银杏种仁清蛋白功能因子GAP2a活性构象的微环境效应及一级结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性蛋白质(active proteins)是一类具有特殊生理活性的蛋白质,广泛分布于动植物组织和植物种子等部位中。银杏种仁含有约10%的蛋白质,但目前为止仅有少量关于银杏种仁抗菌蛋白的研究,对于这个巨大的宝库还有待我们去挖掘。实验室前期研究得到了具有较强抗氧化活性的银杏种仁清蛋白,新蛋白GAP2a为银杏种仁清蛋白主要的抗氧化活性功能因子之一,分子量为29248Da,由两条分子量接近和氨基酸序列相似的肽链连接而成,在得到该蛋白肽质量酶谱的基础上,测定了其中肽段(2470)和肽段(1911)两个肽段的氨基酸序列;蛋白质二级结构主要以β-折叠或卷曲结构为主,a-螺旋结构含量较少,分子中的Trp残基暴露于分子表面或处于疏水内核。
     本文旨在尝试利用现代色谱分离方法和近代分析鉴定技术,在实验室前期研究基础上,研究了银杏种仁清蛋白中各级分的特性和抗氧化活性,以进一步确定银杏种仁蛋白中功能因子。功能因子GAP2a纯化方法的优化及鉴定、一级结构的进一步测定和生物信息学分析、溶液构象及与其抗氧化活性的构效关系等则是本研究的三个方面重点。同时还对GAP2a的生物活性进行了研究。利用现代免疫学和药理实验方法,从整体动物水平、细胞水平以及分子水平全面了解GAP的免疫调节药理作用,并从体外评价了了GAP的抗氧化活性。
     主要研究结果如下:
     1.GAP的级分分析及活性成分筛选通过DEAE-52纤维素柱,并控制洗脱条件从GAP中分级得到了GAP1-1、GAP1-2、GAP1-3和GAP2四个级分,经SDS-PAGE电泳、RP-HPLC和理化特性分析表明,四个级分中的蛋白差异较大,非蛋白成分集中在缓冲溶液洗脱级分GAP1-1中,GAP2中蛋白含量最高,组分最少,分子量主要分布在14.4kD-20.1kD范围,且巯基和二硫键含量也最高,表面疏水性最小,蛋白具有良好的亲水性和结构稳定性,同时GAP2还具有理想的氨基酸组成和较强的体外抗氧化活性,因此通过分级得到了一种可利用性好的蛋白级分GAP2,其次为GAP1-3。
     2.GAP2纯化方法的优化及理化特性与生物活性的研究
     经过GAP2纯化方法的优化,减少了蛋白质在DEAE-Sephadex A50层析柱上的停留时间,最大程度的保持了蛋白质的生物活性和天然结构,得到了级分GAP2a和GAP2b。通过SDS-PAGE电泳、Native-PAGE电泳、Sephadex G50凝胶过滤色谱、反相高效液相色谱和紫外扫描谱图鉴定表明GAP2a为单一蛋白组分,分子量大小和氨基酸组成与黄文得到的GAP2a为同一种蛋白质。研究结果表明,GAP2a在GAP中的含量为3.8%,具有优良的溶解性,纯度高达94.53%,完全可用于理化特性的研究和序列测定;GAP2a分子中含有2对二硫键,两条肽链由二硫键连接而成。其体外抗氧化活性优于GAP和GAP2,初步研究表明GAP2a还具有较好的体外免疫调节功能,体外对S180肿瘤细胞生长有一定的抑制作用。论文同时还对GAP2b的理化特性和体外抗氧化活性也进行了分析。
     3.GAP2a一级结构研究和生物信息学软件分析
     本论文从GAP2a两条肽链的拆分、N端氨基酸序列、部分酶解肽段的氨基酸序列的研究,进一步丰富了GAP2a一级结构的新内容。GAP2a经过SDS-PAGE和PVDF转模后拆分为两条肽链,采用蛋白质测序仪得到的N端氨基酸序列,轻链为(K,N,D)-A-D-S-V-T-V-A-F-(V,F),重链为(D,H,S)-A-(A,V)-(N,T)-V-(G,V)-(T,I)-V-(F,L,A)-(V,F);采用ESI-MS/MS方法测定了蛋白酶解物中四条肽段的氨基酸序列,质量数2353.98Da的肽段为两条链共有,氨基酸序列为:AVVVDNSTWTSRNVPMNDGHR;轻链中质量数为1486.66Da的肽段序列为:STEMNTGESLQYK;重链中质量数为1574.04Da的肽段序列为:LVGNAAELGNPTCTSK。(已完成蛋白58%质量数序列的测定)还原法拆开两条肽链后在RP-HPLC色谱柱上进行了分离,得到了较为理想的结果。利用ExPASy网站上的生物信息学软件对GAP2a的理化特性和二级结构进行了预测和鉴定;结果表明,GAP2a为一种新蛋白,可能位于细胞质或细胞核内,非膜蛋白,亲水性强,结构稳定,二级结构中主要为折叠结构,而螺旋结构含量较少;其三维结构同酸性蛋白酶和铁氧化还原蛋白较为相似。
     4.GAP2a溶液构象及与其抗氧化活性关系研究
     采用荧光光谱、圆二色谱和DSC手段研究了GAP2a的溶液构象,并对GAP2a在环境pH值和温度处理下的去折叠过程以及与抗氧化活性的关系进行了探讨。得到如下几点结论:
     (1) GAP2a的最佳激发波长为283nm和290nm,Trp残基微环境位于蛋白质中一个低介电常数的折叠分子结构区域中,其疏水区主要位于分子结构内部。二级结构主要以B折叠为主(65.9%),a螺旋结构含量较少(7.1%),无转角结构存在。GAP2a在固体状态下的热变性具有较大程度的可逆性,而液体状态是不可逆的,在液体状态和3K/min的加热速率下,变性温度为75.72℃,变性焓变为148.58kJ/mol,熵变为0.43 kJ·mol~(-1)·K~(-1),其热变性为一熵驱动过程。
     (2)环境pH值对GAP2a溶液构象的影响在酸性条件下和碱性条件下有较大的差异。在酸性条件下,变性过程经历了以下3个阶段:N(pH7时的天然态)→U_A(pH5时的酸致变性态)→A(pH1-pH3范围内熔球体状态),而在碱性条件下的变性为一序变过程,在强碱性环境中,蛋白分子产生了较大程度的去折叠作用,诱导蛋白质分子形成了更多的a螺旋结构。GAP2a的热变性过程则遵循Lumry-Eyring三态模型:N→U→D(即天然态→可逆变性中间态→不可逆变性态)。
     (3)根据pH环境和温度对GAP2a溶液构象及体外抗氧化活性影响的研究可知,GAP2a的抗氧化作用主要由以下两点决定的:①具有抗氧化活性的芳香族氨基酸残基(Trp、Tvr和Phe等)和含硫氨基酸残基(Met和Cys),在分子去折叠后这些残基的暴露使蛋白质的抗氧化活性增强;②GAP2a的a螺旋结构含量与其抗氧化活性具有正相关性,提示a螺旋结构可能为该蛋白质的优势活性构象。上述两个因素不是独立起作用的,只有到达一个平衡点时GAP2a的抗氧化活性才能最大程度的发挥。
     5.GAP的免疫药理调节活性研究
     以正常小鼠、模型衰老小鼠、自然衰老小鼠、免疫功能低下小鼠和辐射损伤小鼠为研究对象,在特异性免疫、细胞免疫与体液免疫三个方面并结合抗氧化功能和造血功能评价指标,从体内动物水平、细胞水平和分子水平上,研究并探讨了GAP的免疫药理活性。结果表明,GAP能提高动物体内SOD和GSH-Px活性,降低MDA水平,增强巨噬细胞非特异性吞噬能力、T淋巴细胞和B淋巴细胞的增殖活性,刺激Con A活化的脾细胞分泌IL-2,并显著提高L_3T_4~+细胞、Lyt_2~+细胞百分率及L_3T_4~+/Lyt_2~+细胞比值,促进小鼠体内血象的恢复,从而较为全面的起到免疫调节作用,有望成为一种较好的天然植物蛋白免疫增强剂。
     6.GAP的体外抗氧化活性研究
     采用化学发光体系测定了GAP对活性氧自由基的清除作用,结果表明GAP对不同体系具有一定的选择性。GAP在邻苯三酚-鲁米诺、硫酸亚铁-鲁米诺、硫酸铜-邻菲啰啉-抗坏血酸-双氧水和硫酸铜-邻菲啰啉-抗坏血酸-双氧水-脱氧核糖核酸化学发光体系中表现出良好的清除活性氧作用和保护DNA免受损伤功能;但在硫酸亚铁-鲁米诺-双氧水和双氧水-鲁米诺化学发光体系中则表现出“促氧化”作用。这可能主要是由于样品和体系中氧化还原电位的差异而导致的。GAP经碱性蛋白酶酶解后其体外抗氧化活性增强。正是由于GAP具有优良的清除体外活性氧的作用,使之其在体内和体外水平上均对S_(180)肿瘤具有一定的抑制作用。
Active proteins, which possess special physiological activities, are widely distributed in tissues of propagation, plant seeds etc. There are about 10% protein in Ginkgo seeds, but until recently, little research was done except the antifungal components in it. In the former works of our lab, Ginkgo seeds albumin (GAP) with strong antioxidant activity was isolated by modern methods, and GAP2a, as a novel protein, was a main functional factor with antioxidant activity in GAP, GAP2a was consisted of two peptides with similar molecular mass and similar amino acid sequence, the molecular mass of the protein is 29248Da. Amino acid sequence of peptide (2470) and peptide (1911) was determined on the basis of peptides mass finger (PMF). Belta-sheet was the main secondary structure in the protein with a little content of a-helical, Trp residuals located in the hydrophobic core or the surface of this protein.
     In the paper, the following were studied using chromatographic separation theory and identification technique on the basis of former research in our lab. At first, characteristics and antioxidant activity of the fractions in GAP were studied to confirm function factors in GAP. And then, optimizing purifying methods of GAP2a from GAP, its identification of its primary structure, the solution conformation and relationship with its antioxidant activity were studied. Furthermore, the bio-functions of GAP2a were also studied. At last, the immune regulation activity of GAP was studied at animal level, cell level and molecular level, and antioxidant activity of GAP was evaluated in vitro.
     Main conclusions in the paper:
     1. Fractional analysis and screening of active components
     GAP1-1 GAP1-2 GAP1-3 and GAP2 were gained from GAP in DEAE-52 column by controlling elution conditions. SDS-PAGE RP-HPLC and physical and chemical properties analysis showed that there were differences in the four fractions. There were mainly non-protein components in GAP1-1. Of the 4 fractions, GAP2 had the highest protein content and relatively less components with molecular weight between 14.4kD and 20.1kD. Also, the high sulfhydryl and disulfide bond content in GAP2 showed that the protein structure was stable, and GAP2 possessed a good hydrophilic property for its small surface hydrophobicity. Furthermore, GAP2 with idea amino acids composition possessed strong antioxidant ability. So GAP2 with the best availability was gained in the paper, and in the next place was GAP1-3.
