思茅松中幼龄人工林生物量和碳储量动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变化的背景下,森林的碳汇功能越来越受到重视,“造林和再造林”(afforestation and reforestation)已成为目前开展的最重要的林业清洁发展机制项目。生物量和碳储量的分配及变化规律对于人工林碳汇功能的监测评估和碳汇造林技术的开发具有重要的科学和技术意义。思茅松是云南重要的造林树种,思茅松林是云南南亚热带重要的植被类型,但目前思茅松人工林碳储量估算的不确定性较高,也缺乏思茅松碳汇造林的相关技术。本研究在思茅松集中分布区内的云南4个县市开展了系统的思茅松人工林样地调查,采用生物量收获法测定了标准株生物量,实测了林木的含碳率,建立了单株生物量模型,基于实测数据计算了思茅松人工林的生物量、碳储量和相关的碳计量参数,并分析了它们的空间分配格局和变化动态,最后,基于研究结果对思茅松人工林的碳储量计量与监测技术进行了探索。研究结果表明:
     (1)思茅松中幼龄人工林的生物量在中幼龄期积累迅速,林分各层的生物量比例和各层生产力随林龄变化明显。林龄3~26a生林分生物量为22.39~308.96t·hm-2。其中:乔木层、灌木层和草本层生物量分别为7.07~295.74 t·hm-2、1.73~52.46t·hm-2、和0.78~16.40 t·hm-2,枯落物层现存量为0.90~11.00 t·hm-2。乔木层、枯落物层和林分生物量与林龄存在显著的线性正相关,灌木层和草本层生物量与林龄呈负相关但不显著。林分生物量、乔木层生物量和枯落物层现存量随林龄增加呈逻辑斯蒂增长。3~26a生思茅松人工林林分生产力为9.52±1.31 t-hm-2·a-1,乔木层、灌木层和草本层的生产力分别为6.29±1.19t·hm-2·a-1、2.52±0.83t·hm-2·a-1和0.71±0.31t·hm-2·a-1。随林龄增长,乔木层生产力呈逻辑斯蒂增长,灌木层和草本层生产力呈指数函数减少。
     (2)思茅松中幼龄人工林的生物量转化与扩展因子(BCEF)和生物量扩展因子(BEF)与IPCC缺省值存在较大差异,根茎比(R)与缺省值基本一致。思茅松中幼龄人工林生物量转化与扩展因子(BCEF)的平均值为0.5483 Mg·m-3(n=30,95%置信区间:0.5357~0.5609),低于IPCC缺省值。BCEF和平均树高(H)、林分形高(FH)、蓄积量(V)和林龄(A)存在显著负相关(P<0.05),与林分因子的关系函数拟合效果不佳。思茅松中幼人工林生物量扩展因子(BEF)的均值为1.78378(n=30,95%置信区间:1.71714~1.85043),高于IPCC缺省值。BEF和D、H、FH、V和A存在极显著的负相关(P<0.01),可实现良好的函数拟合。思茅松中幼龄人工林的根茎比(R)均值为0.2400(n=30,95%置信区间:0.2194-0.2606),与IPCC缺省值基本一致。R与D、H、FH、V和A有极显著的负相关关系(P<0.01),可用函数拟合。
     (3)思茅松中幼龄人工林林木的含碳率低于通用缺省值(50%),随林龄增长呈增加的趋势,林木不同构件间的含碳率存在显著差异。根据生物量权重值计算得到思茅松中幼龄人工林单株的全株含碳率为47.91%。主干的平均含碳率最高(48.48%),由基部向梢头含碳率呈下降的趋势。其它构件的含碳率依次为树枝(48.13%)、主干皮(47.49%)、松针(47.27%)、球果(47.02%)和树根(46.80%)。
     (4)思茅松中幼龄人工林具有较高的生物量碳密度,显示了较强的碳汇能力。林龄为3-5a、6-10a、11-20a和21-30a思茅松人工林的生物量碳密度分别为(20.15±3.09)、(27.24±2.25)、(94.89±9.90)和147.58 t-hm-2。随林龄增长,乔木层、枯落物层和林分的碳密度显著增加,灌木层和草本层的碳密度有所减少。林分、乔木层和枯落物层的生物量碳密度随林龄的变化用逻辑斯蒂模型可实现良好拟合。林龄为3-5a、6-10a、11-20a和21-30a的思茅松人工林的年均固碳量分别为(4.92±0.63)、(3.52±0.25)、(6.44±0.30)和5.68 t·hm-2·a-1。乔木层的年均固碳量与林龄存在显著正相关,灌木层和草本层的年均固碳量与林龄存在显著负相关,林分年均固碳量与林龄呈较弱的正相关。乔木层和草本层的年均固碳量与林龄的关系以逻辑斯蒂模型拟合效果较好,灌木层年均固碳量和林龄关系以Gauss模型拟合效果较好。
     (5)研究结果可为较好的应用于思茅松固碳造林项目的碳汇计量和监测。本研究采用的相关参数与模型的定义及研究方法与IPCC及国家林业局的相关技术指南一致,在其适用范围内(立地、林龄和经营水平),这些碳汇计量参数和模型可以直接应用于思茅松人工林的碳汇计量与监测。
     该研究获得了思茅松人工林的生物量碳计量参数及其动态,有助于降低思茅松人工林生物量和碳储量估算的不确定性。基于研究成果初步提出了思茅松人工林碳汇计量和监测的配套技术,可以用应于林分层次的思茅松人工林碳汇计量与监测。本研究还分析了思茅松人工林生物质生产、分配和积累过程,对掌握思茅松人工林生物量和碳储量的分配与变化规律,了解碳储量积累与环境因子和培育措施的关系有一定的帮助,也可以为开发固碳增汇的人工林培育技术提供理论参考。
Under the background of global change, forest's function as a carbon sink is increasingly recognized. So far, "afforestation and reforestation" is the most important CDM project of forestry sector. Studies on the dynamics of biomass and carbon stock of a plantation will be useful both for carbon sequestration potential assessment of the plantation and for carbon offsetting oriented silviculture technology development. Simao pine(Pinus kesiya var. langbianensis) is one of the most important species widely used for afforestation in Yunnan. To reduce uncertainty on biomass carbon estimation and generate technical tools for carbon accounting and monitoring, a biomass survey for the