磷酸—丙酮预处理法制取纤维乙醇的工艺优化与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料乙醇是一种可以直接与汽油混烧、无需车辆改造直接应用的清洁能源。产自木质纤维素的纤维乙醇则是一种近零温室气体排放的新型燃料乙醇。
     预处理技术是纤维乙醇制备中的第一步也是最为关键的步骤,决定着物料的糖回收率、结晶度和酶可及度等决定后续酶解率高低的因素。本文聚焦磷酸-丙酮预处理法,以杨木(Populus hopeiensis Hu et Chow)为原料开展系统全面的组分变化研究。杨木原料主要成分为纤维素40.77%,木聚糖18.62%,木质素25.04%。
     系统研究了预浸温度、预浸时间、磷酸/杨木液固比和磷酸浓度对后续酶解发酵的影响规律。预浸温度的提高和处理时间的延长有利于综纤维素的溶解和水解,也利于木质素的脱除,然而过于激烈的预浸条件会导致的物料损失和糖类水解。预处理后的物料结晶度指数CrI值会降至27.7%,酶解24h后酶解率最高可到93.36%。选用酿酒酵母(Saccharomyce scerevisiae)对多组水解液进行发酵,以总转换率为考察指标,发现磷酸浓度、预浸温度和反应时间均对总转化率均有着显著的影响(P<0.001),而液固比的影响较小,最优预处理工艺为温度53.9℃、时间43.6min84.7wt.%磷酸浓度、液固比8.51:1,物料到乙醇的总转化率高达18.92%。
     纤维素分子在预处理中的模拟计算结果表明,纤维素与磷酸、丙酮和水的结合能分别为-1.61eV、-0.01eV、-0.31eV。纤维素-磷酸系统、纤维素-丙酮系统和纤维素-水系统的能隙值分别为4.46eV、5.48eV、5.38eV。纤维素-溶剂系统中的自发性动力学研究显示,3ns内纤维素团簇会快速分散并溶解于磷酸;而纤维素团簇加入丙酮中,1ns后便迅速聚集而发生沉降。纤维素团簇在磷酸、丙酮和水溶剂中的键断裂活化能分别为3.301eV,3.201eV和3.132eV,均远高于0.75eV,具有化学稳定性。因此,磷酸分子会被吸附于纤维素片段中间而形成四氢键结构,纤维素分子会部分溶解于磷酸中,添加丙酮后又会发生沉降的现象。
     以愈创木基甘油-p-O-松柏醇醚为木质素模型,模拟计算结果表明,木质素在磷酸中的溶解能是在丙酮中的1.58倍,而且木质素在丙酮中p-0-4键断裂的反应活化能、反应能和氢键断裂能均低于在磷酸中的能量。在丙酮中,木质素片段的微观结构较为松散,堆积木质素形成空穴的表面积可达634.21cm2/mol,因此木质素片段在丙酮中容易发生溶解。木质素在磷酸和丙酮中的β-0-4键断裂和氢键断裂均为吸热过程,反应活化能、反应能和氢键断裂能均较高,不易发生键断裂,可以保持化学稳定性。
     木质素是分散剂、粘结剂的重要原料。杨木经磷酸预浸和丙酮提取后,木质素产率最高可达21.57%。针对预处理过程中的提取木质素进行化学结构研究。热解-气相色谱-质谱结果表明,对羟苯基成为最主要的木质素单体,占到木质素单体总量的50%,提取木质素仅发生了轻微程度的基团变化。红外吸收图谱和核磁共振氢谱结果表明,提取木质素的图谱与标准木质素图谱的差异较小。本预处理法的提取木质素单体降解程度较小,没有引入新的官能团,具有较好的实用价值。
Fuel ethanol is a kind of clean energy, which could be direct co-fired with gasoline without vehicles transformation. Cellulosic ethanol produced from lignocellulose is a new type of fuel ethanol, this kind of fuel is burned with nearly zero-emission greenhouse gas.
     Pretreatment technology is the first and the most important step in cellulosic ethanolproduction, it will determine sugar recovery, crystallinity and accessibility from cellulase to substrate. This paper mainly focus on phosphoric acid-acetone pretreatment method, poplar (Populus hopeiensis Hu et Chow) is regarded as raw material to carry out a systematic research. Poplar main components were measured by high performance liquid chromatography, results showed that: cellulose40.77%, xylan18.62%, lignin25.04%, following study is based on this composition result.