     2. Optimizing purifying method, physical and chemical properties, and also bioactivities of GAP2a
     Retention time of GAP2 protein in DEAE-Sephadex A50 column was reduced by optimizing purified methods to retain bioactivity and natural structure of protein at the greatest extent. GAP2a and GAP2b were obtained in this step. SDS-PAGE, Native-PAGE, Sephadex G50 gel filtration chromatography, RP-HPLC and UV spectrum results showed that GAP2a was a single protein component, the molecular mass and the amino acids composition were as the same as GAP2a obtained by Huangwen. The content of GAP2a in GAP was 3.8% and GAP2a was highly solubility in water. GAP2a with 94.53% purity satisfied with determination of physical and chemical properties and amino acids sequence. There were two S-S bonds in GAP2a and its two peptides were linked by S-S bond. GAP2a possessed an ideal amino acids composition and good bioactivitities. Antioxidant activity of GAP2a was better than GAP and GAP2. Primary studies also showed that GAP2a had better immune regulation function in vitro and could inhibited growth of S180 cells in vitro. At the same time, physical and chemical properties and antioxidant activity were determined too.
     3. Primary structure study and bioinformatics analysis of GAP2a
     Separation of two peptides, amino acids sequences of N terminal and part hydrolyzed peptides of GAP2a were studied. For N terminal determination, proteins were run on a SDS-polyacrylamide gel, and then transferred on PVDF membrane directly for protein sequencing determination. Light chain sequences was (K, N, D)-A-D-S-V-T-V-A-F-(V, F), heavy chain sequences was (D, H, S)-A-(A, V)-(N, T)-V-(G,V)-(T, I)-V-(F, L, A)-(V, F). Amino acids sequences of four peptides from hydrolysates of GAP2a were determined by using ESI-MS/MS. Peptide (2353.98Da) with AVVVDNSTWTSRNVPMNDGHR sequence existed in two chains. Sequence of peptide (1486.66Da) in light chain and peptide (1574.04Da) in heavy chain were STEMNTGESLQYK and LVGNAAELGNPTCTSK respectively. S-S bond of two peptides were sheared by reduction methods and then separated by RP-HPLC. Bioinformatics soft in ExPASy web was used to predict the physical and chemical properties and secondary structure. The results showed that GAP2a was a novel protein and located at cytoplasmic or nuclear of cells. GAP2a wasn't a membrane protein with a high hydrophilic and stable structure. Beta-sheets were main secondary structure in GAP2a with a little content of alpha-helix. 3D structure of GAP2a was similar to Aspergillopepsin and ferredoxin-1.
     4. Solution conformation and relation with its antioxidant activity
     Solution conformation of GAP2a was studied by fluorescence spectrum, circular dichroism and DSC. Unfolding process and change of antioxidant activity of GAP2a under different pH and temperature conditions were studied and discussed. Three conclusions were made:
     (1) The best excited wavelengths of GAP2a were 283nm and 290nm. Trp residues located in regions of low effective dielectric constant, such as inside a compact folded protein. Hydrophobic core mainly located in inside of protein structure. 6-sheet was abound 65.9% in GAP2a, a-helix content was 7.1%, there was not turn structure Studies on thermal properties showed that thermal denaturizing of GAP2a was a reversible process at solid state, and irreversible at liquid state. At liquid state and heating rate of 3K/min, denatured temperature was 75.72℃, enthalpy and entropy change were 148.58kJ/mol and 0.43 kJ·mol~(-1)·K~(-1), respectively. The thermal denaturizing of GAP2a was driven by entropy.
     (2) Effect of environment pH condition on solution conformation of GAP2a was different at acid condition and alkaline condition. At acid condition, denatured process experienced three stages: Natural state (at pH7)→denatured state (at pH5)→Molten globule state (at pH1-pH3). At alkaline condition, denaturizing of GAP2a was a gradual change process. GAP2a was undergoing unfolding process with formation of more a-helix content at strong alkaline environment. Thermal denatured process of GAP2a obeyed Lumry-Eyring three-state model: Natural state→Reversible intermediate state→Irreversible denatured state.
     (3) Effect of pH and temperature conditions on solution conformation and antioxidant activity of GAP2a was discussed. Antioxidant activity of GAP2a was determined by two factors: A. Aromatic amino acid residues (Trp Tyr and Phe etc) and sulphur-contained amino acid residues (Met and Cys) in proteins were the main factors responsible for antioxidant activity. Exposure of these residues during unfolding process increased antioxidant activity of GAP2a. B. There was a positive linear correlation between the a-helix content and antioxidant activity of GAP2a. So a-helix structure may be an active conformation. The two factors didn't act independently. Only a balance between was achieved, would GAP2a possess the strongest antioxidant activity.
     5. Immune regulation activity of GAP
     By using Normal mice, natural aging mice, D-galactose induced subacute aging mice, immunosuppressive model mice andγ-ray irradiated mice, effect of GAP on specific immune, cell immune, humoral immune function, antioxidant activity and hematopoiesis was evaluated. Results showed that GAP could increased SOD activity, GSH-Px activity and decreased MDA content in mice. GAP showed good effects such as increasing thymus index and spleen index of model mice, promoting proliferation of activatied and inactivatied T, B lymphocyte in vitro, stimulating IL-2 secretion of lymphocyte, enhancing leucocyte number, enhancing phagocytosing ability of peritoneal macrophage and DTH reaction, promoting production of serum hemolysins immunized with SRBC. L_3T_4~+ cells, Lyt_2~+ cells percent and L_3T_4~+/Lyt_2~+ cells ratio also increased significantly in group of mice fed with GAP. Hemogram in immune system damaged mice recovered too. So GAP could regulate immune function of mice across-the-board, and it's hopeful that GAP are developed into a immunopotentiator as a natural plant protein.
     6. Antioxidant activity of GAP in vitro
     The reactive oxygen species (ROS) scavenging ability of GAP in vitro, as well as protecting effect of GAP on damaged DNA was studied. Effect of GAP on removal of superoxide anion was determined by Pyrogallol-Luminol system. The scavenging ability of GAP on hydroxide radicals was determined by CuSO_4-Phen-Vc-H_2O_2, FeSO_4-Luminol-H_2O_2 and FeSO_4-Luminol system. Luminol-H_2O_2 system was used to measure scavenging effect on hydrogen peroxide. Preventing DNA damage effect of GAP was determined by CuSO_4-Phen-Vc-H_2O_2-DNA chemiluminescence's system. Results showed that GAP possessed a good scavenging potency on ROS, but promoted oxidation in the FeSO_4-Luminol-H_2O_2 and Luminol-H_2O_2 system. Not every chemiluminescence system was suitable for determining antioxidant activity of protein. Maybe it is related with redox potential of samples and system. GAP was hydrolyzed by alkaline protease and hydrolysate got better antioxidant ability. GAP could inhibit growth of S180 in vivo and in vitro by means of its good antioxidant ability.
引文
1.保健食品功能学评价程序和检验方法.卫生部卫生监督司,1996(内部资料),61-62(卫法监发[1996]第38号发布)
    2.曹帮华,李玉敏.银杏种子萌发生理的初步研究.山东林业科技,1995,(1):11-14
    3.曹明琳,彭珊茁,胡元等.放射工作人员血清维生素C、E的测定.中国工业医学杂志,2003,16(2):12
    4.陈晶,付华,陈益,赵玉芬.质谱在肽和蛋白质序列分析中的应用.有机化学,2002,22(2):81-90
    5.陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985
    6.陈立,马稚昱,许仲祥.血粉蛋白质热变性温度变化规律的研究.农业机械学报,2004,35(3):102-105
    7.陈淑英,朱汉民,谢辉等.人红细胞内超氧化物歧化酶比色测定法.中华老年病学杂志,1986,5(2):117-118
    8.陈正其,刘定理.医疗放射工作者的健康观察.中国辐射卫生,2003,12(1):38
    9. 俞菊,陆天虹,吴越.脲对细胞色素c同步荧光光谱和电化学行为的影响.中国科学B辑,1996,26(1):41-46
    10.戴建国,陈景衡.白果提取液对小白鼠心脑脂褐质水平的影响.南京医科大学学报(中文版),1994,(3):411
    11.戴玲,王华,陈彦.白头翁糖蛋白对小鼠腹腔巨噬细胞免疫的增强作用.中国生化药物杂志,2000,21(5):230-232
    12.董六一,范丽,李桂芳,郭岩等.银杏总内酯对衰老模型小鼠的作用.药学学报,2004,39(3),176-179.
    13.范德东,蒋小平.闽台两省蛋白质和多肽类抗癌植物资源考.福建中医学院学报.2001,11(1),49-50
    14.方允中,李文杰.自由基与酶—基础理论及其在生物学和医学中的应用.北京:科学出版社,1989,266-268.
    15.方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社,2002.
    16.方允中.活性氧,自由基与酶.北京:科学出版社,1989,45
    17.高博,梁中琴,顾振纶.天山雪莲水提取物对小鼠辐射损伤的保护作用.中草药,2003,34(5),443-445
    18.龚祝南,张双全,陈国祥,施国新,谭仁祥.槲寄生类植物抗肿瘤活性蛋白成分的结构、功能及其作用机制的研究进展.中国生化药物杂志,2001,22(5):259-261
    19.郭蔼光,王振镒.邻苯三酚自氧化—化学发光法测定SOD活性.植物生理学通讯,1989,3:54-57
    20.郭晓君编著.蛋白质电泳实验技术.北京:科学出版社,2005,100-110
    21.郭兴凤,付元,王炯烨等.菜籽蛋白酶水解产物抗氧化活性研究.郑州工程学院学报,2004,25(2):37-39
    22.国际原子能机构和世界卫生组织合编.辐射血液学手册(第一版).北京:原子能出版社,1975,10
    23.韩继福,任建波.Alcalase酶水解玉米蛋白粉制备可溶性肽最佳条件的研究.吉林农业科学,2003,28(3):46-49.
    24.何金生,宗庭益.LDH释放法检测NK细胞活性的方法学研究.中国实验临床免疫学杂志,1996,8(2):10-13.
    25.何昕.大豆蛋白酶解工艺条件的研究.科技通报,2001,16(4):267-268.
    26.候曼玲.食品分析.北京:化学工业出版社,2004,130-131,23-24,122-125,67-71,81-83,50-52
    27.胡天喜,陈季武,许建营,陆静怡.云芝糖肽和灵芝多糖清除活性氧的作用.生物化学与生物物理学报,1992,24(5):465-470.
    28.胡天喜.发光法测量自由基、脂质过氧化及抗氧化剂.基础医学与临床,1993,13(2):81-85
    29.胡天喜.自由基生命科学进展(第5集).北京:原子能出版社,1997,65-71.
    30.黄金玲,龙子江等.苓桂术甘汤对免疫功能低下模型小鼠T细胞亚群及IL-2活性的影响.中国实验方剂学杂志,2003,9(6):38-40.
    31.黄文,谢笔钧,王益,杨尔宁,罗锐.白果蛋白质的分离、纯化、理化特性及其抗氧化活性研究.中国农业科学,2004,37(10):1537-1543.
