土壤性质及钝化剂对镉在土壤—植物系统转移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤-植物系统中镉转移系数是反应土壤中镉生物有效性与植物对镉富集能力的综合指标。植物对重金属的转运能力可以用转移系数(TF)来表示,是指植物体内重金属浓度与土壤中重金属浓度的比值,它与重金属的生物有效性有直接关系,受土壤理化性质以及生物种类及环境条件等各个方面因素影响。本文旨在通过对土壤理化性质对土壤-植物系统中镉转移系数的影响研究,量化土壤性质与镉转移系数之间的关系,建立土壤-植物系统镉转移模型;在此基础上,进一步研究了不同钝化剂对镉在土壤-植物系统转移的影响,可望为重金属镉污染土壤的修复、农产品镉转移系数的预测预报及镉污染土壤的的安全生产提供理论基础。本文主要包括两方面内容:1、土壤性质对土壤-植物系统镉生物有效性的影响。本部分以镉高吸收类蔬菜(菠菜和西红柿)作为供试植物,通过盆栽试验研究了不同土壤理化性质与土壤-植物系统镉转移系数的影响。供试土壤选取全国范围内具有代表性15种未被镉污染的土壤,设置三个镉污染梯度(0、1、2mg/kg),每个梯度设4个重复,共计360个样本。通过分析土壤与植物中的镉总量以及土壤性质之间的关系,发现土壤-植物系统镉转移系数主控因子是土壤pH、二硫酸盐-柠檬酸盐提取态铝(CD-A1);二硫酸盐-柠檬酸盐提取态铁(CD-Fe),其控制变异系数分别为:44.6%-61.8%,42.2%-89.8%,42.2%-90.7%。同时土壤有机质(OMC)、阳离子交换量(CEC)以及粘粒含量(<2μm, Clay)是控制土壤-植物系统镉转移的次要因子。在多因子共同控制下,可进一步提高可控变异系数。不同处理条件下土壤-菠菜系统镉转移系数最优预测方程为:对照土壤-菠菜系统镉转移系数的最优预测方程为:TF1=2.679-0.248pH-0.020CEC+0.0629CD-A1(R2=0.811,p<0.001);外源镉污染土壤-菠菜系统镉转移系数的最优预测方程为:TF1=4.888-0.404pH-0.328OMC+0.0762CD-A1(R2=0.710, p<0.001);外源镉污染土壤-菠菜系统外源镉转移系数的最优预测方程为:TF2=5.433-0.446pH-0.376OMC+0.0517CD-A1(R2=0.701,P<0.001);不同处理条件下土壤-西红柿系统镉转移系数模型为:对照土壤-西红柿系统镉转移系数的最优预测方程为:TF1=5.101-0.596pH-0.064CEC+4.341CD-Mn (R2=0.895,p<0.001);外源镉污染土壤-西红柿系统镉转移系数的最优预测方程为:TF1=0.183+0.532CD-Al-0.821OX-A1+3.700CD-Mn (R2=0.951, p<0.001);外源镉污染土壤-西红柿系统外源镉转移系数的最优预测方程为:TF2=2.459-0.301pH+12.097CD-Mn-10.613OX-Mn (R2=0.950,p<0.001).其中pH代表土壤pH值,CEC代表阳离子交换量,CD-A1代表二硫酸盐-柠檬酸盐提取态铝,OMC代表土壤有机质,CD-Mn代表二硫酸盐-柠檬酸盐提取态锰,OX-Mn代表草酸盐提取态锰。2、研究不同钝化剂对土壤-植物系统镉转移系数的影响。本部分试验以低吸收豆类蔬菜(豇豆)作为供试植物,通过田间试验研究了在轻度Cd污染石灰性土壤(Cd1.5mgkg)中施加赤泥、油菜秸秆、玉米秸秆、赤泥+油菜秸秆等钝化处理并配施硫酸锌肥料对土壤中Cd的生物有效性的影响。结果表明,与对照相比,不同钝化处理可显著(p<0.05)降低豇豆豆角中Cd浓度和土壤中可溶态Cd浓度;钝化处理条件下豇豆豆角中Cd浓度降低了27%(玉米秸秆处理)-83%(赤泥+油菜秸秆处理)。在施加钝化剂的基础上,配施硫酸锌肥料可进一步降低豇豆对Cd的吸收,各钝化处理在配施锌肥后,豇豆豆角中Cd平均浓度与未施锌肥相比降低了27%。对不同作物秸秆而言,富含巯基的油菜秸秆比富含纤维素的玉米秸秆钝化效果好。由此可见,在轻度Cd污染的石灰性土壤中,无机钝化剂赤泥和富含巯基的油菜秸秆复合使用是一种高效且环境友好的钝化手段。同时,合理施用锌肥可能会进一步降低作物对Cd的吸收。本文系统的研究了土壤基本性质及钝化剂对土壤-植物系统镉转移的影响,发现除土壤性质对镉转移系数有较大影响外,一些土壤组分对镉转移系数也有显著影响,如CD-A1和CD-Fe。在轻度镉污染土壤中添加钝化剂可以改变土壤性质及重金属的有效态含量,从而有效控制镉在土壤-植物系统中的转移,保证农产品安全,为污染土壤安全利用提供一定的理论支持。
Cadmium transfer factor in soil-plant system represents the comprehensive index of cadmium bioavailability and accumulation ability of plants. Transfer factor (TF) stands for the ability of plants transfer heavy metal, which is the ratio of heavy metal concentrations in plants to that in soil. It directly relates to bioavailability of heavy metals, affecting by physical, chemical and biological factors. This study aims to find the effect of physicochemical properties of soil no cadmium transfer factor, then develop a model, that is helpful for rish assessment and remediation of cadmium contaminated soils:This study involves two parts:One is about the effect of soil properties on cadmium bioavailability in soil-plant system. The plants used were spinach and tomatoes. Uncontaminated soils (15soiis) were collected with various properties over our country. Three concentration gradients (0、1、2mg/kg) of cadmium added to soils. After analyzing the