     Effect of pre-immersion temperature to component separation is the largest, followed by reaction time, liquid/solid ratio has limited effect. Although increased temperature and prolonged time could enhance dissolution and hydrolysis of cellulose, lignin removal is also raised, however, if pre-immersion conditions are too severe, it will lead to material loss and sugar over-hydrolyzed. XRD characterization showed that color rendering index CrI fall from39.9%to27.7%after pretreatment, CrI decrease and crystal structure transition further improve enzymatic hydrolysis. After24h enzymatic test, enzymatic hydrolysis efficiency reached93.36%.
     Using Saccharomyces cerevisiae to ferment the hydrolysate, total conversion is regarded as the index to optimize the pretreatment conditions through response surface method. Analysis of variance analysis showed that, phosphoric acid concentration, pre-immersion temperature and reaction time all had significant effect (p<0.001) on total conversion. Given response values weight, optimum pretreatment process is determined, it is pretreated at53.9℃with84.7wt%phosphoric acid concentration and liquid/solid ratio8.51:1for43.6min, the highest total conversion reached18.92%.
     Simulation results of pre-immersion process showed that, phosphoric acid molecules was adsorbed into cellulose fragments and formed four-hydrogen bonds structure, the binding energy is-1.61eV, far greater than binding energy of cellulose fragments in acetone or water. Energy gap of phosphoric acid-cellulose system mounted up to4.46eV, significantly less than energy gap of cellulose-acetone system and cellulose-water system. Molecular dynamics results in phosphoric acid-cellulose system revealed cellulose clusters spread to entire reaction system in3ns, cellulose molecules dissolved in phosphoric acid. However, bond cleavage energy barrier of cellulose clusters in phosphoric acid, acetone and water were3.301eV,3.201eV and3.132eV, which are much higher than0.75eV, they all have high chemical stability.
     Guaiacyl glyceryl-β-O-coniferyl alcohol is set as lignin model, dissolution energy of lignin in phosphoric acid is1.58times than that in acetone, and in acetone activation energy, reaction energy of β-O-4bond cleavage and hydrogen bond cleavage energy are both lower than energy in phosphoric acid, In acetone, the internal force of lignin fragmentsis quite loose, piles of lignin formmany holes, surface area of hole is634.21cm2/mol. So lignin fragments dissolved easily in acetone. However, β-O-4bond cleavage and hydrogen bond cleavage of lignin in phosphoric acid and acetone were both endothermic. Reaction activation energy, reaction energy and hydrogen bond cleavage all have relatively high values, β-O-4bond is not easy to fracture, lignin molecules could maintain high chemical stability.
     After1h pretreatment under50℃, acetone extracted lignin yield could reach21.57%. In infrared absorption spectroscopy, the absorptionsin typical lignin monomer absorption peak are obvious, so lignin modification degree is relatively small. The1H-NMR spectrum showed that it has absorption in absorption peaks oftypical chemical shift, close to the absorption peak position and shapeof standard lignin spectrum. P-hydroxyphenyl lignin monomer becomes main part of extracted lignin, accountes for almost half of total lignin. Extracted lignin only underwent slight group changes, degradation degree is small, so this kind of lignin has a high practical value, it could be used as a by-product to reduce ethanol production cost.
引文
[1]Argonne National Laboratory. Biofuel Life Cycle Analysis:Issues, Results, and CaseSimulations[EB/OL].(2012-5-18). [2013-11-20]. http://greet.es.anl.gov/ workshops.
    [2]British petroleum company. BP statistical review of world energy2013[EB/OL]. (2013-6-10). [2013-11-20]. http://www.bp.com.
    [3]Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel[J]. Applied Energy,2009,86(11):2273-2282.
    [4]Himmel ME, Bayer EA. Lignocellulose conversion to biofuels:current challenges, global perspectives[J].Current Opinion in Biotechnology,2009,20(3): 316-317.
