogeneous conditions. Tetrahedron Lett.2003,44:7463-7465.
    [103]Chandrasekhar, S.; Gopalaiah, K. Effective'non-aqueous hydrolysis'of oximes with iodic acid in dichloromethane under mild, heterogeneous conditions. Tetrahedron Lett.2002, 43:4023-4024.
    [104]De, S. K. SiBr4/wet silica gel as an efficient heterogeneous system for cleavage of C=N. Tetrahedron Lett.2003,44:9055-9056.
    [105]Gupta, P. K..; Manral, L.; Ganesan, K. An efficient approach for the conversion of oximes into carbonyl compounds using dichloramine-T. Synthesis.2007:1930-1932.
    [106]Temerk, Y. M.; Kamal, M. M.; Ahmed, M. E. Kinetics of hydrolysis of some N'-(4-substituted benzylidene)salicylohydrazides. J. Chem. Soc. Perkin Trans. Ⅱ.1984: 337-339.
    [107]Gawley, R. E. The Beckmann reactions:rearrangements, elimination-additions, fragmentations, and rearrangement-cyclizations. Org. React.1988,35:1-420.
    [108]Corey, E. J.; Richman, J. E. Reaction of oxime O-acetates with chromous acetate. Method for the conversion of ketoximes to ketones under mild conditions. J. Amer. Chem. Soc.1970,92:5276-5277.
    [109]Wildsmith, E.; Timms, G. H. Reduction of oximes with tervalent titanium, a mild deoximation procedure and the partial synthesis of erythromycylamine. Tetrahedron Lett. 1971:195-198.
    [110]Pojer, P. M. The use of sodium dithionite for the reduction of imines and the cleavage of oximes. Aust. J. Chem.1979,32:201-204.
    [111]Olah, G. A.; Arvanaghi, M.; Prakash, G. K. S. Synthetic methods and reactions.79. Reductive cleavage of oximes with vanadium(Ⅱ) chloride. Synthesis.1980:220.
    [112]Curran, D. P.; Brill, J. F.; Rakiewicz, D. M. A mild reductive conversion of oximes to ketones. J. Org. Chem.1984,49:1654-1656.
    [113]Akazome, M.; Tsuji, Y.; Watanabe, Y. Ruthenium complex-catalyzed selective deoxygenation of ketoximes to ketimines. Chem. Lett.1990:635-638.
    [114]Lukin, K. A.; Narayanan, B. A. The reaction of oximes with tributylphosphine-phenyl disulfide:mechanistic insight and new synthetic possibilities. Tetrahedron.2002,58:215-219.
    [115]Martin, M.; Martinez, G.; Urpi, F.; Vilarrasa, J. Conversion of ketoximes to ketones with trimethylphosphine and 2,2'-dipyridyl diselenide. Tetrahedron Lett.2004,45:5559-5561.
    [116]Majireck, M. M.; Witek, J. A.; Weinreb, S. M. An expedient reductive method for conversion of ketoximes to the corresponding carbonyl compounds. Tetrahedron Lett.2010, 51:3555-3557.
    [117]Joseph, R.; Sudalai, A.; Ravindranathan, T. Selective catalytic oxidative cleavage of oximes to carbonyl compounds with H2O2 over TS-1. Tetrahedron Lett.1994,35:5493-5496.
    [118]Varma, R. S.; Dahiya, R.; Saini, R. K. Solid state regeneration of ketones from oximes on wet silica supported sodium periodate using microwaves. Tetrahedron Lett.1997,38: 8819-8820.
    [119]Bendale, P. M.; Khadilkar, B. M. Microwave promoted regeneration of carbonyl compounds from oximes using silica supported chromium trioxide. Tetrahedron Lett.1998, 39:5867-5868.
    [120]Imanzadeh, G. H.; Hajipour, A. R.; Mallakpour, S. E. Solid state cleavage of oximes with potassium permanganate supported on alumina. Synth. Commun.2003,33:735-740.
    [121]Ganguly, N. C.; Barik, S. K. A facile, catalytic deoximation method using potassium bromide and ammonium heptamolybdate in the presence of hydrogen peroxide in an aqueous medium. Synthesis.2008:425-428.
    [122]Li, Z.; Ding, R.-B.; Xing, Y.-L.; Shi, S.-Y. Solvent-free rapid deprotection of ketone and aldehyde oximes using periodic acid. Synth. Commun.2005,35:2515-2520.
    [123]Demir, A. S.; Tanyeli, C.; Altinel, E. Manganese triacetate mediated regeneration of carbonyl compounds from oximes. Tetrahedron Lett.1997,38:7267-7270.