plantation was conducted in its central distribution areas in southern Yunnan using harvesting method. Based on data gathered from the survey, allometric equations for Simao pine were developed, biomass density, carbon density and carbon accounting parameters for the plantation were calculated, and their spatial distribution patterns and dynamics were analyzed respectively. At last, technical issues regarding carbon accounting and monitoring for Simao pine plantation were discussed with reference to the results from this study. The results of the study showed that:
     (1) With the increase on stand age, biomass of the plantation accumulated rapidly, ratios of different layers over the whole stand both for biomass and productivity varied significantly. Biomass density for Simao pine plantation with ages of 3-26 was in a range of 22.39-308.96 t·hm-2. Of which, arbor layer was determined as 7.07-295.74 t·hm-2, shrub layer determined as 1.73-52.46 t·hm-2.grass layer determined as 0.78-16.40 t·hm-2, and liter-fall determined as 0.90-11.00 t·hm-2. Significant linear correlations were found between the biomass density and the stand age for the arbor layer, the stand and the litter-fall layer. Biomass density of the shrub layer and grass layer were negatively related to their ages but not statistically significant. Logistic models developed by this study to relate biomass density with age (variable)gave satisfied estimates for the stand, arbor layer and litter-fall. Productivities of the plantations aged 3-26 for the stand, arbor layer, shrub layer and grass layer were 9.52±1.31 t·hm-2·a-1, 6.29±1.19t·hm-2·a-1、2.52±0.83 t·hm-2·a-1 and 0.71±0.31 t·hm-2·a-1 respectively. With the increase on age, productivity for the arbor layer increased remarkably following a logistic model while the productivity for shrub layer and grass layer declined exponentially.
     (2) Remarkable differences were found among biomass conversion and expansion factor(BCEF) and biomass expansion factor (BEF) compaired with the IPCC defaut values while root-shoot ratio (R) was in line with the IPCC defaut value. All three parameters varied with stand age. Mean BCEE for Pinus kesiya var. langbianensis plantation was 0.5483 Mg·m-3 (n=30,95% confidence interval= 0.5357~0.5609), lower than the IPCC default value. BCEF for Pinus kesiya var. langbianensis plantation was negatively related to stand form height (FH), mean stand height (H), stand growing stock (V) and stand age(A) (P< 0.05). Regression equations developed for relating BCEF with stand factors did not give satisfied estimates. Mean BEF for Pinus kesiya var. langbianensis plantation was 1.78378 (n=30,95% confidence interval=1.71714~1.85043), higher than the IPCC default value. BEF was negatively related to D、H、FH、V and A (P<0.01). Mean R for Pinus kesiya var. langbianensis plantation was 0.2400 (n=30,95% confidence interval=0.2194~0.2606), very close to the IPCC default value.R was negatively related to D、H、FH、V and A (P< 0.01).
