我国核电站近岸海域环境功能区若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源可持续发展问题日益突出的今天,核电以其清洁、高效等优势重新引领了世界能源发展走向。我国顺应了世界潮流,核电发展方针由“适度发展核电”转向“积极发展核电”,力推核电建设。目前,我国所有的核电厂址均位于沿海,滨海核电站的兴建给我国近岸海域环境功能区管理带来了新课题。本文以核电站近岸海域环境功能区为研究对象,对其存在的若干问题展开了探索性的研究,以期引起学术界的广泛关注和深入探讨,从而借助理论研究的成果解决实践中的问题,使我国的近岸海域环境功能区划制度得到不断完善和发展。
     本文首先总结了我国核电产业发展的历史、现状和趋势,分析了滨海核电站主要排海污染物及其影响,梳理了我国近岸海域环境功能区管理现状,在此基础上提出了我国核电站近岸海域环境功能区存在的四个主要问题:区划的时滞性问题、区划中入海污染源预测的技术方法问题、放射性核素的生态视角研究问题以及环境功能区的监管问题。本文主体围绕着上述四个问题展开,主要研究内容和研究结论如下:
     首先,分析了我国目前常用的核电站入海污染源预测方法,以控制方程作为切入点,从流速和湍流两个方面对二维数模和三维数模进行了理论比较,并通过实际案例进行了分析验证。由于二维数模的流速采用深度平均从而造成表层计算结果偏小,且由于忽略了各层流速分布不均的特性以及湍流对流速和海洋混合过程的影响导致模拟精确度不高,进而影响到近岸海域环境质量评估和功能区区划结果,因此在核电站入海污染源预测中推荐使用三维数学模型。
     其次,从放射性核素累积所产生的电离辐射环境风险的角度探讨了海洋生态系统中放射性核素的环境安全浓度限值问题。借鉴欧盟ERICA项目的研究成果,逆向推导了ERICA框架下评估和管理电离辐射生态环境风险的ERICA综合法的理论逻辑,选择了13类海洋生物作为参考生物,使用ERICA Tool数据库中提供的参数数据,最终计算出了海水和沉积物中63种人工放射性核素的环境安全浓度限值。
     再次,针对目前我国核电站近岸海域环境功能区划的时滞性问题,系统地提出了解决方案,包括调整的原则、依据、流程以及每一阶段的目的、任务、标准和方法。具体地提出了核电站近岸海域及所在区域基础资料调查和专项资料调查的内容,以海域环境质量为核心的适用性评估因子,建立在已有的海水水质、沉积物和生物质量标准基础上的适用性评估标准,基于木桶原理和单因子评价模式的适用性评估方法,以及待调整环境功能区类别、范围和水质保护目标的确立依据。并将上述研究成果应用到我国某核电站近岸海域环境功能区的调整案例中。
     最后,对我国核电站近岸海域环境功能区的监测和管理问题进行了探讨。对建立核电站近岸海域环境功能区专题性监测的必要性进行了分析,对重点监测内容进行了探讨,并提出了针对核电站环境功能区的监测方案以及近岸海域环境功能区管理的建议。
Nuclear power generation releads the tendency of energy development because of its efficiency and other advantages. Conforming to the global trend, China has changed the nuclear power development policy from moderate development to active development. All the nuclear power plants of our country are located in coastal areas at present. The construction of seaside nuclear power stations has brought some issues of environmental function zone in the offshore area. Some topics were discussed here in order to cause widespread concern and in-depth academic study. The theoretical research contributes to the solution of problems in the practice and the improvement of management of marine environment.
     The thesis focuses on the four main issues of environmental function zone in the offshore area of nuclear power plant. The following contents and conclusions are included in this paper.
     The history of China's nuclear power industry, the current situation and tendency are summarized. The main pollutants discharged into the sea and their effects are analysed. The management status of environmental function zone are investigated. Based on these, four issues are proposed:the time-delay of zoning, the technical issue of zoning, the ecological perspective of radionuclides, the ragulation of the environmental function zone.