    [5]Antoine M, Barbel HH, Maria E, et al. New improvements for lignocellulosic ethanol [J]. Current Opinion in Biotechnology,2009,20(3):372-380.
    [6]康鹏,郑宗明,董长青,等.木质纤维素蒸汽爆破预处理技术的研究进展[J].可再生能源,2010,28(3):112-116.
    [7]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2006.
    [8]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [9]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2009.
    [10]Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresource Technol,2008,99(13):5270-5295.
    [11]靳胜英,张礼安,张福琴.我国可用于生产燃料乙醇的秸秆资源分析[J].国际石油经济,2008,(9):51-55.
    [12]中研普华.2012-2017年纤维素乙醇产业市场深度调研与投资盈利预测报告[R].深圳:中研普华公司,2012.
    [13]Global Renewable Fuels Alliance (GRFA).World energy outlook 2012[EB/OL]. (2012-11-12). [2013-11-20].http://globalrfa.org/resources.
    [14]Rahall N.Energy Independence and Security Act of 2007[R]. Washington, DC: 110th United States Congress,2007.
    [15]Ministry of external relations.Biofuels in Brasil[EB/OL]. (2007-9-8). [2013-11-20]. www.mre.gov.br.
    [16]钱群超.甘蔗乙醇的领军国家:巴西[J].新财经,2012,(6):98-100.
    [17]EU Commission.European transport policy for 2010:time todecide [EB/OL]. (2011-12-9). [2013-11-20]. http://ec.europa.eu/transport/themes/strategies.
    [18]杜风光,冯文生.秸秆生产乙醇示范工程进展[J].现代化工,2009,(1):16-19.
    [19]张扬健,向威达,周涛,等.我国燃料乙醇发展现状和趋势分析[J].中国能源,2009,31(1):31-34.
    [20]上海亚化咨询公司.纤维素乙醇在中国的机遇和挑战[EB/OL]. (2013-1-21). [2013-11-20]. http://wenku.baidu.com/link.
    [21]Kumar P, Barrett D M, Delwiche M J, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Industrial & Engineering Chemistry Research,2009,48 (8):3713-3729.
    [22]Costa Sousa Lda, Chundawat SPS, Balan V, et al.'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies[J]. Current Opinion in Biotechnology,2009,20(3):339-347.
    [23]Zhang YH. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries[J]. Journal of Industrial Microbiology & Biotechnology,2008, 35(5):367-375.
    [24]Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology,2009,100(1):10-18.
    [25]Varga E, Klinke H B, Reczey K,et al. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol[J].Biotechnology and Bioengineering,2004,88(5):567-574.
    [26]Karin O, Renata B, Jack S, et al. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover[J].Bioresource Technology, 2007,98(13):2503-2510.
    [27]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展[J].酿酒,2005,32(2):13-16.
    [28]黄祖新,陈由强,陈如凯.甘蔗渣的酶降解研究进展[J].甘蔗,2004,11(4):52-56.
    [29]Li C Z, Yoshimoto M, Ogata H, et al. Effects of ultrasonic intensity and reactor scale on kinetics of enzymatic saccharification of various waste papers in continuously irradiated stirred tanks[J].Ultrasonics Sonochemistry,2005,12(5): 373-384.
    [30]KaarW E, Gutierrez C V. Steam Explosion of sugarcane bagasse as a pretreatment for conversion to ethanol[J]. Biomass and Bioenergy,1998,14(3):277-287.
    [31]陈洪章,田忠厚,刘健,等.乙醇溶解气爆秸秆木质素制备液体燃料的方法 [P].中国专利:1318622A,2003-8-13.
    [32]罗鹏,刘忠,杨传民,等.蒸汽爆破麦草同步糖化发酵转化乙醇的研究[J].化学工程,2007,35(12):42-45.
    [33]自爱玲,乐治平.木质素制备燃料及化学品研究进展[J].现代化工,2008,28(2):139-143.
    [34]Kim Y, Hendrickson R, Mosier NS, et al. Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers'grains at high-solids loadings[J]. Bioresource Technology,2008,99(12):5206-5215.
    [35]KimK H,JuanH. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis[J]. Bioresource Technology,2001,77(2):139-144.