     (3) Carbon content for the whole tree from simao pine plantation was lower than the commonly used default value (50%).Carbon content increased with the increase on stand age. Significent differences were found among different organs of the plant. The mean whole tree carbon content of Pinus Kesiya Var. langbianensis was calculated as 47.91% based on the dry biomass percentages of different organs and their respective carbon contents. The carbon content of main stem was the highest as 48.48% and tended to decrease from the base to the shoot upward. Carbon contents followed were 48.13%,47.49%,47.27%,47.02%46.80% in branch, bark from main stem,needle leaf,cone and root respectively.
     (4) Young and middle aged plantation of simao pine had relatively high carbon density, showing very strong carbon sequestration capacity. Biomass carbon density for the plantations of age 3-5,6-10,11-20 and 26 years were (20.15±3.09)、(27.24±2.25)、(94.89±9.90) and 147.58 t·hm-2 respectively. With the increase on stand age, carbon densities for stand, arbor and litter layer were increased significantly, while that for shrub and grass layers decreased slightly. Relations between carbon density and stand age for stand, arbor and litter layer could be performed well by a logistic model. Mean annual rate of carbon sequestration for the plantations of age 3-5,6-10,11-20 and 26 a were (4.92±0.63)、(3.52±0.25)、(6.44±0.30) and 5.68 t·hm-2·a-1 respectively. The rates for arbor layer and the whole stand were positively related to stand age and the rates for shrub and grass layers were negatively related to stand age. The relations between the rates and the stand age could be performed well by a logistic model for the arbor and grass layer, and by a Gauss model for the shrub layer.
     (5) Results from this study could be used for carbon accounting and monitoring for Simao Pine carbon offsetting projects. Since the definitions and research procedures of this study were in line with relevant guidelines by IPCC and the State Forestry Administration, results gained could be used directly for carbon accounting and monitoring for local carbon mitigating projects. However, site condition, stand age and management practice need to be fully taken into consideration when the results applied.
     To sum up, carbon accounting parameters gained from the study were species, forest type and site specific, thus the use of these parameters would be helpful in reducing the uncertainty of carbon stock estimation. Secondly, methodologies for carbon stock accounting and monitoring for the plantation of simao pine was proposed based on the results from the study. At last, the production, accumulation and allocation of biomass and carbon stock were studied, the results would be helpful for gaining a deep understanding on the dynamics of biomass and carbon stock accumulation of the Simao pine plantaion.The study could also provide valuable reference for carbon oriented silviculture technology development.
引文
[1]鲍春生,白艳,青梅,等.兴安落叶松天然林生物生产力及碳储量研究[J].内蒙古农业大学学报,2010,31(2):77-82.
    [2]党承林.云南松林的生物量研究[J].云南植物研究,1991,13(1):59-64.
    [3]党承林,吴兆录.季风常绿阔叶林短刺栲群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2):95-107.
    [4]党承林,吴兆录.元江栲群落的生物量研究[J].云南大学学报(自然科学版),1994,16(3):195-199.
    [5]陈根长.也论林业的历史性转变[J].绿色中国,2004,(3):64-66.
    [6]陈洪滨,范学花.2007年极端天气和气候事件及其它相关事件的概要回顾[J].气候与环境研究,2008,13(1):102-112.
    [7]陈洪滨,范学花.2008年极端天气和气候事件及其它相关事件的概要回顾[J].气候与环境研究,2009,14(3):329-340.
    [8]陈洪滨,范学花.2009年极端天气和气候事件及其它相关事件的概要回顾[J].气候与环境研究,2010,15(3):322-336.
    [9]陈宏伟,冯弦,刘永刚,等.西双版纳几种人工幼林的生物量研究[J].云南林业科技,2002,(3):19-22.
    [10]陈宏伟,冯弦,刘永刚,等.5种思茅松人工幼林生长及林下植物动态的研究[J].西部林业科学,2009,38(2):24-27.