    32.黄文,谢笔钧,姚平,王益.白果活性蛋白的抗生物氧化作用.营养学报,2002,24(2):192-194.
    33.黄文.白果活性蛋白的分离、纯化、结构及其生物活性研究.华中农业大学博士论文,2002
    34.阚建全,阎磊,陈宗道,贺稚非,王光慈.甘薯糖蛋白的免疫调节作用研究.西南农业大学学报,2000,22(3):257-260
    35.李合生主编.植物生理生化实验原理和技术.高等教育出版,2000,186-192.
    36.李红敏,周小理.荞麦多肽的制备及其抗氧化活性的研究.食品科学,2006,27(10):302-306
    37.李丽红,凌湘力.参芪地黄丸对D-半乳糖衰老小鼠的调节作用.福建中医药,2003,34(2):36-37.
    38.李连之,周永洽.激光散射及其在蛋白质溶液研究中的应用.大学化学,1998, 13(3):26-29
    39.李平,王艳辉,马润宇.山茱萸多糖PFCCI抗氧化性能研究.食品工业科技.2003,(5):34-39.
    40.李翔,陈海生.天然药物抗辐射活性成分的研究进展.解放军药学学报,1999,18(4):27-30
    41.李向红,华欲飞,王自东,裘爱泳,Steve Cui.体积排阻色谱和激光光散射对大豆蛋白热诱导聚集体的研究.分析化学,2007,35(2):251-254
    42.李新华.豆乳酶解效应分析.沈阳农业大学学报,1998,29(2):15-18.
    43.梁长玲.国内抗辐射天然药物简介.中草药,2000,31(4):315-317
    44.梁红,徐斌,潘伟民等.银杏种子和叶的蛋白质分析.植物资源与环境学报,2000,9(4):5-8
    45.梁宏,宋仲容等.血清白蛋白的构象研究Ⅳ pH诱导HSA构象变化的光谱研究.光谱学与光谱分析,1994,14(6):39-42
    46.凌关庭.保健食品功能评价(八).粮食与油脂,2002,1:46-48
    47.凌智群,谢笔钧.莲原花青素对氧自由基和脂质过氧化的作用.营养学报,2002,4(2):121—125
    48.刘成梅,游海.天然产物有效成分的分离与应用.北京:化学工业出版社,2003,352.
    49.刘光慧,沈恂.硫氧还蛋白质与心血管疾病.生物物理学报,2006,22(6):406-414
    50.刘勇等.金针菇菌丝体糖蛋白的抑瘤作用及其免疫学性质.中国生化药物杂志,1998,19(6):369-371
    51.刘云娜,谈夫.二氢叶酸还原酶热致构象变化的研究.科学通报,1996,41(7):615-618
    52.鲁子贤,崔涛,施庆洛.圆二色性和旋光色散在分子生物学中的应用.北京:科学出版社,1987,92
    53.陆健等编著.蛋白质纯化技术及应用.北京:化学工业出版社,2005,1-2,100-115
    54.马文建,曹恩华,张健,秦静芬.十几种天然抗氧化剂对DNA保护作用的结构分析与理论计算.生物物理学报,1998,14(1):155-160
    55.孟昭礼,吴献忠等.银杏提取液对四种植物病原菌的抑菌作用.植物病理学报,1995,25(4):357-360
    56.苗明三,盛家河,方晓艳.芦荟多糖对衰老模型小鼠免疫器官组织影响的病理学观察.中国中医药科技,2002,9(6):340.
    57.牛卫宁,郭蔼光.银杏种仁中抗菌蛋白的纯化及性质.西北植物学报,2003,23(9):1545-1549
    58.庞杰,尤民生.冷激对贮藏白果多聚半乳糖醛酸酶的影响.福建农业大学学报 2000,29(3):386-388
    59.钱睿哲,金惠铭.衰老机制研究中的若干问题.老年医学与保健,2004,10(2):122-125
    60.邱世翠,李波清等.黄芪对小鼠淋巴细胞增殖和IL-2产生的影响.滨州医学院学报,2000,23(3):232-233.
    61.任国谱,余兵,李顺灵.蛋白质及其衍生物的抗氧化性能.中国油脂,1997,22(4):47-50
    62.萨楚尔夫,罗辽复.蛋白质热变性现象的研究.内蒙古师范大学学报,自然科学(汉文)版.2002,31(4):337-342
    63.商澎,杨铁虹等.当归多糖AP-0对小鼠移植性肿瘤的抑制作用.第三军医大学学报,2001,23(11):1329-1302.
    64.沈漪,方文仅.蛋白质一级结构测定的新进展.中国医药工业杂志,2002,3310):514-518.
    65.师治贤和王俊德.生物大分子的液相色谱分离和制备.北京:科学出版社,1999,173,223
    66.宋旭,包明敏,李永明,李电东.非酶糖基化致衰老的实验研究.中华老年医学杂志,1999,18(3):164-167.
    67.苏继辉,李国红,吴金陵等.高能γ射线对PET工作人员甲状腺功能的影响.中国辐射卫生,2004,13(1):78
    68.孙册等.临床治血凝集素.北京:科学出版社,1986.
    69.孙建琴,孙晓红,詹国英等.混合植物蛋白质对提高小鼠免疫机能和延缓衰老作用的研究.营养学报,1997,19(4):461
    70.谭仁祥主编.植物成分功能.北京:科学出版社,2003,421
    71.汤巧,卢春,黄丽.SHVORF73C基因原核表达产物的纯化与免疫原性分析.临床检验杂志,2004,22(5):364-366
    72.唐波,杜鸣,陈蓁蓁,张慧,沈含熙.三维同步偏振荧光光谱研究蛋白质溶液变性时氨基酸残基的发光行为.化学学报,2004,12(62):1153—1157
    73.唐玫等.富硒藻蓝蛋白对小鼠免疫功能及抗氧化活性的影响.营养学报,2001,23(3):275-278
    74.陶慰孙,李惟,姜涌明主编.蛋白质分子基础.北京:高等教育出版社,1995,92-95,314,315,317
    75.陶义训.免疫学和免疫学检验.北京:人民卫生出版社,1989,53-54.
    76.田兵,王关林,方宏筠.芦荟凝集素提取及促免疫活性功能初步研究.大连理工大学学报,2001,41(3):296-299
    77.田峰,任连生.加味当归补血颗粒对环磷酰胺的骨髓抑制及荷瘤小鼠免疫功能 的影响.中国药物与临床,2004,4(6):445-44.
    78.汪维云.灰树花多糖的抗辐射作用研究.安徽农业大学学报,2003,30(2):210-212
    79.王梅,谷文英.酶解玉米黄粉蛋白制备可溶性肽.粮油食品,1999,7(1):1-3.
    80.王楠,汤仲明.MTT方法测定培养细胞抗药水平的评价.中国药理学通报,1996,9(1):78-81.
    81.王强,王京杭,张静等.LNT-γIL-2免疫原性研究.中国免疫学杂志,1998,14(2):89-91.
    82.魏文青,丛建波等.海藻硫酸多糖对小鼠免疫功能的调节作用.中国新药杂志,2001,10(9):671-675.
    83.魏晓芬,丁西明,刘会洲.pH诱导牛血清白蛋白质芳香族氨基酸残基微环境变化的光谱分析.光谱学与光谱分析,2000,20(4):556-559
    84.吴红星等.抗辐射剂的研究现状.放射免疫学杂志,2005,18(1):58-60
    85.吴红彦,刘永倚,苏瑥,程小丽.复合生命肽对衰老模型小鼠免疫功能及过氧化作用的研究.中医药学刊,2002,20(6):804-805.
    86.夏其昌和曾嵘等编著.蛋白质化学与蛋白质组学.北京:科学出版社,2004,5,19
    87.谢丽涛,顾雄飞.保护蛋白—一种新型的抗氧化蛋白及其生物学功能.广州医学院学报,1999,27(3):80-83.
    88.徐力,赵忠岩等.大豆蛋白的小分子酶解产物抗氧化活性研究.吉林农业大学学报,2007,29(1):48-52
    89.徐叔云,卞如濂,陈修.药理学实验方法学(第2版).北京:人民卫生出版社,1991,933-949
    90.许家喜,金声.罂粟花粉中水溶性肽的分离纯化、序列测定和合成的研究.化学学报,1995,53:822-827
    91.许申鸿,杭瑚.一种SOD测活方法的改进.青岛大学学报.1999,12(2):51-53.
    92.许申鸿.一种测定·OH产生与清除的新化学发光体系.分析测试学报,2000,19(2) :11-13
    93.薛业敏,洪厚胜.麦芽根蛋白的酶水解性质的研究.食品工业科技.2001,22(2):12-16
    94.薛照辉,吴谋成,尹经章.碱性蛋白酶(alcalase)水解菜籽清蛋白的工艺优化.农业工程学报,2003,19(5):176-180
    95.杨红英,李经才.褪黑素对D-半乳糖衰老模型小鼠的作用.中国药理学通报,2000,16(4):397-400
    96.杨军,王静,姜文,马传庚等.赤芍总苷对D-半乳糖衰老小鼠学习记忆及代谢产物的影响.中国药理学通报,2001,17(6):697—700
    97.杨铭.结构生物学与药学研究.北京:科学出版社,2003,161
    98.杨天鸣,吴士筠,覃建章等.银杏超氧自由基清除剂的制备及其热稳定性.中南民族学院学报(自然科学版).1998,17(2):3-7
    99.杨玉珍,李生平,吴青霞,彭方仁.银杏种子萌发过程中蛋白质及3种氮代谢酶活性的变化.南京林业大学学报(自然科学版),2006,30(4):119-122
    100.叶波平,王庆华等.灵芝蛋白质的分离及其免疫活性研究.药物生物技术,2002,9(3):150-152
    101.叶雄,张楚富.生物信息学在植物谷氨酰胺合成酶同工酶基因研究中的应用.植物生理学通讯,2006,42(1):115-121
    102.余传霖,叶天星,陆德源,章谷生.现代医学免疫学.上海:上海医科大学出版社,1998,1212-1215.
    103.袁玉荪,宋婉华,陈钧辉.生物化学实验.北京:高等教育出版社,1985,43-44.
    104.詹林盛,张新生,吴小红,王之贤.褐藻多糖对小鼠淋巴细胞功能和细胞因子产生的影响.营养学报,2001,23(2):122-125.
    105.张冰洁,尚莉莉,王建昌等.医用X射线工作者体内SOD、GSH-Px活性及MDA含量的分析.中国辐射卫生,1999,8(4):245
    106.张尔贤等.·OH自由基产生的化学发光体系及对若干天然产物清除作用的评价.自由基生命科学进展(第2集).北京:原子能出版社,1994,153-159
    107.张洪泉.抗衰老药理学新论.北京:人民卫生出版社,2004,60-83.
    108.张健,曹恩华,秦静芬,秦国伟.抗氧化剂对DNA损伤的保护作用机制的研究.生物物理学报,1997,13(1):123-127.