    [36]ZhengY, Pan Z L, Zhang R H. Evaluation of different biomass materials as feedstock for fermentable sugar production[J]. Applied biochemistry and biotechnology,2007,136:423-435.
    [37]曲音波.木质纤维素降解酶与生物炼制[M].北京:化学工业出版社,2011.
    [38]夏黎明,余世袁.固定化休哈塔假丝酵母细胞发酵玉米秆水解液的研究[J].林产化学与工业,1994,14(1):51-55.
    [39]ZhaoJ S,FuC G, YangZ Y.Integrated process for isolation and complete utilizationof rice straw components through sequential treatment[J]. Chemical Engineering Communications,2008,195(9):1176-1183.
    [40]de Vrije T, de Haas G G, Tan G B, et al. Pretreatment of Miscanthus for hydrogen production by Thermotogaelfii[J]. International Journal of Hydrogen Energy, 2002,27(11):1381-1390.
    [41]Zhu S D,Wu Y X,Yu Z N. Simultaneous Saccharification and Fermentation of Microwave Alkali Pretreated Rice Straw to Ethanol[J]. Biosystems Engineering, 2005,92 (2):229-235.
    [42]Kim TH, Kim J S, Sunwoo C, et al. Pretreatment of corn stover by aqueous ammonia [J]. Bioresource Technology,2003,90(1):39-47.
    [43]Tokuyasu K, Tabuse M, Miyamoto M, et al. Pretreatment of microcrystalline cellulose flakes with CaC12 increases the surface area, and thus improves enzymatic saccharification. Carbohydrate Research,2008,343(7):1232-1236.
    [44]Kristensen J B, Borjesson J, Bruun M H. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose [J]. Enzyme Microb Technol, 2007,40(4):888-895.
    [45]Curreli N,Fadda M B,Rescigno A,et al. Mild alkaline/oxidative pretreatment of wheat straw[J]. Process Biochemistry,1997,32(8):665-670.
    [46]Awadel-Karim S, LeclereB D, Grondey H, et al. Changes in H-bonding of cellulose during solvent purification treatment[J]. Holzforschung,1998,53(1): 67-70.
    [47]文新亚,李燕松,张志鹏.酶解木质纤维素的预处理技术研究进展[J].2006,146(8):97-100.
    [48]Karin O, MATS G, Zacchi G Optimization of steam pretreatment of SO2-mpregnated corn stover for fuel ethanol production[J]. Applied biochemistry and biotechnology,2005,121:1055-1067.
    [49]Emmel A,Mathias A L, Wypych F, et al. Fractionation of Eucalyptusgrandis chips by diluteacid-catalysed steam explosion[J]. Bioresource Technology,2003, 86(2):105-115.
    [50]Bradshaw T C, Alizadeh H, Teymouri F, et al. Ammonia fiber expansion pretreatment and enzymatic hydrolysis on two different growth stages of reed canarygrass[J]. Applied biochemistry and biotechnology,2007,136:395-495.
    [51]Heinze T, Koschella A. Solvents applied in the field of cellulose chemistry:a mini review[J]. Polimeros,2005,15(2):84-90.
    [52]Mosier N, Wyman C, Dale B. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology,2005,96(6): 673-686.
    [53]Zhang Y H P, Cui J B, Lynd L R,et al. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid:evidence from enzymatic hydrolysis and supramolecular structure[J]. Biomacromolecules,2006,7 (2):644-648.
    [54]Walseth CS. Occurrence of cellulases in enzyme preparations from microorganisms[J]. Tappi Journal,1952,35:228-233.
    [55]Whitmore RE, Atalla RH. Factors influencing theregeneration of cellulose I from phosphoric acid[J]. International Journal of Biological Macromolecules,1985, 7(3):182-186.
    [56]Warwicker JO, Bikales NM, SegalL. Cellulose and cellulose derivatiiJes, Part IV[M]. New York:Wiley,1971.
    [57]Wei S, Kumar V, Banker GS. Phosphoric acid mediated depolymerization and decrystallization of cellulose:preparation of low crystallinity cellulose-a new pharmaceutical excipient[J]. International Journal of Pharmaceutics,1996,142(2): 175-181.
    [58]Zhang J H, Zhang B X, Zhang J Q, et al. Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose[J]. Biotechnology Advances,2010,28(5):613-619.