contents of Cd in plants and soils, it was shown that main control factors on TF are pH, citrate/dithionate extractable A1(CD-A1); citrate/dithionate extractable Fe (CD-Fe), they can partly control the coefficients of variation in soil-plant system with44.6%-61.8%,42.2%-89.8% and42.2%-90.7%, respectively, while OMC, CEC and clay content(<2μm, Clay) are secondary factors.The optimal prediction equation of soil-spinach system cadmium transfor factor is:Control the optimal prediction equation of the soil-spinach system cadmium transfer factor is:TF1=2.679-0.248pH-0.020CEC+0.0629CD-Al (R2=0.811,P<0.001);Added exogenous cadmium contaminated soil-spinach system Cd transfer factor of the optimal prediction equation as follows:TF1=4.888-0.404pH-0.328OMC+0.0762CD-A1(R2=0.710,p<0.001);Added exogenous cadmium contaminated soil-spinach system added exogenous cadmium transfer factor of the optimal prediction equation as follows:TF2=5.433-0.446pH-0.376OMC+0.0517CD-Al(R2=0.701,p<0.001); The optimal prediction equation of soil-tomato system cadmium transfor factor is:Control the optimal prediction equation of the soil-tomato system cadmium transfer factor is:TF,=5.101-0.596pH-0.064CEC+4.341CD-Mn (R2=0.895,p<0.001)Added exogenous cadmium contaminated soil-tomato system Cd transfer factor of the optimal prediction equation as follows:TF1=0.183+0.532CD-Al-0.821OX-A1+3.700CD-Mn(R2=0.951,p<0.001;Added exogenous cadmium contaminated soil-tomato system added exogenous cadmium transfer factor of the optimal prediction equation as follows:TF2=2.459-0.301pH+12.097CD-Mn-10.613OX-Mn (R2=0.950,p<0.001)In the above content pH is represents the value of soil pH; CEC is represents cation exchange capacity; OMC is represents soil organic matter; CD-A1is represents citrate/dithionate extractable A1; CD-Mn is represents citrate/dithionate extractable Mn; OX-Mn is represents oxalate extractable Mn.The other is about how to reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, corn straw and red mud plus rape straw in combination with zinc fertilization on Cd extractability and phytoavailability to cowpea were investigated in a calcareous soil with added Cd at1.5mg/kg. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments, which resulted in significant decrease by about27%(corn straw)-83%(red mud plus rape straw) in Cd concentration in cowpea. Combined with amendments, Zn fertilization further decreased the Cd concentration in cowpea. Compared with amendments only, the concentrations of Cd in the edible parts of cowpea treated with the Zn fertilization plus amendments decreased by27%on average. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability to cowpea in soils, and it is potential to be an efficient, cost-effective and environmentally friendly measure to ensure food safety for crop production in mildly Cd-contaminated and calcareous soils.
引文
1曹积飞,杨秋荣,李英杰等.粘上矿物对重金属有害元素的吸附研究[J].环境科学与技术,2008,31(1):42-44.