     The forecasting methods of nuclear power pollutants are introduced. Based on the results of flow velocity and turbulent flow, the two-dimensional and three-dimensional mathematical model is theoretically compared, and verified by a practical case. In two-dimensional mathematical modeling, surface velocity results is smaller for it's depth-averaged,and simulation accuracy is lower for ignoring the uneven distribution of velocity and turbulent mixing process. Therefore, three-dimensional model is recommended in the prediction of nuclear power plant pollution
     The environmental media concentration limits of radionuclides are calculated from the cumulative effect and the view of marine environmental risk caused by ionizing radiation. Learning from the EU's research results, and the theoretical logic of ERICA integrated method is derived backwards. Thirteen categories of marine biology are selected as reference organisms. The important parameter datas are provided by ERICA Tool database. Finally, the water and sediment's environmental media concentration limits of 63 artificial radionuclides are calculated.
     The framework of adjustment of environmental function zone in the offshore area is put forward, including the principle, basis, process, purpose of each stage, standards and methods. The basic and special information of investigation are proposed, together with the assessment criteria and method. The research result is applied to a adjustment case of the environmental function zone in the offshore area of a nuclear power plant.
     Finally, the monitoring and management issues are discussed. The monitoring content is analysed. The monitoring program and suggestions on informalization management are put forward. It's necessary to establish the monitoring system.
引文
[1]International Atomic Energy Agency. Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. IAEA, Vienna,2001
    [2]Koziy L, Maderich V, Margvelashvili N, Zheleznyak M. Three-dimensional model of radionuclide dispersion in estuaries and shelf seas. Environmental Modelling and Software, 1998,13(5-6):413~420
    [3]Margvelashvily N, Maderich V, Zheleznyak M. Simulation of radionuclide fluxes from the Dnieper-Bug Estuary into the Black Sea. Journal of Environmental Radioactivity,1999, 43(2):157~171
    [4]Margvelashvili N, Maderich V, Yuschenko S, Zheleznyak M.3-D numerical modelling of mud and radionuclide transport in the Chernobyl Cooling Pond and Dnieper-Boog Estuary. Proceedings in Marine Science,2002,5:595~609
    [5]Mcguird J J, Rodi W. A depth-averaged mathematical model for the near field of side discharges into open-channel flow.Journal of Fluid Mechanics,1978,86(4):761~781
    [6]Jiang J, Fissel D B, Taylor A E. Burrard Generating Station cooling water recirculation study. ASL Technical Report,2001