    109.张均田主编.现代药理实验方法(下册).北京医科大学中国协和医科大学联合出版社出版,1997,1886-1893
    110.张蕾,郭红卫等.建立小鼠免疫功能低下模型的研究.环境与职业医学,2003,20(2):95-99.
    111.张龙翔,张庭芳,张令媛.生化实验方法和技术.北京:高等教育出版社,1997,165-166
    112.张卫明,赵泊涛,王红.银杏种仁对小白鼠SOD的影响.中国野生植物资源,1995,(1):24-26.
    113.张卫明,赵泊涛.银杏对果蝇寿命的影响.中国野生植物资源,1995,(1):25-26
    114.张宪党,马驰,孙霞,张侃.天然药物抗辐射作用机制的研究进展.中国辐射卫生,2004,13(3):228-230
    115.张意静.食品分析.北京:轻工业出版社,1999,109—113,151-153
    116.赵利,王璋,许时婴.Alcalase在酪蛋白磷酸肽生产中的应用研究.中国奶牛,2002,5:15-18.
    117.赵永芳.生物化学技术原理及其应用.湖北:武汉大学出版社,第二版,1994,102-105
    118.郑冬梅,李升福,孔保华.玉米蛋白水解条件的优化研究.食品科学,2002,23(8):52-56.
    119.郑建仙.功能性食品(第二卷).北京:中国轻工业出版社,1999,27-30
    120.郑建仙.功能性食品(第三卷).北京:中国轻工业出版社,1998,104-132
    121.周立国.药物毒理学.武汉:湖北科学技术出版社,2001,33
    122.周晓云.酶技术.石油工业出版社,1995,284—287
    123.邹承鲁,周筠梅,周海梦.酶活性部位的柔性.山东:山东科学技术出版社,2004,114,115,129,198
    124.邹承鲁.蛋白质的变性是一个分子逐步伸展的过程.生物化学学报,1993,增刊:4-5
    125. Aabgeena Naeem, Afroz Khan, Rizwan Hasan Khan. Partially folded intermediate state of concanavalin A retains its carbohydrate specificity. Biochemical and Biophysical Research Communications, 2005, 331:1284-1294
    126. Aabgeena Naeem, Khursid Alam Khan, Rizwan Hasan Khan. Characterization of a partially folded intermediate of papain induced by fluorinated alcohols at low pH. Archives of Biochemistry and Biophysics, 2004, 432:79-87
    127. Ader Nissen J.Enzymatic hydrolysis of protein for increased solubility. J Agric Food Chem, 1976, 24(6): 1090-1096.
    128. Aichun Dong, Jeffrey D. Meyer, Jerry L. Brown, Mark C. Manning, and John F. Carpenter. Comparative Fourier Transform Infrared and Circular Dichroism Spectroscopic Analysis of G1-Proteinase Inhibitor and Ovalbumin in Aqueous Solution. Archives of Biochemistry and Biophysics, 2000, 383(1): 148-155
    129. Allen M J, Jemmerson R and Nall B T. Rapid refolding of native epitopes on the surface of cytochrome c. Biochemistry, 1994, 33(13): 3967~3973
    130. Alsmeyer, R.H., Cunningham, A.E., & Happich, M. L. Equations predict PER from amino acid analysis. Food Chemistry, 1974, 28: 34-38.
    131. Ana Sofia L. Carvalho, Bruno Sommer Ferreira, Maria Teresa Neves-Petersen, Steffen B. Petersen, Maria Raquel Aires-Barros, Eduardo Pinho Melo. Thermal denaturation of HRPA2: pH-dependent conformational changes. Enzyme and Microbial Technology, 2007, 40:696-703
    132. Andrade M.A., Chacon P., Merelo J.J., Mora'n F., Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised neural network, Protein Eng. 1993, 6: 383-390.
    133.Andras Szabo, Marta Kotorman, Ilona Laczko, L. Maria Simona. Spectroscopic studies of stability of papain in aqueous organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2006,41: 43-48
    134.Archer SL, Nelson DP, Weir E Detection of activated O_2species in vitro and in rat lungs by chemiluminescence. J Appl Physiol, 1989,67:1912-1921.
    135.Arpad Szenczi, Jozsef Kardos, Gyorgy A.Medgyesi, Peter Zavodszky. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals, 2006,34: 5-14
    136.Aune, K.C., Salahuddin, A., Zarlengo, M.H., Tanford, C. Evidence for residual structure in acid and heat denatured proteins. J. Biol. Chem. 1967, 242: 4486-4489.
    137.Bai J, et al. Peptide mapping by CNBr degradation on a nitrocellulose membrane with analysis by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem, 1995, 67:1705
    138.Bai Ji-Hong, Wang Hao-Jing, Zhou Hai-Meng. Alkaline-induced unfolding and salt-induced folding of pig heart lactate dehydrogenase under high pH conditions. International Journal of Biological Macromolecules, 1998, 23:127-133
    139.Bandekar J. and Krimm S. Vibrational analysis of peptides, polypeptides, and proteins. VI. Assignment of β-truns modes in insulin and other proteins. J. Biopolymers, 1980,19: 31-36
    140.Baumy J. J., & Brule G Effect of pH and ionic-strength of the binding of bivalent-cations to β-casein. Lait, 1988, 68: 409-417.
    141.Bayol A., Dupin P., Boe J.F., et al. Study of pH and temperature-induced transitions in urate oxidase(Uox-EC1.7.3.3) by microcalorimetry (DSC), size exclusion chromatography (SEC) and enzymatic acitivity experiments. Biophysical Chemistry, 1995, 54: 229-235
    142.Beatriz Farruggia, Guillermo A. Pico. Thermodynamic features of the chemical and thermal denaturations of human serum albumin. International Journal of Biological Macromolecules, 1999, 26: 317-323
    143.Benjakul, S., Seymour, T. S., Morrissey, M. T., & An, H. Physicochemical changes in Pacific whiting muscle proteins during iced storage. Journal of Food Science, 1997, 62: 729-733.
    144.Bertelli A, Bertelli AA, Gozzini A, et al. Plasma and tissue reserva troll concentrations and pharmacological activity. Drugs Exp Clin Res. 1998, 24: 133.
    145.Biao He, Tong Zhang, Hai-Meng Zhou. Comparison aminoacylase of inactivation and conformational changes of during denaturation in lithium dodecylsulphate solutions. International Journal of Biological Macromolecules, 1997, 20: 53-62
    146.Bigelow C.C. On the average hydrophobicity of proteins and the relation between it and protein structure. Journal of Theoretical Biology, 1967,16:187-211.
    147.Biliaderis, C. G. Differential scanning calorimetry in food research. A review. Food Chemistry, 1983,10: 239-265.
    148.Blenford D E. Use of amino acids and peptides in sports nutrition. International Food Ingredient, 1996, 3: 20-23,178.
    149.Boxer D.H., Zhang H., Gourley D.G., Hunter W.N., Kelly S.M., Price N.C., Sensing of remote oxyanion binding at the DNA binding domain of the molybdate-dependent transcriptional regulator, ModE, Org. Biomol. Chem, 2004, 2: 2829-2837.
    150.Brems D N, Plaisted S M, Dougherty J Jr, et al. The kinetics of bovine growth hormone folding are consistent with a framework model. Journal of Biological Chemistry, 1987, 262(6): 2590-2596
    151.Bushmarina N.A., Kuznetsova I.M., Biktashev A.G., Turoverov K.K., Uversky V.N., Partially folded conformations in the folding pathway of bovine carbonic anhydrase II: a fluorescence spectroscopic analysis. ChemBio-Chem, 2001, 2: 813-821.
    152.Bushmarina N.A., Kuznetsova I.M., et al. Partially folded conformations in the folding pathway of bovine Carbonic Anhydrase: a fluorescence spectroscopic analysis. ChemBioChem., 2001, 2, 813-821
    153.Campbell. I.D. and Dwek. R.A. Biological Spectroscopy. The Benjamin Chammings Publishing Comp., Menlo Park. 1984, 91-121.
    154.Carey P.R. Biochemical applications of Raman and Resonance Raman Spectroscopies. A Subsidiary of Harcourt Brace Jovanovich. New York: Academic Press, 1982, 71-96
    155.Chae H.Z., Rhee S.G. A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Biofactors, 1994, 4(3-4): 177-180
    156.Chavan U.D., McKenzie D.B., Shahidi F. Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chemistry, 2001, 74:177-187.
    157.Cheetham J C, Raleigh D P, Griest R E, et al. Antigen mobility in the combining site of an anti-peptide antibody. Proc. Natl. Acad. Sci. USA, 1991, 88(15): 7968-7972
    158.Chi-Yue Chang, Kuei-Ching Wu, Shu-Hua Chiang. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chemistry, 2007, 100:1537-1543
    159.Christensen, H. and Pain, R.H. in Mechanisms of Protein Folding (Pain, R.H., ed.), Oxford Univ. Series, Oxford University Press, Oxford., 1994
    160.Ciorba M.A., Heinemann S.H., Weissbach H., Brot N., Hoshi T. Modulation of potassium channel function by methionine oxidation and reduction. Proc Natl Acad Sci USA, 1997, 94: 9932-9937
    161.Collins K D, Washabaugh M W. The Hofmeister effect and the behaviour of water at interfaces. O Rev Biophys 1985,18: 323-422
    162.Cowgill. R.W. in Biochemical Fluorescence Concepts. Vol. 2 (Chen. R.F. and Edelhoch, H.. eds.), Marcel Dekker, New York. 1975, 441-486
    163.Creighton T E. Reconstitution of disulfate bond during folding. J. Phys.Chem,1985, 89: 2452-2465
    164.Cuzzocrea S, Riley D, CaputiA P, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharm acol Rev. 2001,53:135-139.
    165.Daniel S. Spencer, Ke Xu, Timothy M. Logan and Huan-Xiang Zhou. Effects of pH, Salt, and Macromolecular Crowding on the Stability of FK506-binding Protein: An Integrated Experimental and Theoretical Study. J. Mol. Biol. 2005, 351: 219-232
    166.De la Fuente M. Effects of antioxidants on immune system ageing. Eur J Clin Nutr 2002, 56(S3): S5-8.
    167.Demiryurek AT, Wainwright CL, Wadsworth RM, Kane KA Characterization of a method for the detection of drugs with free radical scavenging activity using porcine leukocytes. J Pharmacol Toxicol Meth. 1994, 32: 35-40.
    168.Deng,J.C. Effect of Temperature on fish alkaline protease,protein interaction and temperaction and texture quality. J.Food Sci.1981, 46(1): 62-65.
    169.Diaz, M., & Decker, E. A. Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. Journal of Agricultural and Food Chemistry, 2004, 52(26): 8208-8213.