    2陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响[J].应用生态学报,2002,13(2):183-186.
    3陈瑛,李廷强,杨肖娥等.不同品种小白菜对镉的吸收累积差异[J].应用生态学报,2009,20(3):736-740.
    4慈敦伟,姜东,戴廷波等.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类作物学报,2005,25(5):88-91.
    5崔秀敏,吴小宾,李晓云等.铜镉毒害对番茄生长和膜功能蛋白活性的影响及外源NO的缓解效应[J].2011,17(2):349-357.
    6丁琼,杨俊兴,华珞.不同钝化剂配施硫酸锌对石灰性土壤中镉生物有效性的影响研究[J].农业环境科学学报,2012,31(2):312-317.
    7傅友强,于智卫,蔡昆争等.水稻根系贴膜形成机制及其生态环境效应[J].植物营养与肥料,2010,16(6):1527-1534.
    8胡蝶,陈文清.土壤重金属污染现状及植物修复研究进展[J].安徽农业科学,2011,39(5):2706-2707,2710.
    9胡振琪,杨秀红,高爱林.粘土矿物对重金属的吸附研究[J].金属矿山,2004,6:53-55.
    10黄顺生,华明,金洋等.南京市大气降尘重金属含量特征及来源研究[J].2008,15(5):161-166.
    11高俊全,李筱薇,赵京玲.2000年中国总膳食研究-膳食铅、镉摄入量[J].卫生研究,2006,35(6):750-754.
    12郭海涛.不同蔬菜吸收累积镉的差异研究[J].首都师范大学,2009:34-39
    13贾乐,朱俊艳,苏德纯.秸秆还田对镉污染农田土壤中镉生物有效性的影响[J].农业环境科学学报,2010,29(10):1992-1998.
    14贾琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276.
    15姜萍,金盛杨,郝秀珍,等.重金属在猪饲料-粪便-土壤-蔬菜中的分布特征研究[J].农业环境科学学报,2010,29(5):942-947.
    16李博文,谢建治,郝晋珉.不同蔬菜对潮褐上镉铅锌复合污染的吸收效应研究[J].农业环境科学学报,2003,22(3):286-288.
    17李波,马义兵,刘继芳,等.西红柿铜毒害的土壤主控因子和预测模型研究[J].上壤学报,2010,47(4):665-673.
    18李程峰,李云国,曾光明,等.pH值影响Cd在红壤中吸附行为的实验研究[J].农业环境科学,2005,24(1):84-88.
    19李德明,朱祝军,钱琼秋.白菜个累积基因型差异研究[J].园艺学报,2004,31(1):97-98.
    20李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003,1:24-26
    21李敏超,李花粉,夏立江,等.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J].生态学报,2001,4:
    598-564.
    22梁彦秋,刘婷婷,铁梅,等.镉污染土壤中镉的形态分析及植物修复技术研究[J].环境科学与技术,2007,30(2):57,58,106.
    23刘恩玲,工亮,孙继.不同蔬菜对土壤Cd、Pb的积累能力研究[J].土壤通报,2011,42(3):758-762.
    24刘侯俊,胡向白,张俊伶.水稻根表铁膜吸附镉级植株吸镉的动态[J].应用生态学报,2007,18(2):425-430.
    25刘敏超,李花粉,夏立江,等.不同基因型水稻吸镉差异及其与根表铁氧化物胶膜的关系[J].环境科学学报,2000,20(5):592-594.
    26刘艳阳,黄萍霞,马克强.小麦苗期吸收和累积镉能力的品种间差异[J].农业环境科学学报,2011,30(10):1939-1945.
    27刘志华,伊晓云,王火焰,等.不同品种大白菜苗期吸收累积镉的差异研究[J].土壤通报,2008,43(3):987-992.
    28鲁安怀,卢晓英,任子平,等.天然铁锰氧化物及氢氧化物环境矿物学研究[J].地学前缘,2000,7(2):473-483.
    29鲁如坤,石正元,熊礼明.我国磷肥中镉的含量及其对生态环境的影响[J].上壤学报,1992,29(2):150-157.
    30罗美.贵州市郊区菜地上壤—蔬菜系统中镉污染分析及调控研究[D].中国优秀硕士学位论文全文数据库:贵州大学,2008.
    31马学文,翁焕新,章金骏.中国城市污泥重金属和养分的区域特性及变化[J].中国环境科学,2011,31(8):1306-1313.
    32茹淑华,张国印,苏德纯,等.河北省白菜L要栽培品种吸收累积重金属镉的特征和质量安全性研究[J].中国农学通报,2010,26(14):282-287.