    [7]Jiang J, Fissel D B, Lemon D D, Topham D. Modeling cooling water discharge from the Burrard Generating Station, BC Canada. In Proceedings of Oceans 2002 MTS/IEEE,2002, 1234~1240
    [8]Jiang J, Fissel D B, Topham D.3D numerical modeling of circulations associated with a submerged buoyant jet in a shallow coastal environment. Estuarine, Coastal and Shelf Science,2003,58(3):475~486
    [9]Hamrick J M, Mills W B. Analysis of water temperatures in Conowingo Pond as influenced by the Peach Bottom atomic power plant thermal discharge. Environmental Science and Policy,2000,3,197~209
    [10]Hamrick J M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspect. The College of William and Mary, Virginia Institute of Marine Science, Special Report 317,1992
    [11]张春粦,许自图,肖璋.大亚湾核电站低放废水排放对附近水域环境影响的研究.核动力工程,1987,8(3):54~64
    [12]张春粦,李源新,胡国辉,等.大亚湾核电站液态排出物H-3浓度场分布.暨南大学学报(自然科学版),2001,22(5):51~58
    [13]朱本华.大亚湾放射性物质场数值模拟和海洋生物辐射剂量的研究:[硕士学位论文].广州:暨南大学,2005
    [14]苏柯.海洋生态系统中放射性核素转移的数值模拟.海洋科学,2007,31(10):51~54
    [15]苏柯.大亚湾核电液态排放的潮流污染扩散及海洋生态转移研究:[硕士学位论文].州:暨南大学,2005
    [16]孔令丰.大亚湾放射生态学及海洋生物转移与卷载效应研究:[博士学位论文].广州:暨南大学,2007
    [17]吴江航,陈凯麒,韩庆书.核电站冷却水远区热、核污染数值计算的一种新方法.水利学报,1986,(10):16~25
    [18]周巧菊.大亚湾热污染研究:[硕士学位论文].上海:华东师范大学,2007
    [19]朱鹏利.台山核电工程温排水对海洋环境影响预测:[硕士学位论文].青岛:中国海洋大学,2008
    [20]施祖蓉,施麟宝.萧山电厂温排水二维热污染数值模拟.浙江水利科技,1991,(1):1~10
    [21]黄平.哑铃湾电厂温排水扩散预测.海洋环境科学,1992,11(4):41~49
    [22]黄平.汕头港水域温排水热扩散的三维数值模拟.海洋环境科学,1996,15(1):59~65
    [23]王丽霞,孙英兰,郑连远.三维热扩散预测模型.青岛海域大学学报,1998,28(1):29~35
    [24]吴海杰,王志刚,陈淑丰.滨海电站温排水数值模拟.电力环境保护,2005,21(4):48~51
    [25]周成成,李红,罗秋实,等.基于曲线网格的温排水运动数值模拟.武汉大学学报(工学版),2008,41(3):9~12
    [26]曹颖,朱军政.基于FVCOM模式的温排水三维数值模拟研究.水动力学研究与进展,2009,A辑24(4):432~439
    [27]International Atonomic Energy Agency. Effects of ionizing radiation on aquatic organisms and ecosystems. Technical Reports Series No.172, IAEA, Vienna.1976
    [28]International Atonomic Energy Agency. Sediment Kd's and concentration factors for radionuclides in the marine environment. Technical Reports Series No.247, IAEA, Vienna. 1985
    [29]International Atonomic Energy Agency. Sediment distribution coefficients and concentration factors for biota in the marine environment. Technical Reports Series No.422, IAEA, Vienna. 2004
    [30]United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 1996 Report, UNSCEAR,1996
    [31]International Commission on Radiological Protection. A Framework for Assessing the Impact of Ionising Radiation on Non-human Species. ICRP Publication 91, Pergamon Press,2003
    [32]United States Department of Energy. A graded approach for evaluation radiation doses to aquatic and terrestrial biota. DOE Standard, DOE-STD-1153-2002,2002
    [33]United States Department of Energy. RESRAD-BIOTA:a tool for implementing a grade approach to biota dose evaluation. Interagency Steering Committee on Radiation Standards, ISCORS Technical Report,2004