    [59]Ramos L A, Assaf J M, El Seoud O A, et al. Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/n,n-dimethylacetamide solvent system[J]. Biomacromolecules, 2005,6(5):2638-2647.
    [60]Zhang Y H P, Zhu Z G, Rollin J, et al. Advances in cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF)[M]. ACS Symposium Series, Vol.1033,2010.
    [61]Kuo C H, LeeC K. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments[J]. Carbohydrate Polymers,2009,77(1):41-46.
    [62]Wyman C E. What is (and is not) vital to advancing cellulosic ethanol[J]. Trends in Biotechnology,2007,25(4):153-157.
    [63]Sathitsuksanoh N, Zhu Z G, Ho T J, et al. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings[J]. Bioresource Technology,2010,101(13):4926-4929.
    [64]LiH, Kim N J, Jiang M, et al. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production[J]. Bioresource Technology,2009,100(13):3245-3251.
    [65]Moxley G M, Zhu Z, Zhang Y H P. Efficient sugar release by the cellulosesolvent based lignocellulose fractionation technology and enzymatic cellulose hydrolysis[J]. Journal of Agricultural and Food Chemistry,2008,56(17):7885-7890.
    [66]Rollin J A, ZhuZ, Sathisuksanoh N, et al. Increasing cellulose accessibility is more important than removing lignin:a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia[J].Biotechnology and Bioengineering,2011,108(1):22-30.
    [67]GB/T 2677.6-94,造纸原料有机溶剂抽出物含量的测定[S].北京:中国标准出版社,1995.
    [68]GB/T 2677.10-1995,造纸原料综纤维素含量的测定[S].北京:中国标准出版社,1996.
    [69]GB/T 744-2004,纸浆抗碱性的测定[S].北京:中国标准出版社,2004.
    [70]GB/T 747-2003,纸浆酸不溶木素的测定[S].北京:中国标准出版社,2003.
    [71]NREL/TP-510-42618, Determination of structural carbohydrates and lignin in biomass[S]. US:National Renewable Energy Laboratory,2008.
    [72]Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery andfermentation data following pretreatment of poplar wood by leading technologies[J]. Biotechnology Progress,2009,25(2):333-339.
    [73]Moxley G, Zhang Y H P. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification[J]. Energy Fuels,2007,21(6):3684-3688.
    [74]NREL/TP-510-42629, Enzymatic Saccharification of Lignocellulosic Biomass[S]. US:National Renewable Energy Laboratory,2008.
    [75]Ozgul A, Childs D Z, Oli M K, et al. Coupled dynamics of body mass and population growth in response to environmental change[J]. Nature,2010,466: 482-485.
    [76]Segal L, Creely J J, Martin Jr A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal,1959,29(10):786-794.
    [77]Yang B, Wyman C E. Pretreatment:The key to unlocking low-cost cellulosic ethanol[J]. Biofuels, Bioproducts and Biorefining,2008,2(1):26-40.
    [78]Howell C, Hastrup ACS, Goodell B, et al. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi[J]. International Biodeterioration & Biodegradation,2009,63(4):414-419.
    [79]Kuo C H,Lee C K. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments[J]. Carbohydrate Polymers,2009,77(1): 41-46.
    [80]Wyman C E, Bruce E D, Elander R T, et al. Coordinated development of leading biomass pretreatment technologies[J]. Bioresource Technology,2005,96(18): 1959-1966.
    [81]Teymouri F, Laureano-Perez L, Alizadeh H, et al. Ammonia fiber explosion treatment of corn stover[J]. Biotechnology for Fuels and Chemicals,2004,113: 951-963.
    [82]Kim S, Holtzapple M T. Lime pretreatment and enzymatic hydrolysis of corn stover[J]. Bioresource Technology,2005,96(18):1994-2006.
    [83]Boddy R, Smith G. Effective experimentation:for scientists and technologists[M]. England:John Wiley & Sons Ltd,2010.
    [84]Nikerel E, Oner E T, Kirdar B, et al. Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology[J]. Biochemical Engineering Journal,2006,32(1):1-6.