    33史锟,张福锁,刘学军.不同栽培方式对镉污染水稻土籼、粳稻根表铁膜铁镉含量的影响[J].土壤通报,2004,35(2):207-211
    34宋正国,徐明岗,李菊梅,等.钙对土壤镉有效性的影响及其机理[J].应用生态学报,2009,20(7):1705-1710.
    35王芳,杨勇,张燕,等.不同蔬菜对镉的吸收累积及亚细胞分布[J].农业环境科学学报,2009,28(1):44-48.
    36王浩,张明奎.污染上壤中有机质和重金属相互作用模拟研究[J].浙江大学学报(农业与生命科学版),2009,35(4):460-466.
    37汪洪,周卫,林葆.太酸钙对土壤镉吸收及解吸的影响[J].生态学报,2001,6:932-937.
    38王江平.入世后高浓度磷肥中镉的问题[J].磷肥与复肥,2002,17(5):11-15.
    39王立群,罗磊,马义兵,等.不同钝化剂和培养时间对Cd污染上壤中可交换态Cd的影响[J].农业环境科学学报,2009,28(6):1098-1105.
    40王立群.镉污染土壤原位修复剂及其机理研究[D].首都师范大学,2009.
    41王立群,罗磊,马义兵.重金属污染土壤原位钝化修复研究进展[J].应用生态学报,2009,20(5):1214-1222.
    42王圆方,朱宁,颜丽,等.外源Cd2+在土壤各级微团聚体中的含量和形态分布[J].生态环境学报,2009,18(4):1764-1766.
    43吴思英,田俊,田绵珍,等.镉污染对育龄妇女生殖健康的影响[J].中华流行病学杂志,2004,25(10):852-855.
    44谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展[J].浙江农业学报,2003,15(6):376-381.
    45徐龙君,袁智.外源镉污染及水溶性有机质对土壤中Cd形态的影响研究[J].土壤通报,2009,12,40(6):1142-1145.
    46徐照丽,吴启堂,依艳丽.不同品种菜心对镉抗性的研究[J].生态学报,2002,22(4):571-576.
    47薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异与机理[J].土壤,2005,37(1):32-36.
    48姚会敏,杜婷婷,苏德纯.不同品种芸薹属蔬菜吸收累积镉的差异[J].中国农学通报,2006,22(1):291-294.
    49易秀,谷晓静,侯燕卿,等.陕西省泾惠渠灌区土壤重金属污染潜在生态风险评价[J].干旱地区农业研究,2010,28(6):217-221,252.
    50余萍.畜禽饲料中镉污染危害及控制[J].贵州畜牧医药,2010,34(1):34-35.
    51于云江,胡林凯.杨彦,等.典型流域农田土壤重金属污染特征及生态风险评价[J].环境科学研究,2010,23(12):1523-1527.
    52曾翔,张玉烛,王凯荣,等.不同品种水稻糙米镉含量差异[J].生态与农村环境学报,2006,22(1):67-69,83.
    53张明奎,郑顺安,王丽平.土壤中颗粒状有机质对重金属的吸附作用[J].上壤通报,2007,38(6):1100-1104.
    54张微,吕金印,柳玲.不同基因型番茄幼苗对镉胁迫的生理响应及镉吸收差异[J].农业环境科学学报,2010,29(6):1065-1071.
    55张洪涛,李波,刘继芳.西红柿镍毒害的土壤主控因子和预测模型研究[J].生态毒理学报,2009,4(4):569-576.
    56张洪涛.上壤外源镍的植物毒害主控因子和预测模型研究[D].中国农业科学院,2009.
    57赵肃,工任群,邱玉鹏,等.沈阳市镉污染区居民尿镉及骨密度调查[J].2005,21(11):1333-1334.
    58赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.
    59钟晓兰,周生路,赵其国.长江三角洲地区土壤重金属污染特征及潜在生态风险评价—以江苏太仓市为例[J].地理科学,2007,27(3):365-400.
    60 Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six common grown vegetables[J]. Environmental Pollution,2006,144:736-745.
    61 Basta N T, Gradwohl M. Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure[J]. Journal of Soil Contamination,2000,9:149-164.
    62 Benjamin M M, Leckie J O. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxhydroxide[J].J Colloid Interface Sci,1981b,79:209-221.
    63 BENSONW H, ALBERTS J J, ALLEN H E, et al. Bioavailability:physical chemical and bioavailability interactions [M]. Boca Raton, Lewis Publishers,1994:63-71.