    [34]Brown J E, Thφrring H, Hosseini A. The "EPIC" impact assessment framework:Towards the protection of the Arctic environment from the effects of ionising radiation. A diliverable report for EPIC, Project ICA2-CT-2000-10032,2003
    [35]Larsson C M, Brewitz E, et al. Formulating the FASSET assessment context. A Project within the EC 5th Framework Programme, FASSET Contract No FIGE-CT-2000-00102, 2002
    [36]Beresford N, Brown J, Copplestone D, et al. D-ERICA:An Integrated Approach to the assessment and management of environment risks from ionising radiation. European Commission Community Research Report, Contract No FI6R-CT-2004-508847,2007
    [37]唐文乔,潘自强,夏益华,等.核电站放射性液态流出物对大亚湾海洋生物所致的辐射剂量率.科学通报,1999,44(17):1846~1850
    [38]张晓峰,陶云良,上官志洪.水生生物辐射剂量率计算在核电厂环境影响评价中的应用.环境保护科学,2008,34(2):117~120
    [39]牟德海.大亚湾放射生态学及沉积物的生物地球化学研究:[博士学位论文].广州:暨南大学,2002
    [40]苏柯,肖璋,孔令丰,等.核电站液态排放中放射性核素从海水转移到海洋生物的数值模拟.太原理工大学学报,2005,36(3):374~377
    [41]U.S.NRC. Tritium, radiation protection limits, and drinking water standards.2006
    [42]商照荣,潘苏国.外中低水平放射性废物管理及我国的发展策略.见:中国核学会,编.“21世纪初辐射防护论坛”第四次会议暨狄低中放废物管理和放射性物质运输学术研讨会论文集.北京:中国核学会,2005.185~195
    [43]江光.英国核电工业及核安全管理简介.核安全,2004,1:55~59
    [44]伍浩松,常冰.英国放射性废物管理现状.国外核新闻,2006,2:22~25
    [45]International Atomic Energy Agency. Regulatory control of radioactive discharges to the environment. Safety Guide No.WS-G-2.3, IAEA, Vienna.2000
    [46]周全之.中国核电发展概况及展望.大众用电,2009,5:45~47
    [47]广东核电培训中心.900MW压水堆核电站系统与设备.北京:原子能出版社,2004.37~560
    [48]海洋局教育司.海洋环境保护与监测.北京:海洋出版社,1998.65~67
    [49]Evansa M S, Warrena G J, Pagea D I. The effects of power plant passage on zooplankton mortalities:Eight years of study at the Donald C. Cook nuclear plant. Water Research,1986, 20(6):725~734
    [50]Poornima E H, Rajadurai M, Rao T S. Impact of thermal discharge from a tropical coastal power plant on phytoplankton. Journal of Thermal Biology,2005,30(4):307~316
    [51]Tatiana P T, Leonardo M N, Francisco G A. Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay,Brazil. Marine Environmental Research,2009,68(4):188~195
    [52]Chuang Y L, Yang H H. Lin H J. Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters. Journal of Sea Research, 2009,61(4):197~205
    [53]林昭进,詹海刚.大亚湾核电站温排水对邻近水域鱼卵、仔鱼的影响.热带海洋,2000,19(1):44~51
    [54]姜礼燔.热冲击对鱼类影响的研究.中国水产科学,2000,7(2):77~81
    [55]曾江宁.滨海电厂温排水对亚热带海域生态影响的研究:[博士学位论文].浙江:浙江大学,2008
    [56]徐晓群,曾江宁,曾淦宁,等.滨海电厂温排水对浮游动物分布的影响.生态学杂志,2008,27(6):933~939
    [57]Allen L A, Blezard N, Wheatland A B. Formation of cyanogen chloride during chlorination of certain liquids toxicity of such liquids to fish. Journal of hygiene,1948,46(2):184~193
    [58]Glaze W H, J E Henderson I V. Formation of organochlorine compounds from the chlorination of municipal secondary effluent. Water pollution control federation,1975, 47(10):2511~2515
    [59]Sun Y X, Wu Q Y, Hu H Y, Tian J. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination. Journal of Hazardous Materials,2009,168(2-3): 1290~1295