    170.Dilip Kumar Debnath, Kasturi Mukhopadhyay, Soumen Basak. Acid-induced denaturation and refolding of prothrombin. Biophysical Chemistry, 2005, 116: 159-165
    
    171.DM K.A. Dominant forces in protein folding. Biochemistry, 1990, 29(31): 7133-7155
    172.Dolgikh D A. Evidence that alternate foldings of the hepatitis delta RNA confer varying rates of self-cleavage. Eur.Biophys.J, 1985,13(6): 109-121
    173.Dolgikh D.A., Abaturov L.V., Bolotina I. A. et al. Compact state of a protein molecule with pronounced small-scale mobility. Eur. Biophys. J, 1985,13: 109-121
    174.Domingo Blanco Gomis, Yoana Exposito Cimadevilla, Sara Junco Corujedo, M- Dolores Gutierrez Alvarez. Fractionation and characterization of soluble proteins from cider. Food Chemistry, 2003, 83: 507-513
    175.Donnelly J.K., Mclellan K.M., Walker J.L. and Robinson D. S. Superoxide Dismutases in Foods. A. Review. Food Chemistry. 1989, 33: 243-270.
    176.Donovan J.W. Ultraviolet difference spectroscopy: New techniques and applications. Methods. Enzymol, 1973, 27: 497-525
    177.Duodu K.G., Taylor J.R.N., Belton P.S., Hamaker B.R., Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38:117-131.
    178.Eder J., Rheinnecker M., Fersht A.R. Folding of subtilisin BPN': characterization of a folding intermediate. Biochemistry. 1993,32(1): 18-26
    179.Edman P. Method for determination of the amino acid, sequence in peptides. Acta Chem Scand, 1950,4: 283-293.
    180.Eefei Chen, Matthew J. Wood, Anthony L. Fink, and David S. Kliger. Time-Resolved Circular Dichroism Studies of Protein Folding Intermediates of Cytochrome c. Biochemistry, 1998, 37: 5589-5598
    181.Elias, R. J. et al., Impact of thermal processing on the antioxidant mechanisms ..., Food Chemistry (2007), doi:10.1016/j.foodchem.2007.01.072
    182.Ellepola S.W., Ma C.-Y. Thermal properties of globulin from rice (Oryza sativa) seeds. Food Research International, 2006, 39: 257-264
    183.Ellman, G. L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 1959, 82: 70-77.
    184.Emmanuel Bourdon, Nadine Loreau, Laurent Lagrost, Denis Blache. Differential effects of cysteine and methionine residues in the antioxidant activity of human serum albumin. Free Radical Research, 2005, 39:15-20
    185.Engelhard M. and Evans P.A. Kinetics of interaction of partially folded proteins with a hydrophobic dye: evidence that molten globule character is maximal in early folding intermediates. Protein Science, 1995,4:1553-1562
    186.Ervin J., Larios E., et al. What causes hyperfluorescence: folding intermediates or conformationally flexible native states? Biophys. J., 2002, 83: 473-483.
    187.Estrada J.E.P. Bescos P.B. Fresno A.MV. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco, 2001, 56: 497-500.
    188.Eugenia M. Clerico and Mario R. Ermacora. Tryptophan Mutants of Intestinal Fatty Acid-Binding Protein: Ultraviolet Absorption and Circular Dichroism Studies. Archives of Biochemistry and Biophysics, 2001, 395(2): 215-224
    189.Eugenia Polverin, Micaela Fornabaio et al. The pH-dependent unfolding mechanism of P2 myelin protein: An experimental and computational study. Journal of Structural Biology, 2006,153: 253-263
    190.Fang Yang Jr., Min Zhang, Jie Chen, Yi Liang. Structural changes of a-lactalbumin induced by low pH and oleic acid. Biochimica et Biophysica Acta, 2006, 1764: 1389-1396
    191.FAO/WHO. Energy and protein requirements. (Report of FAO Nutritional Meeting Series NO.52). Rome, Italy, FAO, 1973
    192.Farah Naseem, Basir Ahmad, Mohd. Tashfeen Ashraf, Rizwan Hasan Khan. Molten globule-like folding intermediate of asialofetuin at acidic pH. Biochimica et Biophysica Acta, 2004,1699:191-199
    193.Finkelstein A V and Ptitsyn O B. Mechanism for the unfolding and refolding of ribonuclease A. Kinetic studies utilizing spectroscopic methods. Prog. Biophys.Mol. Biol., 1987,50(3): 171-190
    194.Firouz Jahaniaval, Yukio Kakuda, Varghese Abraham, Massimo F. Marcone. Soluble protein fractions from pH and heat treated sodium caseinate: physicochemical and functional properties. Food Research International, 2000, 33: 637-647
    195.Freskgard P.-O., Martensson L.-G, Jonasson P., Jonsson B.-H., Carlsson U., Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II. Biochemistry, 1994, 33:14281-14288.
    196.Fuu Sheu, Po-Jung Chien, Ai-Lin Chien, Yin-Fang Chen, Kah-Lock Chin. Isolation and characterization of an immunomodulatory protein (APP) from the Jew's Ear mushroom Auricularia polytricha. Food Chemistry, 2004, 87: 593-600
    197.Galley. C.W. in Biochemical Fluorescence Concepts. Vol. 2 (Chen, R.F. and Edelhoch, H., eds.). Marcel Dekker. New York. 1975, 409-439
    198.Garrison W.M. Reaction mechanisms in radiolysis of peptides, polypeptides, and proteins. Chem Rev 1987, 87: 381-398
    199.Ghisla S., Massey V., Lhoste J.M., Mayhew S. Fluorescence and optical characteristics of reduced flavins and flavoproteins, Biochemistry, 1974,13, 589-597
    200.Gianazza E, Eberini I, Santi O, et al. Analytica Chimica Acta. 1998, 372: 99-120
    201.Giuseppe Graziano, Francesca Catanzano, Guido Barone. On the pH dependence of thermodynamic stability of a-amylase inhibitor tendamistat. Thermochimica Acta, 2000, 345: 59-66
    202.Go Ohe, Masato Okamoto, et al. Th1-cytokine induction and antitumor effect of 55Kda protein isolated from Aeginetia indica L., a parasitic plant. Cancer Immunol Immunother, 2001, 50: 251-259
    203.Goldenberg, D. P. & Creighton, T. E. Gel Electrophoresis in Studies of Protein Conformation and Folding. Anal. Biochem., 1984,138:1-18
    204.Goto Y and Fink A L. Phase diagram for acidic conformational states of apomyoglobin. Journal of Molecular Biology, 1990, 214(4): 803-805
    205.Goto Y, Calciano L.J., Fink A.L., Acid-induced folding of proteins. Proc. Natl. Acad. Sci. U. S. A. 1990, 87: 573-577.
    206.Goto Y, Fink A.L. Conformational states of β-lactamase: molten-globule states at acidic and alkaline pH with high salt, Biochemistry, 1989, 28: 945-952
    207.Griko Yuri, Sreerama Narasimha, Osumi-Davis Patricia, Woody Robert W., and Woody A-Young Moon. Thermal and urea-induced unfolding in T7 RNA polymerase: Calorimetry, circular dichroism and fluorescence study. Protein Sci, 2001, 10: 845-853
    208.Gross J. and Strupat, K. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) applied to biological macromolecules. Trac-Trend Anal. Chem., 1998,17: 470-484
    209.Guillermo Mendoza-Hernandez, Fernando Minauro, Juan L. Rendon. Aggregation, dissociation and unfolding of glucose dehydrogenase during urea denaturation. Biochimica et Biophysica Acta, 2000,1478: 221-231
    210.Guoqiang Xu, Mahesh Narayan, Ervin Welker, and Harold A. Scheraga. A novel method to determine thermal transition curves of disulfide-containing proteins and their structured folding intermediates. Biochemical and Biophysical Research Communications, 2003,311: 514-517
    211.Hager K.P., Braun H.,.Czihal A, Muller B.and.Baumlein H. Evolution of seed storage protein genes: Legumin genes of Ginkgo biloba. Journal of Molecular Evolution (Historical Archive). 1995, 41(4): 457-466.
    212.Hager KP, Jensen U, Gilroy J, Richardson M. The N-terminal amino acid sequence of the beta-subunit of the legumin-like protein from seeds of Ginkgo biloba. Phytochemistry, 1992,31(2): 523-525
    213.Haynie, D.T., Freire, E. Structural energetics of the molten globule state. Proteins, 1993,16:115-140
    214.Hofstadler, S. A., R. Bakhtiar, and R. D. Smith. "Electrospray Ionization Mass Spectrometry. Part I. Instrumentation and Spectral interpretation," J. Chem. Educ, 1996, 73(4): A82-A88
    215.Hong-Rui Wang, Tong Zhang, Hai-Meng Zhou. Comparison of inactivation and conformational changes of aminoacylase during guanidinium chloride denaturation, Biochimica et Biophysica Acta, 1995,1248: 97-106
    216.Horiguchi N, Horiguchi H, Suzuki Y: Effect of wheat gluten hydrolysate on the immune system in healthy human subjects. Biosci Biotechnol Biochem 2005, 69: 2445-2449.
    217.Hsiang Lai, Tsung I. Tsai, et al. Cloning and expression of human haptoglobin subunits in Escherichia coli: Delineation of a major antioxidant domain. Protein Expression and PuriWcation, 2007, 52: 356-362
    218.HSU H.C., HSU C.I., LIN R.H., et al. Fip-vvo, a new fungal imnomodulatory protein isolated from Volvariella volvacea. Biochem. J, 1997,323: 557-565.
    219.Hua Shi, Ling Xiong, et al. Protein secondary structure and conformational changes of photosystemll during heat denaturation studies by Fourier transform-infrared spectroscopy. Journal of Molecular Structure, 1998, 446:137-147
    220.Hughson F M, Barrick D and Baldwin R L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry, 1991, 30(17): 4113-4118
    221.Ichikawa T. and Terada H. Effect of dodecyl sulfate on the spectral properties of phenylalanyl residues in serum albumin detected by second derivative spectrophotometry, Biolchem. Biophys. Acta, 1981, 671: 33-37
    222.Imai J. Ide N. NaGAP S., et al. Antioxidant and Radical Scavenging Effects of Aged Garlic Extract and its Constituent. Planta Med, 1994, 60(5): 417-420
    223. Inouye B, Aonok Irdas, et al. Influence of superoxide genenating system, vitamin Eand superoxide dismutase on radiation consequences. Physical Chem Phys, 1979, 11:151-158
    224.Iren Wang, Tsun-Ai Yu, Shih-Hsiung Wu, Wen-Chang Chang, Chinpan Chen. Disulfide pairings and secondary structure of porcine β-microseminoprotein. FEBS Letters, 2003, 541: 80-84
    225.Jae-Young Je, Pyo-Jam Park, Se-Kwon Kim. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 2005, 38: 45-50
    226.Jae-Young Je, Zhong-Ji Qian, Hee-Guk Byun, Se-Kwon Kim. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 2007, 42: 840-846
    227.Je JY, Kim SY, Kim SK. Preparation and antioxidative activity of hoki frame protein hydrolysates using ultrafiltration membrane. Euro Food Res Tech, 2005, 221: 157-62.