    [85]GuthaIugu N K, Balaraman M, Kadimi U S. Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide[J]. Biochemical Engineering Journal,2006,29(3):220-226.
    [86]Kang P, Zheng Z M, Qin W, et al. Efficient fractionation of chinese poplar biomass with enhanced enzymatic digestibility and modified acetone-soluble lignin [J]. Bioresources,2011,6(4):4705-4720.
    [87]Janotti A, Wei S H, Singh D J. First-principles study of the stability of BN and C [J]. Physical Review B,200L 64(17):4107-4111.
    [88]Vosko S J, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis[J]. Canadian Journal of Physics,1980,58(8):1200-1211.
    [89]Kudin K N, Ozbas B, Schniepp H C. Raman spectra of graphite oxide and functionalized graphene sheets [J]. Nano Letters,2008,8(1):36-41.
    [90]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD[J]. Journal of Computational Chemistry,2005,26(16):1781-1802.
    [91]Darden T, York D, Pedersen L. Particle mesh Ewald:An N-log(N) method for Ewald sums in large systems[J]. Journal of Chemical Physics,1993,98(12): 10089-10092.
    [92]Levitt M, Hirshberg M, Sharon R, et al. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution[J]. Computer Physics Communications,1995,91(1-3):215-231.
    [93]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865-3868.
    [94]Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B,1993,47(1):558-561.
    [95]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,1996,54(16): 11169-11186.
    [96]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science,1996,6(1):15-50.
    [97]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD[J]. Computers and Chemistry,2005,26(16):1781-1802.
    [98]Li L, Darden T, Foley C, et al. Homology modeling and molecular dynamics simulation of human prothrombin fragment [J]. Protein Science,1995, 4(11):2341-2348.
    [99]康鹏,覃吴,郑宗明,等.磷酸丙酮预处理中木质素的产生机理研究[J].华北电力大学学报(自然科学版),2013,40(4):96-101.
    [100]Kang P, Qin W, Zheng Z M, et al. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid-acetone process[J]. Carbohydrate Polymers,2012,90(4,6):1771-1778.
    [101]Tian N, Zhou Z Y, Sun S Q et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science,2007,316:732-735.
    [102]Wang H F, Liu Z P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum:new transition-state searching method for resolving the complex reaction network[J]. American Chemical Society,2008, 130:10996-11004.
    [103]廖俊和,罗学刚.木质素、纤维素高效分离技术[J].纤维素科学与技术,2003,11(4):60-64.
    [104]李强,王海松,高扬,等.改进玉米秸秆化学预处理提高后续生物酶解糖化效率的研究[J].中华纸业,2012,33(10):51-55.
    [105]刘忠,齐宏升.麦草酸催化乙醇法制浆过程中木质素结构的变化[J].天津科技大学学报,2008,23(2):10-13
    [106]GB/T 2677.8-1994,造纸原料酸不溶木素含量的测定[S].北京:中国标准出版社,1995.
    [107]Lundquist K, Ohlsson B, Simonson R. Isolation of lignin by means of liquid-liquid extraction[J]. Svensk papperstidning,1977,80(5):143-144.
    [108]Alriols M G, Tejado A, Blanco M, et al. Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process[J].Chemical Engineering Journal,2009,148(1):106-114.
    [109]刘忠.制浆造纸概论[M].北京:中国轻工业出版社,2012.
    [110]王庆六.林产化学工艺学[M].北京:中国林业出版社,1995.
    [111]郑志锋,邹局春,陈浪,等.核桃壳木质素的1H-NMR分析[J].西北林学院 学报,2007,22(2):131-133.
    [112]陈晓旭.麦草甘油预处理的研究[D].江苏:江南大学,2010.
    [113]Lu Q, Tang Z, Zhang Y, et al. Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts[J]. Industrial & Engineering Chemistry Research,2010,49(6):2573-2580.
    [114]Shen D K, Gu S, Luo K H, et al. The pyrolytic degradation of wood-derived lignin from pulping process[J]. Bioresource Technology,2010,101(15): 6136-6146.
    [115]Yasuko F,Mitsuo N, Toshihiko O, et al. Method of producing phenol-type natural antioxidative materials from processed sesame seed products[P]. US Patent:4708820,1987-11-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700