    [60]Yu R F, Chen H W, Cheng W P, Shen Y CH. Application of PH-ORP titration to dynamically control the chlorination and dechlorination for wastewater reclamation. Desalination,2009, 244(1-3):164~176
    [61]Allonier A S, Khalanski M, Camel V, Bermond A. Characterization of chlorination by-products in cooling effluents of coastal nuclear power station. Marine pollution bulletion, 1999,38(12):1232~1241
    [62]Allonier A S, Khalanski M, Camel V, Bermond A. Determination of dihaloacetonitriles and halophenols in chlorinated sea water. Talanta,1999,50(1):227~236
    [63]Brungs W A. Effects of residual chlorine on aquatic life. Water Pollution Control Federation, 1973,45(10):2180~2193
    [64]Mattice J S, Zittel H E. Site-specific evaluation of power plant chlorination. Water Pollution Control Federation,1976,48(10):2284~2308
    [65]黄洪辉,王肇鼎,张穗.电厂温排水中的余氯对邻近水域生态环境的影响.南海研究与开发,1998,2:46~58
    [66]Eppley R W, Renger E H, Williams P M. Chlorine reactions with seawater constituents and the inhibition of photosynthesis of natural marine phytoplankton. Estuarine and Coastal Marine Science,1976,4(2):147~161
    [67]Rajagopal S, Venugopalan V P, Van der Velde G, Jenner H A. Tolerance of five species of tropical marine mussels to continuous chlorination. Marine Environmental Research,2003, 55(4):277~291
    [68]Rajagopal S, Van der Velde G, Van der Gaag M, Jenner H A. How effective is intermittent chlorination to control adult mussel fouling in cooling water system? Water Research,2003, 37(2):329~338
    [69]Masilamoni G, Jesudoss K S, Nandakumar K, Satapathy K K, Azariah J, Nair K V K. Lethal and sub-lethal effects of chlorination on green mussel Perna viridis in the context of biofouling control in a power plant cooling water system. Marine Environment Research, 2002,53(1):65~76
    [70]Zeitoun I H. The effect of chlorine toxicity on certain blood parameters of adult rainbow trout (Salmo gairdneri). Environmental Biology of Fishes,1977,1(2):189~195
    [71]Brooks A S, Bartos J M. Effects of free and combined chlorine and exposure duration on rainbow trout,channel catfish,and emerald shiners. Transactions of the American Fisheries Society,1984,113:786~793
    [72]黄洪辉,张穗,陈浩如,等.余氯对大亚湾海区平鲷和黑鲷幼鱼的毒性研究.热带海洋,1999,18(3):38~44
    [73]张穗,黄洪辉,陈浩如,等.大亚湾核电站余氯排放对邻近海域环境的影响.海洋环境科学,2000,19(2):14~18
    [74]江志兵,曾江宁,陈全震,等.滨海电厂冷却水余热和余氯对中华哲水蚤的影响.应用生态学报,2008,19(6):1401~1406
    [75]江志兵,曾江宁,陈全震,等.不同季节升温条件下余氯对桡足类的毒性.水生生物学报,2009,33(5):896~904
    [76]陈良.田湾核电站放射性废液处理系统介绍.见:中国核学会,编.2007年放射性废物处理处置学术交流会论文汇编.2007.84~87
    [77]李培泉等.海洋放射性及其污染.北京:科学出版社,1983.204~257
    [78]白志良.广东大亚湾核电站1994~2001年正常运行期间放射性释放的环境影响评价.见:中国核学会,编.全国放射性流出物和环境监测与评价研讨会论文汇编.2003.405~410
    [79]傅金龙,苗永生,周世锋.海洋功能区划的理论与实践.北京:海洋出版社,2004.3~33
    [80]吉长余,张东果.大亚湾核电站1994~2003年环境辐射监测结果与分析.辐射防护,2004,24(3~4):173~190
    [81]朱月龙,朱培忠,李贤良,等.秦山核电厂运行十年的环境监测与评价.见:中国核学会,编.全国放射性流出物和环境监测与评价研讨会论文汇编.2003.41~47
    [82]梁梅燕,叶际达,吴虔华,等.1992~2005年秦山核电基地外围环境放射性监测.辐射防护通讯,2007,27(5):6~14.