    228.Ji-Hong Bai, Hao-Jing Wang, Hai-Meng Zhou. Alkaline-induced unfolding and salt-induced folding of pig heart lactate dehydrogenase under high pH conditions. International Journal of Biological Macromolecules, 1998, 23:127-133
    229.Jin-shui Wang, Mou-ming Zhao, Qiang-zhong Zhao, Yue-ming Jiang. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chemistry, 2007,101:1658-1663
    230.John T. Pelton and Larry R. McLean. Spectroscopic Methods for Analysis of Protein Secondary Structure. Analytical Biochemistry, 2000, 277:167-176
    231.Johnson Jr. W.C., Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins: Struct. Funct. Genet, 1999, 35: 307-312.
    232.Johnson, RS, Martin, SA and Biemann, K, Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Processes, 1988, 86:137-154.
    233.Jun, S. Y, Park, P. J., Jung, W. K., & Kim, S. K. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European Food Research and Technology, 2004, 219: 20-26.
    234.Kalyani Mahapatra, Ranjan Kumar Nanda et al. Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochemistry, 2005,40: 3251-3254
    235.Karine Jean, Marie Renan, Marie-Helene Famelart, Fanny Guyomarc'h. Structure and surface properties of the serum heat-induced protein aggregates isolated from heated skim milk. International Dairy Journal, 2006,16: 303-315
    236.Kato, A., & Nakai, S. Hydrophobicity determined by a fluorescence probe method and its corelation with surface properties of protein. Biochimica et Biophysica Acta, 1980, 624:13-20.
    237.Katsuyoshi Yamazaki, Takafumi Iwura, Koichi Murayama, Rika Ishikawa, Yukihiro Ozaki. Effects of the concentration and heating rate on the thermal denaturation and reversibility of granulocyte-colony stimulating factor studied by circular dichroism and infrared spectroscopy. Vibrational Spectroscopy, 2005, 38: 33-38
    238.Kauzmann W. Folding pathway of a circular form of bovine pancreatic trypsin inhibitor. Adv. Protein Chem., 1959,16:1-64
    239.Kay, E. and Gumbiner, B. Lima bean proteinase inhibitor, Origins of circular dichroism and modification by Br- and (CNS)-. J. Biol. Chem., 1979, 254: 7643-7647
    240.Kelly S. M. Jess T. J. Price N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta. 2005,1751: 119-139
    241.Kenneth G Standing. Peptide and protein de novo sequencing by mass spectrometry. Current Opinion in Structural Biology 2003,13; 595-601
    242.Khurgin Y, Maksareva E. Urea-generated free rotating water molecules are active in the protein unfolding process. FEBS Lett. 1993, 315:149-152
    243.Kim K.H., Kim I.H., Lee K.Y., et al. The isolation and purification of a specific "Protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O_2 mixed-function oxidation system. J Biol Chem, 1988, 263: 4701-4711.
    244.Kimura, Y. and Matsuo, S. Changes in N-linked oligosaccharides during seed development of Ginkgo biloba Biosci. Biotechnol. Biochem. 2000, 64:562-568
    245.Kimura, Y. and Matsuo, S. Enzymatic properties of a Ginkgo biloba endo-beta-N-acetylglucosaminidase and N-glycan structures of storage glycoproteins in the seeds. Biosci. Biotechnol. Biochem. 1998, 62: 253-261
    246.Kimura, Y. and Matsuo, S. Free N-glycans already occur at an early stage of seed development. Journal of Biochemistry, 2002, 27:1013-1019.
    247.Kitts D.D., Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 2003, 9, 1309-1323.
    248.Ko J. L, Lin S. J., Hsu C. I., et al; Molecular cloning and expression of a fungal immunomodulatory protein, FIP-FVE, from Flammuli na vel utipes . J . Formos. Med. Assoc, 1997, 96: 517-524.
    249.KO Jiunn-Liang, HSU Chyong-Ing, L IN Rong-Hwa et al. Anew fungal immunomodulatory protein, FlP-fve isolated from the edible mushroom, Flammuli na vel utipes and its complete amino acid sequence. Eur. J . Biochem, 1995, 228: 244-249.
    250.Konieczny, P., & Uchman, W. Comparative characterization of surface hydrophobicity and other physico-chemical properties of selected protein preparations. EJPAU Series Food Science and Technology, 2002, 5(2)
    251.Konstantin K. Turoverov and Irina M. Kuznetsova. Intrinsic Fluorescence of Actin. Journal of Fluorescence, 2003,13(1): 41-57
    252.Konstantin K. Turoverov, Vladislav V. Verkhusha, et al. Kinetics of Actin Unfolding Induced by Guanidine Hydrochloride. Biochemistry, 2002, 41: 1014-1019
    253.KREIMER D.I., SHNYROV V.L., et al. Irreversible thermal denaturation of Torpedo californica acetylcholinesterase Protein Sci, 1995, 4: 2349-2357
    254.Krell T, Horsburgh M.J., Cooper A., Kelly S.M., Coggins J.R., Localization of the active site of type II dehydroquinases. Identification of a common arginine-containing motif in the two classes of dehydroquinases, J. Biol. Chem. 1996, 271: 24492-24497.
    255.Krittanai C, Johnson Jr. W.C., Correcting the circular dichroism spectra of peptides for contributions of absorbing side chains. Anal. Biochem. 1997, 253: 57-64.
    256.Kuwajima K, Sakuraoka A, Fueki S, et al. Folding of carp parvalbumin studied by equilibrium and kinetic circular dichroism spectra. Biochemistry, 1988, 27(19): 7419-7428
    257.Kuwajima K. Structure of influenza haemagglutinin at the pH of membrane fusion. J.Mol.Biol, 1977,114(2): 241-258
    258.Kuznetsova M., Turoverov K.K., Uversky V.N. Use of the phase diagram method to analyze the protein unfolding-refolding reactions: fishing out the "invisible" intermediates. J. Proteome Res. 2004,3: 485-494.
    259.Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982,157:105-132.
    
    260.Lakowicz, J. R. Principles of Fluorescence Spectroscopy, Plenum, New York. 1983
    261.Landry S J and Gierasch L M. Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu.Rev.Biophys.Biomol.Struct, 1994, 23: 645-669
    262.Laursen R. A. Solid-phase Edman degaradation. An automatic peptide sequencer. Eur. J. Biochem., 1971, 20(1): 89-102
    263.Lavine T.F. The formation, resolution, and optical properties of the diasteriomeric sulfoxides derived from L-methionine. J Biol Chem, 1947,169: 477-491
    264.Lawrence M. Tong, Shigefumi Sasaki, D. Julian McClements, and Eric A. Decker. Mechanisms of the Antioxidant Activity of a High Molecular Weight Fraction of Whey. J. Agric. Food Chem., 2000, 48 (5): 1473-1478
    265.Leanderson, P., Faresjo, A. O., & Tagesson, C. Green tea polyphenols inhibits oxidant-induced DNA strand breakage in cultured lung cells. Free Radical Biology and Medicine, 1997, 23: 235-242.
    266.Levine R. L., Berlett B. S., Moskovitz J., Mosoni L., & Stadtman E. R. Methionine residues may protect proteins from critical oxidative damage. Mechanisms of Ageing and Development, 1999,107(3): 323-332.
    267.Levine R. L., Moskovitz J., & Stadtman E. R. Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. International Union of Biochemistry and Molecular Biology Life, 2000, 50(4-5): 301-307.
    268.Levine R. L., Mosoni L., Berlett B. S., & Stadtman E. R. Methionine residues as endogenous antioxidants in proteins. Proceedings of the National Academy of Science US, 1996, 93(26), 15036-15040.
    269.Li Zhu, Ying-Xin Fan, Jun.Mei Zhou. Identification of equilibrium and kinetic intermediates involved in folding of urea.denatured creatine kinase. Biochimica et Biophysica Acta, 2001,1544: 320-332
    270.Liang Y, Du F., Sanglier S., Zhou B.R., et al. Unfoldingofrabbitmusclecreatine kinase induced by acid. A study using electrospray ionization mass spectrometry, isothermal titration calorimetry, and fluorescence spectro-scopy. J. Biol. Chem. 2003, 278: 30098-30105.
    271.Liang Y, Huang G.C., Chen J., Zhou J.M. Microcalorimetric studies on the unfolding of creatine kinase induced by guanidine hydrochloride. Thermochim Acta, 2001a, 376:123-131
    272.Litman, G.W., Fromimel, D., Rosenberg, A. and Good, R.A. Circular dichroic analysis of immunoglobulins in phylogenetic perspective. Biochim. Biophys. Acta, 1971, 236: 647-654
    273.Liu Wei-Qun, Rao Xue-Ming, Yu Zhen-Hang. Alkaline unfolding and salt-induced folding of arginine kinase from shrimp Feneropenaeus chinensis under high pH conditions. International Journal of Biological Macromolecules, 2006, 38; 211-215
    274.Lumry R, Eyring H. Conformational changes of protein. J Phys Chem, 1954, 58(1): 110-120
    275.M.R. Gunner, et al., Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect. Biophys. J, 2000, 78 (3): 1126-1144.
    276.Ma W.J., Cao E.H., Zhang J., Qin J.F. Phenanthroline-Cu complex-mediated chemiluminescence of DNA and its potential use in antioxidation evalution. Journal of Photochemistry and Photobiology B: Biology, 1998, 44: 63-68.
    277.Makhatadze G.I., Privalov P.L. Protein interactions with urea and guaninium chloride. Acalorimetric study. J. Mol. Biol., 1992, 226: 491-505
    278.Manavalan P., Johnson Jr. W.C., Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 1987, 167: 76-85.
    279.Mann C J and Matthews C R. Structure and stability of an early folding intermediate of Escherichia coli trp aporepressor measured by far-UV stopped-flow circular dichroism and 8-anilino-l-naphthalene sulfonate binding. Biochemistry, 1993, 32(20): 5282-5290
    280.Maria Ines Genovese & Franco M. Lajolo. Influence of naturally acid-soluble proteins from beans (Phaseolus vulgaris L.) on in vitro digestibility determination. Food Chemistry, 1998, 62: 315-323
    281.Mary-Jane GETHING and Rarrie E. DAVIDSON. Chorismate Mutase/Prephenate Dehydratase from Escherichia coli K12. Eur. J. Biochem. 1978, 86:159-164
    282.Masaomi Arahira and Chikafusa Fukazawa. Ginkgo US seed storage protein family mRNA: unusual Asn-Asn linkage as post-translational cleavage site. Plant Molecular Biology (Historical Archive), 1994, 25(4): 597-605
    283.Mateja Malavasic, Natasa Poklar, Peter Macek, Gorazd Vesnaver. Fluorescence studies of the effect of pH, guanidine hydrochloride and urea on equinatoxin II conformation. Biochimica et Biophysics Acta, 1996,1280: 65-72
    284.Mathews C. K. and Van Hold K. E. Biochemistry. Redwood City(CA): Benjiamin/Cummings Martin, 1991.
    285.Matouschek A, Kellis J T Jr, Serrano L, et al. Mapping the transition state and pathway of protein folding by protein engineering. Nature, 1989, 340(6229): 122-125
    286.Matouschek A, Kellis J T Jr, Serrano L, et al. Transient folding intermediates characterized by protein engineering. Nature, 1990,346(6283): 440-445
    287.Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membrane. J Biol Chem, 1987, 262:1003
    288.Maurer, K., Ihl, R., Dierks, T., & Frolich, L. (1997). Clinical efficacy of Ginkgo biloba special extract EGb761 in dementia of the Alzheimer type. J. Psychiat., 31(6): 645-655.