    64 Boekhold A E, Temminghoff E JM, Vander Zee S E A TM. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil [J]. JSoilSci,1993,44:85-96.
    65 Bolton K A, EvansL J. Cadmium adsorption capacity of selected Ontario soils[J]. Can J Soil Sci,1996,76: 183-189.
    66 Castaldi P, Melis P, Silvettn M, et al. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil[J]. Geoderma,2009,151:241-248.
    67 Conlin T S S and Crowder A A. Location of radial oxygen loss and zones of potential iron uptake in a grass and two non-grass emergent species[J]. Can. J. Bot.,1989,67:717~722.
    68 Cui Y S, Du X, Weng L P, et al.. Effect of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils[J]. Environmental Pollution,2008,146:370-377.
    69 Davis J A, Leckie J O. Surface ionization and complexation at the oxide/water interface[J].J Colloid Interface Sci,1978,67:91-107.
    70 De Vos CHR, Vonk MJ, Vooijs R. Glutathione depletion due to copper-induced phytochelatins synthesis causes oxidative stress in Silene cucubalus[J]. Plant Physiol.,1992,98:853-858.
    71 Freeman J L, Persans M W, Nieman K, et al.. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators[J]. Plant Cell,2004,16:2176-2191.
    72 Friesl W, Platzer K, Horak O, et al.. Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter:a field study in Austria over 5 years[J]. Environmental Geochemistry and Health, 2009,31:581-594.
    73 Hassinen V, Vallinkoski V, Issakainen S, et al.. Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremulaXtremuloides) grown in contaminated soil[J]. Environmental Pollution,2009,157:922-930.
    74 Hrustioger S C. Phytochelatins and their roles in heavy metal detoxification [J]. Plant Physiology,2000,123: 25-32.
    75 Lagadic I L, Mitchell MK, Payne BD. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay[J]. Environmental Science Technology,2001,35: 984-990
    76 Lee S H, Kim E Y, Park H, et al.. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J]. Geoderma,2011,161:1-7.
    77 Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined Bayer Process and bauxite calcinations method[J]. Journal of Hazardous Materials,2007,146:255-261
    78 Lombi E, Zhao F J, Wieshammer G, et al.. In situ fixation of metals in soils using bauxite residue:biological effects[J]. Environmental Pollution,2002,118:445-452.
    79 Luo L, Ma C Y, Ma Y B, et al.. New insights into the sorption mechanism of cadmium on red mud[J].
    Environmental Pollution,2011,159:1108-1113.
    80 Luo L, Ma Y B, Zhang S Z, et al.. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management,2009,90:2524-2530.
    81 Mishra S, Tripathi R D, Srivastava S, et al.. Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L.[J]. Bioresource Technology,2009,100:2155-2161.
    82 Oliver D P, Hannam R, Tiller K G, et al.. The effects of zinc fertilization on cadmium concentration in wheat grain[J]. Journal of Environmental Pollution,1994,23:705-711.
    83 Shkolink M Y A. Trace elements in plants[M]. The Netherlands.1984
    84 Tiwari S, Kumari B, Singh SN. Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps[J]. Bioresource Technology,2008,99:1305-1310
    85 Van Roy S, Vanbroekhoven K, Dejonghe W, et al.. Immobilization of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes[J]. Hydrometallurgy,2006,83:195-203
    86 Wang G, Su M Y, Chen Y H, et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China[J]. Environmental Pollution,2006,144:127-135.
    87 Wang YM, Chen TC, Yeh KJ, et al. Stabilization of an elevated heavy metal contaminated site[J]. Journal of Hazardous Materials B,2001,88:63-74
    88 Yang J X, Guo H T, Ma Y B, et al. Genotypic variations in the accumulation of Cd exhibited by different vegetables[J]. Journal of Environmental Sciences,2010,22(8):1246-1252.
    89 Yang J X, Wang L Q, Wei D P, et al. Foliar spraying and seed soaking of zinc fertilizers:decreased cadmium accumulation in cucumbers grown in Cd-contaminated soils[J]. Soil and Sediment Contamination,2011,20: 1-12.
    90 Yi L, Hong Y T, Wang D J, et al. Effect of red mud on the mobility of heavy metals in mining-contaminated soils[J]. Chinese Journal of Geochemistry,2010(29):191-196.
    91 Yu H, Wang J L, Fang W, et al.2006. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Envi-ronment,370:302-309.
    92 Zhou J-W Study on adsorption mechanism of metal ions on sulfhydryl-peat[J]. Chemical World,2002, 43(2):59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700