    [83]黄乃明,陈志东,宋海青,等.大亚湾和岭澳核电站外围辐射环境监督性监测.辐射防 护,2004,24(3~4):191~205
    [84]叶际达,曾广建,曹钟港,等.秦山核电基地外围环境水体放射性水平监测.辐射防护通讯,2006,26(3):18~24
    [85]詹世平.近岸海域三维水动力学与水质模拟及其可视化研究:[博士学位论文].大连:大连理工大学,2004
    [86]远航,于定勇.潮流与泥沙数值模拟回顾及进展.海洋科学进展,2004,22(1):97~106
    [87]林秉南,赵雪华等.河口建坝对毗邻海湾潮波影响的计算.水利学报,1980,(2):16~26
    [88]曹祖德,王运洪.水动力泥沙数值模拟.天津:天津大学出版社,1994.122-137
    [89]何少苓,林秉南.破开算子法在二维潮流计算中的应用.海洋学报,1984,6(2):260~271
    [90]李家星,张镜潮.用潮波能谱法计算二维非恒定流.海洋工程,.1988,6(2):45~55
    [9]]郭庆超,何明民,韩其为.控制体积法在二维潮流计算中的应用.水动力学研究与进展A辑,1995,10(6):602~609
    [92]Leendertse J J, Alexander R C, Liu SH K. A Three-Dimensional Model for Estuaries and Coastal Seas:Volume 1, Principles of Computation, The Rand Corporation, R-1417-OWRR, Santa Monica California.1973
    [93]Tee K T. The structure of three-dimensional tide generating currents. Coastal and Shelf Science,1982,14:70~82
    [94]李孟国,曹祖德.海岸河口潮流数值模拟的研究与进展.海洋学报,1999,21(1):111~125
    [95]Heaps N S. On the numerical solution of the three-dimensional equations for tides and storm surges. Mem.Soc.R.Sci.Liege,1972,6:143~180
    [96]孙文心.三维浅海流体动力学的一种数值方法——流速分解法.见:冯士榨,孙文心,编.物理海洋数值计算.郑州:河南科技出版社,1992
    [97]窦振兴,杨连武,Ozer, J..渤海三维潮流数值模拟.海洋学报,1993,15(5):1~5
    [98]奚盘根,冯士榨.非线性三维潮波边值问题模型.山东海洋学院学报,1988,18(2):37~47
    [99]Larsson C M. An overview of the ERICA Integrated Approach to the assessment and management of environmental from ionising contaminants. Journal of Environmental Radioactivity,2008,99(9):1364~1370
    [100]Beresford N, Brown J, Copplestone D, et al. (Eds). D-ERICA:An INTERGATED APPROACH to the assessment and management of environment risks from ionising radiation.Description of purpose,methodology and application. Deliverable for EC 6th framework project ERICA, Contract No.FI6R-CT-2004-508847.2007
    [101]Brown J E, Alfonso B, Avila R, Beresford N A, Copplestone, Prohl G, Ulanovsky A. The ERICA Tool. Journal of Environmental Radioactivity,2008,99:1371~1383
    [102]容超凡.电离辐射计量.北京:原子能出版社,2002.14~22
    [103]Hosseini A, Thφrring H, Brown J E, Saxen R, Ilus E. Transfer of radionuclides in aquatic ecosystems-Default concentration ratio for aquatic biota in the Erica Tool. Journal of Enviroonmental Radioactivity,2008,99(9):1408~1429
    [104]Beresford N A, Barnett C L, Howard B J, Scott A, Brown J E, Copplestone D. Derivation of transfer parameters for use within the ERICA Tool and the default concentration ratios for terrestrial biota. Journal of Environmental Radioactivity,2008,99(9):1393~1407
    [105]Berger M J. Energy deposition in water by photons from point isotropic sources. J.Nucl. Med.,1968,9(1):15~25
    [106]Berger M J. Distribution of absorbed doses around point sources of electrons and beta particles in water and other media. J. Nucl. Med.,1971,12(5):5~23