    289.Mazzini, A. et al., Dissociation and unfolding of bovine odorant ..., J. Struct. Biol. (2007),doi:10.1016/j.jsb.2007.02.007
    290. Mcbrien D. CH, et al. Free Radical Lipid. Peronidation and Cancer(London), 1982, 317
    291.Melissa B. Trindade, Jose L.S. Lopes et al, Structural characterization of novel chitin-binding lectins from the genus Artocarpus and their antifungal activity. Biochimica et Biophysica Acta, 2006,1764:146-152
    292.Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radicals scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem, 2005, 53: 581-587
    293.Meyer, B. Multicenter randomized double-blind drug vs. placebo study of the treatment of tinnitus with Ginkgo biloba extract. Presse Medicale, 1986, 15: 1562-1564.
    294.Miller. J.N. Recent Advances in Molecular Lumminescence Analysis. Anal. Proc, 1979,16: 203
    295.Moosavi-Movahedi A.A., Chamania J. Gharanfoli M. Hakimelahi GH. Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochimica Acta, 2004, 409:137-144
    296.Moosavi-Movahedi A.A., Chamania J. Gharanfoli M., Hakimelahi GH. Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochimica Acta, 2004, 409:137-144
    297.Murali J., Jayakumar R. Spectroscopic studies on native and protofibrillar insulin. Journal of Structural Biology, 2005,150:180-189
    298.Muramatsu, H., Kogawa, K., Tanaka, M., Okumura, K., Nishihori, Y, Koike, K., et al. Superoxide anion dismutase in SAS human tongue carcinoma cell line is a factor defining invasiveness and cell motility. Cancer Research, 1995, 55: 6210-6214.
    299.Nabil Ali Mohammed Sultan, Rameshwaram Nagender Rao, Siva Kumar Nadimpalli, Musti J. Swamy. Tryptophan environment, secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lablab: Fluorescence and circular dichroism spectroscopic studies. Biochimica et Biophysica Acta, 2006, 1760: 1001-1008
    300.Najera H, Costas M, Fernandez Velasco D.A. Thermodynamic characterization of yeast triosephosphate isomerase refolding: insights into the interplay between function and stability as reasons for the oligomeric nature of the enzyme. Biochem.J., 2003, 370(3): 785-92
    301.Nakamura S., Otani T, et al. IFN-γ -dependent and -independent mechanisms in adverse effects caused by concomitant administration of IL-18 and IL-12. J Immunol, 2000,164: 3330
    302.Narasimha Sreerama, Sergei Yu. Venyaminov, and Robert W. Woody. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Inclusion of Denatured Proteins with Native Proteins in the Analysis. Analytical Biochemistry, 2000, 287: 243-251
    303.Nardi M.C., Giacomelli E.,Dainese P et al,Ginkgo biloba expresses calreticulin, the major calcium-binding reticulopladmin in Eukryotic cell. Botanica Acta, 1997,111(1): 66-78.
    304.Narhi L.O., Philo J.S., Li T., Zhang M., Samal B., Arakawa T., Induction of alpha -helix in the beta-sheet protein tumor necrosis factor-alpha: acid-induced denaturation. Biochemistry, 1996, 35: 11454-11460.
    305.Ndou T. T., Warner I. M. Application of multidimensional absorption and luminescence spectroscopies in analytical chemistry. Chem Rev, 1991, 91: 493
    306.Nienhaus J et al. Viscum album of viscotoxin A. Experienlia, 1970, 26: 523.
    307.Norma J. Greenfield. Methods to Estimate the Conformation of Proteins and Polypeptides from Circular Dichroism Data. ANALYTICAL BIOCHEMISTRY, 1996, 235:1-10
    308.O'Carrol, P. A bio-active future. World of Ingredients, November/December, 1995, 28-30,1
    309.Ohgushi M & Wada A. Molten-globule state: a compact form of globular proteins with mobile side-chains. FEBS Lett,1983,164(1): 21-24
    310.Okamoto M., Ohe G. et al. Purification and characterization of cytokine-inducing protein of seed extract from Aeginetia indica L., a parasitic plant. Immunopharmacology, 2000, 49: 377-389
    311.Pace C N, Laurents D V, Erickson R E. Urea denaturation of barnase: pH dependence and characterization of the unfolded state. Biochemistry, 1992, 31: 2728-2734
    312.Pace C.N. The stability of globular Proteins. CRC Critical Reviews in Biochemistry, 1975, (3): 1-43
    313.Pastore, A., and Saudek, V. The relationship between chemical shift and secondary structure in proteins. J. Magn. Reson. 1990, 90: 165-176.
    314.Peng Z Y and Kim P S. A protein dissection study of a molten globule. Biochemistry, 1994, 33(8): 2136-2141
    
    315.Perutz,M.F.Electrostatic effects in proteins. Science, 1978, 201:1187-1189.
    316.Pfei W., Bychkova V.E., Ptitsyn V.E. Physical nature of the phase transition in globular proteins: calorimetric study of human -lactalbumin. FEBS Lett, 1986, 198: 287-291.
    317.Ponnuswamy P K. Hydrophobic characteristics of folded proteins. Prog. Biophys.Mol. Biol. 1993, 59(1): 57-103
    318.Porsolt, R.D., Roux, S., Drieu, K. Evaluation of a Ginkgo biloba extract (EGb 761) in functional tests for monoamine oxidase inhibition. Arzneimittelforschung, 2000, 50: 232-235.
    319.Pratt, D. E. Water soluble antioxidant activity in soybeans. Journal of Food Science, 1972, 37: 322-323.
    320.Price N.E., Price N.C., Kelly S.M., McDonnell J.M., The key role of protein flexibility in modulating IgE interactions. J. Biol. Chem. 2005, 280: 2324-2330.
    321.Privalov P I. Two state model of protein folding. Adv. Protein. Chem,1979, 33: 167-180 second-derivative spectroscopy, Biochemistry, 1984, 23:1871-1875
    339.Ray S.S., Singh S.K., Balaram P. An electrospray ionisation mass spectrometry investigation of 1-anilino-8-naphthalene-sulfonate (ANS) binding to proteins. J. Am. Soc. Mass Spectrom. 2001,12(4): 428-438
    340.Renard D., Lefebvre J., Griffin M.C.A., Griffin W.G. Effects of pH and salt enviroment on the association of β-lactoglobulin revealed by intrinsic fluorescence studies. International Journal of Biological Macromolucules, 1998, 22: 41-49
    341.Reshma Bhowmick, Medicherla V. Jagannadham. SDS-induced conformational transitions of ervatamin B: evidence of greater stability of a-rich domain compared to brich domain of the SDS derived state. Colloids and Surfaces B: Biointerfaces, 2003, 32: 223-234
    342.Reyes A. M, Ludwig H. C, Yanez A J, et al, Nativelike intermediate on the unfolding pathway of pig kidney fructose-l,6-bisphosphatase., Biochemistry. 2003, 42(23): 6956-64
    343.Rhee, K. S., Ziprin, Y. A., & Rhee, K. C. K. Water-soluble antioxidant activity of oilseed protein derivatives in model lipid peroxidation systems of meat. Journal of Food Science, 1979, 44:1132-1135.
    344.Richard F M. Measurement of the refolding combination reaction between S-peptide and S-protein. J. Mol. Biol., 1974, 82:1-14
    345.Richard M. France & Steven H. Grossman. Denaturation and Urea Gradient Gel Electrophoresis of Arginine Kinase: Evidence for a Collapsed-State Conformation. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 326(1): 93-99,
    346.Rincon M., Ensien H., Raingeaud J., et al. Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J, 1998, 17: 2817-2829.
    347.Ritsuko Wada, Yuki Fujita, Naofumi Kitabatake. Effects of heating at neutral and acid pH on the structure of 6-lactoglobulin A revealed by differential scanning calorimetry and circular dichroism spectroscopy. Biochimica et Biophysica Acta, 2006, 1760: 841-847
    348.Robin Roychaudhuri, Gautam Sarath, Michael Zeece, and John Markwell. Reversible denaturation of the soybean Kunitz trypsin inhibitor. Archives of Biochemistry and Biophysics, 2003, 412: 20-26
    349.Robin Roychaudhuri, Gautam Sarath, Michael Zeece, John Markwell. Stability of the allergenic soybean Kunitz trypsin inhibitor. Biochimica et Biophysica Acta, 2004, 1699:207-212
    350.Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectroni,1984,11(11): 601
    351.Rouilly A., Orliac O., Silvestre E, Rigal L. Thermal denaturation of sunflower globulins in low moisture conditions. Thermochimica Acta, 2003, 398:195-201
    352.Salvador R. Tello-Solis, Bernardo Romero-Garcia. Thermal denaturation of porcine pepsin: a study by circular dichroism. International Journal of Biological Macromolecules, 2001, 28:129-133
    353.Sanger F. Determination of nucleotide sequences in DNA. Biosci Rep, 1981, 1(1): 3-18
    
    354.Scott G. Antioxidants in vitro and in vivo. Chem. Britain. 1985, 21: 648-653
    355.Semisotnov G V, Rodionova N A, Razgulyaev O I, et al. Study of the "molten globule intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers, 1991, 31(1): 119-128
    356.Semisotnov GV., Kihara H., et al. Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J. Mol. Biol., 1996, 262: 559-574
    357.Semisotnov GV., Roddionov N.A., et al. Sequential mechanism of refolding of carbonic anhydrase. FEBS Lett, 1987, 244: 9-13
    358.Shakhnovich E I and Finkelstein A V. Theory of cooperative transitions in protein molecules. I. Why denaturation of globular protein is a first-order phase transition. Biopolymers, 1989, 28(10): 1667-1680
    359.Sharon M. Kelly, Thomas J. Jess, Nicholas C. Price. How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 2005,1751:119-139
    360.Shewry, P.R., Popineau, Y, Lafiandra, D., Halford, N.G., Tatham, A.S., Belton, P.S. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Advances in Food Nutr. Sci. 2003, 45: 219-302.
    361.Shigeyoshi Nakamura, Shun-ichi Kidokoro. Isothermal acid-titration calorimetry for evaluating the pH dependence of protein stability. Biophysical Chemistry, 2004, 109: 229-249
    362.Shoemaker K R, Kim P S, York E Y, et al. Tests of the helix dipole model for stabilization of alpha -helices. Nature, 1987, 326(6113): 563-566
    363.Shrivastava R., Das A.K., Int. J. Biol. Macromol. Temperature and urea induced conformational changes of the histidine kinases from Mycobacterium tuberculosis, (2007),doi:10.1016/j.ijbiomac.2007.01.010
    364.Shultz G E and Schirmer R H. In Principlex of Protein Structure. New York: Springer-Verlag. 1979, 166-205
    365.Shutova T., Deikus G., Irrgang K.D., et al. Origin and properties of fluorescence emission from the extrinsic 33 kDa manganese stabilizing protein of higher plant water oxidizing complex. Biochim Biophys Acta, 2001,1504: 371-378
    366.Simpson RJ. Proteins and Proteomics: a Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2003
    367.Siu-Mei Choi, Ching-Yung Ma. Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy. Food Chemistry, 2007,102:150-160
    368.Slobodanka D. Manceva, Marianne Pusztai-Carey, Peter Butko. Effect of pH and ionic strength on the cytolytic toxin Cyt1A: a fluorescence spectroscopy study. Biochimica et Biophysica Acta, 2004,1699:123-130
    369.Slobodanka D. Manceva, Marianne Pusztai-Carey, Peter Butko. Effect of pH and ionic strength on the cytolytic toxin Cyt1A: a fluorescence spectroscopy study. Biochimica et Biophysica Acta, 2004,1699:123-130
    370.Smirnoff N, Cumbes Q J. Hydroxyl rasical scavenging activity of compatible solutes. Phytochemstry, 1998, 28(4): 1057-1060.