    [124]Hosseinzadeh, R.; Tajbakhsh, M.; Niaki, M. Y.2,6-Dicarboxypyridinium chlorochromate:a mild, efficient, and selective reagent for oxidative deprotection of oximes to carbonyl compounds. Tetrahedron Lett.2002,43:9413-9416.
    [125]Samajdar, S.; Basu, M. K.; Becker, F. F.; Banik, B. K. Bismuth nitrate-mediated deprotection of oximes. Synth. Commun.2002,32:1917-1921.
    [126]Narsaiah, A. V.; Nagaiah, K. Antimony pentachloride-promoted regeneration of carbonyl compounds from oximes. Synthesis.2003:1881-1882.
    [127]Shaabani, A.; Naderi, S.; Rahmati, A.; Badri, Z.; Darvishi, M.; Lee, D. G. Cleavage of oximes, semicarbazones, and phenylhydrazones with supported potassium permanganate. Synthesis.2005:3023-3025.
    [128]Olah, G. A.; Liao, Q.; Lee, C. S.; Prakash, G. K. S. Considered as synthetic methods and reactions.183. Efficient and mild oxidation of ketoximes to their parent ketones with dimethyldioxirane. Synletl.1993:427-429.
    [129]Hajipour, A. R.; Mahboubghah, N. 1-Benzyl-4-aza-1-azoniabicyclo[2.2.2]octane Periodate:a Mild and Efficient Oxidant for the Cleavage of Oxime Double Bonds under Anhydrous Conditions.J. Chem. Res.. Synop.1998:122-123.
    [130]Hajipour, A. R.:Mohammadpoor-Baltork,1.; Kianfar, G. Bis(1-benzyl-4-aza-1-azoniabicyclo [2.2.2] octane) peroxodisulfate:a mild and efficient oxidant for cleavage of nitrogen double bonds and oxidation of alcohols under anhydrous conditions. Bull. Chem. Sot:Jpn.1998,71:2655-2659.
    [131]Bose, D. S.; Srinivas, P. A mild and versatile method for the oxidative cleavage of oximes and tosylhydrazones to carbonyl compounds. Synlett.1998:977-978.
    [132]Krishnaveni, N. S.; Surendra, K.; Nageswar, Y. V. D.; Rao, K. R. Deoximation of oximes with 2-iodylbenzoic acid in water in the presence of β-cyclodextrin. Synthesis.2003: 1968-1970.
    [133]Chaudhari, S. S.; Akamanchi, K. G. A mild, chemoselective, oxidative method for deoximation using Dess-Martin periodinane. Synthesis.1999:760-764.
    [134]Khazaei, A.; Ghorbani, V. R.; Tajbakhsh, M. The application of N, N'-dibromo-N, N'-1,2-ethanediylbis [p-toluenesulfonamide] as a powerful reagent for deoximation of various oximes. Tetrahedron Lett.2001,42:5099-5100.
    [135]Khazaei, A.; Vaghei, R. G. Facile regeneration of carbonyl compounds from oximes using poly[4-vinyl-N, N-dichlorobenzenesulfonamide]. Tetrahedron Lett.2002,43:3073-3074.
    [136]Balasubramanian, S.; Ramalingan, C.; Kabilan, S. N-Chloro-3-methyl-2,6-diphenylpiperidin-4-one (NCP). An efficient, mild, stable oxidant for cleavage of carbon-nitrogen double bonds of oximes. Synth. Commun.2003,33:2979-2984.
    [137]Khazaei, A.; Manesh, A. A. Microwave-promoted selective regeneration of carbonyl compounds from oximes using N-bromosaccharin. Synthesis.2004:1739-1740.
    [138]Khazaei, A.; Manesh, A. A. Microwave-assisted chemoselective cleavage of oximes to their corresponding carbonyl compounds using 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) as a new deoximating reagent. Synthesis.2005:1929-1931.
    [139]Blay, G.; Benach, E.; Fernandez, I.; Galletero, S.; Pedro, J. R.; Ruiz, R. Catalytic aerobic oxidative cleavage of oximes, tosylhydrazones and N,N-dimethylhydrazones to carbonyl compounds. Synthesis.2000:403-406.
    [140]Boruah, A.; Baruah, B.; Prajapati, D.; Sandhu, J. S. Regeneration of carbonyl compounds from oximes under microwave irradiation. Tetrahedron Lett.1997,38:4267-4268.