    [107]Prohl G, Brown J, Gomez-Ros J M, Jones S, Taranenko V, Thφrring H, Vives J. Dosimetric models and data for assessing radiation exposure to biota. Deliverable 3 to the project "FASSET" Framework for the Assessment of Environmental Impact, Contract No. FIGE-CT-2000-00102.2003
    [108]Ulanovsky A, Prohl G. A practical method for assessment of dose conversion coefficients for aquatic biota. Radiation and Environmental Biophysics,2006,45(3):203~214
    [109]International Atomic Energy Agency. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment. Technical Reports Series No.422, IAEA, Vienna,2004
    [110]EC. Technical guidance document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) No 1488/94 on risk assessment for existing substances. Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part Ⅱ. Luxembourg: Office for Official Publication of the European Communities. Report nr EUR 20418 EN/2. 2003
    [111]Aguero A, Alonzo F, Bjork M, et al. Derivation of Predicted-No-Effect-Dose-Rate values for ecosystems(and their sub-organisational levels)exposed to radioactive substances. Contract Number:FI6R-CT-2004-508847.2006
    [112]蒋江波,张立柱,唐谋生.港口环境放射性污染检测与防治.北京:化学工业出版社,2009.29~34
    [113]梁梅燕,叶际达,吴虔华,等.1992~2005年秦山核电基地外围环境放射性监测.辐射防护通讯,2007,27(5):6~14
    [114]黄乃明,陈志东,宋海青,等.大亚湾和岭澳核电站外围辐射环境监督性监测.辐射防护,2004,24(3~4):191~205
    [115]Cindy Fowler, Nicholas Schmidt. Geographic information systems, mapping, and spatial data for the coastal and ocean resource management community. Survering and Land Information System,1998
    [116]刘长东.海洋多源数据获取及基于多源数据的海域管理信息系统:[博士学位论文].青 岛:中国海洋大学,2008
    [117]Yafang Su. Monterey Bay Marine GIS. International Journal of Geographic Information Systems,1977,2:308~315
    [118]腾骏华.网络地理信息系统及其在海岸带管理中的应用.台湾海峡,2000,19(3):316~321
    [119]周良勇,戴勤奋.海域使用管理信息系统的建立.海洋地质动态,2003,19(3):34~37
    [120]侯英姿,陈晓玲,李毓湘.基于GIS/RS技术的海岸带环境管理信息系统研究.华中师范大学学报自然科学版,2005,39(2):287~290
    [121]张瑞林,肖桂荣,王国乾,王钦敏.基于ArcGIS Server的海域使用管理信息系统开发.地理信息科学,2007,9(4):80~84
    [122]彭冰,杜闽,徐占华.基于GIS的海岸带管理信息系统开发.地理空间信息,2007,5(1):84~86
    [123]肖桂荣,邬群勇,郭朝珍.海洋功能区划WebGIS的设计与实现.福州大学学报自然科学版,2002,30(3):319~322
    [124]邬群勇,王钦敏,肖桂荣.海洋功能区划管理信息系统.地球信息科学,2003,(1):45~48
    [125]腾骏华,黄韦艮,孙美仙.基于网络GIS的海洋功能区划管理信息系统.海洋学研究,2005,23(2):56~63
    1 Hosseini (2008)在其发表的文章《Transfer of radionuclides in aquatic ecosystems-Default concentration ratio for aquatic biota in the Erica Tool》中详细列出了这149篇文献。
    2 其原文为:Ei and Yi are energy and yield of the discrete energy radiations per decay of the radionuclide。
    3 根据我国《核电厂环境辐射防护规定》(GB 6249—1986),核电厂周围应设置非居住区,非居住区的半径以反应堆为中心不得小于0.5km;在非居住区周围应设置限制区,限制区的半径以反应堆为中心一般不得小于5km。
    4 《核电厂环境辐射防护规定》、《环境核辐射监测规定》要求,核设施投料运行前,要对特定区域环境中已存在的辐射水平、环境介质中放射性核素的含量等进行全面调查,即环境放射性本底辐射水平的调查,至少要求获得两年的调查数据。
    5 依据我国《近岸海域环境监测规范》,当以站位数来确定海水主要水质类别时,如果某一类别的站位数所占比例达到50%以上,则该区域海水以该水质类别为主。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700