    371.Sosnick T.R. and Trewhella J. Denatured states of ribonuclease A have compact dimensions and residual secondary structure. Biochemistry, 1992, 31: 8329-8335
    372.Soumen Ghosh. Conformationalstudy of papain in the presence of sodium dodecyl sulfate inaqueousmedium. Colloids and Surfaces B: Biointerfaces, 2005, 41: 209-216
    373.Sreerama N., Woody R.W., A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem, 1993, 209: 32-44.
    374.Sreerama, N., Woody, R.W. Computation and analysis of protein circular dichroism spectra. Methods Enzymol., 2004, 383: 318-351.
    375.Sreerama, N., Woody, R.W. Structural composition of betaI- and betaII-proteins. Protein Sci., 2003,12: 384-388.
    376.Stadtman E. R. and Levine R. L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 2003, 25: 207-218
    377.Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. J. Mol. Biol., 1965,13: 482-495.
    378.SUDHIR K. AGARWAL and A. SALAHUDDIN. Domain II + III of bovine serum albumin: Isolation and its characterization. J. Biosci., 1987,12(3): 191-202.
    379.Sugano, M., Beynen, A. C. (Eds.). Dietary proteins, cholesterol metabolism and atherolsclerosis. New York: Basel. 1990
    380.Suzuki, H., & Kanazawa, T. The tryptophan fluorescence change upon conformational transition of the phosphoenzyme intermediate in sarcoplasmic-reticulum Ca~(2+)-atpase is revealed in the absence of K~+ and the presence of lasalocid. Journal of Biological Chemistry, 1995, 270(7): 3089-3093
    381.Syrijala H, Surcel HM.Low CD_4/CD_8 lymphocyte ratio in acute myocardial infarct .Clin Exp Immunol, 1991, 83: 326-328
    382.Szilagyi, L., and Jardetzky, O. Alpha-proton chemical shifts and secondary structure in proteins. J. Magn. Reson, 1989, 83: 441
    383.Takahashi M, Moriguchi S, Yoshikawa M, Sasaki R: Isolation and characterization of oryzatensin - a novel bioactive peptide with ileum-contracting and immunomodulating activities derived from rice albumin. Biochem Mol Biol Int 1994, 33:1151-1158
    
    384.Tanford C. Protein denaturation. Adv. Protein Chem,1968, 23:121-282
    385.Tanford C. Protein denaturation: Theoretical models for the mechanism of denaturation, Adv. Protein Chem, 1970, 24:1-95
    386.Tang Hong-min, Yang Yin-ye, Zhang Song-fu. Effects of aspartic acid and potassium chloride on arginine kinase from shrimp. International Journal of Biological Macromolecules, 2006,40:15-21
    387.Thannhauser, T. W., Konishi, Y., & Scheraga, H. A. Analysis for disulfide bonds in peptides and proteins. Methods in Enzymology, 1987,143:115-119.
    388.Tigran V. Chalikian, Jens VoE lker, Dan Anafi and Kenneth J. Breslauer. The Native and the Heat-induced Denatured States of a-Chymotrypsinogen A: Thermodynamic and Spectroscopic Studies. J. Mol. Biol, 1997, 274: 237-252
    389.Tsetlin, V.I., Arseniev, A.S., et al. Conformational studies of neurotoxinII from Naja naja oxianam selective N-acylation, circular dichroism and nuclear-magnetic-resonnance study of acylation products. Eur. J. Biochem., 1979, 94: 340-346
    390.Tuhina Banerjee, Nand Kishore. A differential scanning calorimetric study on the irreversible thermal unfolding of concanavalin A. Thermochimica Acta, 2004, 411: 195-201
    391.Ulbrandt N.D., London E. and Oliver. D.B. Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem., 1992, 267: 15184-15192.
    392.Ulubelen,A.et al.Caeealpinia giltieeis of Phycohemog glutinin. J. Pharmac. sci, 1967, 56(7): 914
    393.Uversky U V and Ptitsyn O B. Overexpression and purification of full-length acidic fibroblast growth factor in E. coli. Biochemistry, 1994, 33(10): 2782-2791
    394.Uversky V.N. and Ptitsyn O.B. "Partly folded" state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry, 1994, 33: 2782-2791
    395.Uversky V.N. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry, 1993, 32: 13288-13298
    396.Van Dael H., Chedad A., Vanhooren A., Hanssens I. Influence of experimental conditions and Trp mutations on the stability and the folding characteristics of goat a-lactalbumin. Journal of Molecular Structure, 2005, 744-747:155-160
    397.Vanessa Cabra, Roberto Arreguin, Rafael Vazquez-Duhalt, Amelia Farres. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. Biochimica et Biophysica Acta, 2006,1764:1110-1118
    398.Vistica DT, Skehan P, Scudiero D, et al. Tetrazolium-based assays for cellular viability: a critical examization of selected parameters affecting formazan production. Cancer Res, 1991,51: 4501
    399.Vogt W. Oxidation of methionine residues in proteins: tools, targets, and reversal. Free Rad Biol Med, 1995,18: 93-105
    400.Wallace B.A., Janes R.W., Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr. Opin. Chem. Biol, 2001, 5: 567-571.
    401.Wallace B.A., Synchrotron radiation circular dichroism spectroscopy as a tool for investigating protein structures. J. Synchrotron. Radiat, 2000, 7: 289-295.
    402.Wang H, Ng TB. Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein. Biochem Biophys Res Commun, 2000, 279(2): 407-411
    403.Wang P. H., Hsu C.I., Tang S.C., et al. Fungal Immunomodula tory protein from Flammulina nelutipes induces interferon-y production through p38 Mitogen2Activated protein kinase signaling pathway. J. Agric. Food chem, 2004, 52: 2721-2725.
    404.Wang, H. X., Liu, W. K., Ng, T. B, Ooi, V. E., & Chang, S. T. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology, 1996, 31: 205-211.
    405.Wang, H. X., Ng, T. B., & Ooi, V. E. Lectins from mushrooms. Mycological Research, 1998,102: 897-906.
    406.Wei-Qun Liu, Xue-Ming Rao, Zhen-Hang Yu. Alkaline unfolding and salt-induced folding of arginine kinase from shrimp Feneropenaeus chinensis under high pH conditions. International Journal of Biological Macromolecules, 2006, 38: 211-215
    407.Wishart, D. S., and Sykes, B. D. The 13C chemical-shift index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 1994, 4:171-180.
    408.Wong K-P, Hamlin LM Acid denaturation of bovine, carbonic anhydrase B. Biochemistry, 1974,13: 2678-2683.
    409.Woody A.Y., Woody R.W., Individual tyrosine side-chain contributions to circular dichroism of ribonuclease, Biopolymers, 2003, 72: 500-513.
    410.Woody R.W. Aromatic side-chain contributions to the far ultraviolet circular dichroism of peptides and proteins. Biopolymers, 1978,17:1451-467.
    411.Woody, R.W. Circular dichroism. Methods Enzymol. 1995, 246: 34-71
    412.Xie Q., Guot Lu. J., Zhou H.M. The guanidine like effects of arginine on aminoacylase and salt-induced molten globule state. Int. J. Biochem Cell Biol, 2004, 36(2): 296-306
    413.Xuecheng Zhang, Jiahai Zhang, et al. Compact molten globule-like state of hUBF HMG Boxl at extremely low pH. Biochimica et Biophysica Acta, 2005,1748: 66-73
    414.Yamaguchi, N., Naito, S., Yokoo, Y, & Fujimaki, M. Application of protein hydrolyzate to biscuit as antioxidant. Journal of the Japanese Society for Food Science and Technology, 1980, 27: 56-59.
    415.Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B. On the calculation of pKas in proteins. Proteins. 1993,15(3): 252-265.
    416.Yang AS, Honig B. On the pH dependence of protein stability. J Mol Biol. 1993, 231(2): 459-474.
    417.Yang J T, Wu C S, Martinez H M. Calculation of protein conformation from circulation dichroism. Methods Enzymol, 1986,130: 208-269
    418.Yang Yan, Liu Wanshun, Han Baoqin, Wang Changhong, Fu Chenwei, Liu Bing, Chen Liehuan. The antioxidative and immunostimulating properties of D-glucosamine. International Immunopharmacology, 2007, 7: 29-35
    419.Yang, A.S. & Honig, B. Electrostatic effects on protein stability. Curr. Opin. Struct. Biol. 1992, 2: 40-45.
    420.Yang, J.C., Chang, C.C., Hayashi, K. and Suzuki, T. Optical rotatory dispersion and circular dichroism of cobrotoxin. Biochim. Biophys. Acta, 1968,168: 373-375
    421.Yates, J.R. Mass spectrometry and the age of the proteome. J. Mass Spectrom. 1998, 33(1): 1-19
    422.Yildiz G and Demiryurek AT. Ferrous Iron-induced Luminol Chemiluminescence: A Method for Hydroxyl Radical Study. Journal of Pharmacological and Toxicological Methods, 1998, 39(3): 179-184
    423.Yoshie-Stark,-Y; Wada,-Y; Schott,-M.; Wasche,-A. Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. Lebensmittel-Wissenschaft und - Technologie Food science and technology, 2006, 39(5): 503-512.
    424.Yoshikawa, M., Takagi, T. and Yoshida, C. Near UV circular dichroism of trypsin inhibitor of adzuki beans attributable to disulfide groups. J. Biochem., 1976, 80: 449-454
    425. Young L, Jernigan R L and Co veil D G. A role for surface hydrophobicity in protein-protein recognition. Protein Science, 1994, 3(5): 717-729
    426.Yuen S.W., Chui A.H., Wilson K.J. et al. Microanalysis of SDS-PAGE electroblotted proteins. Biotechniques. 1989, 7(1): 74-83
    427.Yukami, S. Autoxidation of sodium linoleate in a protein solution. Agricultural and Biological Chemistry, 1972,36: 871-874.
    428.Zhi-Qun Ling, Bi-Jun Xie, Er-Ling Yang. Isolation, Characterization, and Determination of Antioxidative Activity of Oligomeric Procyanidins from the Seedpod of Nelumbo nucifera Gaertn. J. Agric. Food Chem. 2005, 53(7): 2441 -2445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700