    [141]Arnold, J. N.; Hayes, P. D.; Kohaus, R. L.; Mohan, R. S. Bismuth compounds in organic synthesis. Deprotection of ketoximes using bismuth bromide-bismuth triflate. Tetrahedron Lett.2003,44:9173-9175.
    [142]Bose, D. S.; Reddy, A. V. N.; Das, A. P. R. Simple, economical and environmentally benign selective regeneration of carbonyl compounds from oximes and N,N-dimethyl hydrazones. Synthesis.2003:1883-1885.
    [143]Yang, Y.; Zhang, D.; Wu, L.-Z.; Chen, B.; Zhang, L.-P.; Tung, C.-H. Photosensitized Oxidative Deprotection of Oximes to Their Corresponding Carbonyl Compounds by Platinum(Ⅱ) Terpyridyl Acetylide Complex. J. Org. Chem.2004,69:4788-4791.
    [144]Gogoi, P.; Hazarika, P.; Konwar, D. Surfactant/I2/water:An efficient system for deprotection of oximes and imines to carbonyls under neutral conditions in water. J. Org. Chem.2005,70:1934-1936.
    [145]Shaabani, A.; Farhangi, E. Cobalt(Ⅱ) phthalocyanine catalyzed aerobic regeneration of carbonyl compounds from the corresponding oximes in 1-butyl-3-methylimidazolium bromide. Appl. Catal, A.2009,371:148-152.
    [146]Zhou, X.-T.; Yuan, Q.-L.; Ji, H.-B. Highly efficient aerobic oxidation of oximes to carbonyl compounds catalyzed by metalloporphyrins in the presence of benzaldehyde. Tetrahedron Lett.2010,57:613-617.
    [147]Jain, N.; Kumar, A.; Chauhan, S. M. S. Metalloporphyrin and heteropoly acid catalyzed oxidation of CNOH bonds in an ionic liquid:biomimetic models of nitric oxide synthase. Tetrahedron Lett.2005,46:2599-2602.
    [148]DePuy, C. H.; Ponder, B. W. Levulinic acid as a reagent for the hydrolysis of oximes and 2,4-dinitrophenylhydrazones. J. Am. Chem. Soc.1959,81:4629-4631.
    [149]Maynez, S. R.; Pelavin, L.; Erker, G. Regeneration of ketones from tosylhydrazones, arylhydrazones, and oximes by exchange with acetone. J. Org. Chem.1975,40:3302-3303.
    [150]Chavan, S. P.; Soni, P. A facile deprotection of oximes using glyoxylic acid in an aqueous medium. Tetrahedron Lett.2004,45:3161-3162.
    [151]Haley, M. F.; Yates, K. Photochemistry of carbon-nitrogen multiple bonds in aqueous solution.1. Aromatic oximes, oxime ethers, and nitriles. J. Org. Chem.1987,52:1817-1824.
    [152]Peter de Lijser. H. J.; Fardoun, F. H.; Sawyer, J. R.; Quant, M. Photosensitized Regeneration of Carbonyl Compounds from Oximes. Org. Lett.2002,4:2325-2328.
    [153]Mandic, Z.; Lopotar, N. Electrochemical reduction of 4'-demicarosyl-10-hydro-11-dehydro-11-hydroxyimino-9-carbonyl-9-nor-8a,9seco-8a-aza-8a-homorelomycin, the novel seco compound from the class of tylosin. Electrochem. Commun.2005,7:45-48.
    [154]Corey, E. J.; Knapp, S. Facile conversion of N,N-dimethylhydrazones to carbonyl compounds by cupric ion-catalyzed hydrolysis. Tetrahedron Lett.1976:3667-3668.
    [155]Friedrich, E.; Lutz, W.; Eichenauer, H.; Enders, D. Mild cleavage of N, N-dimethylhydrazones to carbonyl compounds with singlet oxygen. Synthesis.1977:893-894.
    [156]Ram, R. N.; Varsha, K. Regeneration of carbonyl compounds from semicarbazones by copper(II) chloride dihydrate. Tetrahedron Lett.1991,32:5829-5832.
    [157]Kumar, P.; Hegde, V. R.; Pandey, B.; Ravindranathan, T. Titanium silicate molecular sieve (TS-1) induced catalytic cleavage of tosylhydrazones. J. Chem. Soc, Chem. Commun. 1993:1553-1554.
    [158]Carmeli, M.; Rozen, S. A new efficient deprotection of azines, hydrazones and oximes. An excellent route for exchanging oxygen isotopes in carbonyls. Tetrahedron Lett.2006,47: 763-766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700