    [11]陈宜瑜,丁永建,余之祥,等.中国气候与环境演变评估(Ⅱ):气候与环境变化的影响与适应、减缓对策[J].气候变化研究进展,2005,1(2):51-57.
    [12]程堂仁,冯菁,马钦彦,等.甘肃小陇山森林植被碳库及其分配特征[J].生态学报,2008,28(1):33-44.
    [13]陈中义,李博,陈家宽.米草属植物入侵的生态后果及管理对策[J].生物多样性,2004,12(2):280-289.
    [14]杜红梅,王超,高红.华北落叶松人工林碳汇功能的研究[J].中国生态农业学报,2009,17(4):756-759.
    [15]樊后保,李燕燕,苏兵强,等.马尾松、阔叶树混交异龄林生物量与生产力分配格局[J].生态学报,2006,26(8):2463-2473.
    [16]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [17]方精云主编,全球生态学-气候变化与生态响应[M].北京:高等教育出版社,2000a,7-20.
    [18]方精云.北半球中高纬度的森林碳库可能远小于目前估算[J].植物生态学报,2000b,24(5):635-638.
    [19]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000c,24(5):513-517.
    [20]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [21]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对方等SCIENCE一文(SCIENCE,2001,291:2320-2322)的若干说明[J].植物物态学报,2002,26(2):243-249.
    [22]冯志立,唐建维,郑征,等.西双版纳热带森林次生演替初期山黄麻先锋群落生物量动态[J].生态学杂志,1999,18(5):1-6.
    [23]符淙斌.全球变化与季风亚洲[J].科技中国,2007,10:82.
    [24]符淙斌,马柱国.全球变化与区域干旱化[J].大气科学,2008,32(4):752-760.
    [25]高方,郭勤峰.国际全球变化的主要研究计划简介[A],方精云,全球生态学-气候变化与生态响应[M].北京:高等教育出版社,2000:258-264.
    [26]葛全胜,王芳,陈泮勤,等.全球变化研究进展和趋势[J].地球科学进展,2007,22(4):417-427.
    [27]郭华东.全球变化敏感因子的空问观测与认知[J].科学视点,2010,25(2):67-169.
    [28]国家林业局应对气候变化和节能减排工作领导小组办公室.中国绿色碳基金造林项目碳汇计量与监测指南[M].北京:中国林业出版社,2008:12.
    [29]韩文轩,方精云.幂指数异速生长机制模型综述[J].植物生态学,2008,32(4):951-960.
    [30]何斌,刁海林,黄恒川,等.秃杉人工林生物量和生产力的变化规律[J].东北林业大学学报,2008,36(9):17-27.
    [31]何斌,余春和,王安武,等.厚荚相思人工林碳素储量及其空间分布[J].南京林业大学学报(自然科学版)2009,33(3):46-49.
    [32]何一鸣,原萍.联合国气候谈判中的国家利益驱动[J].中国海洋大学学报(社会科学版),2010,4:70-75.
    [33]侯振宏,张小全,徐德应,等.杉木人工林生物量和生产力研究[J].中国农学通报,2009,25(5):97-103.
    [34]黄从德,张健一,杨万勤,等.四川人工林生态系统碳储量特征[J].应用生态学报,2008,19(8):1644-1650.
    [35]贾丙瑞,周广胜.北方针叶林对气候变化响应的研究进展[J].地球科学进展,2009,24(6):668-674.
    [36]贾治邦.发展林业是应对气候变化的根本措施[J].农村工作通讯,2010,14:6.
    [37]李剑泉,李智勇,易浩若.森林与全球气候变化的关系[J].西北林学院学报,2010,25(4):23-28.
    [38]李江,雷玮,陈宏伟,等.我国林业CDM固C项目的前景、影响及相关对策[J].热带林业,2005,33(1):10-13.
    [39]李江,陈宏伟,冯弦,等.云南热区几种阔叶人工林C储量的研究[J].广西植物,2003,23(4):294-298.
    [40]李江,Roberto,G Visco云南傣族庭园碳贮量的研究(英文)[J].云南林业科技,2003,32(3):86-90.
    [41]李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002:20.
    [42]李景文主编.森林生态学[M].北京:中国林业出版社,1992:153-178.
    [43]李怒云主编.中国林业碳汇[M].北京:中国林业出版社,2007:1-50.
    [44]李泰君,胥辉,丁永,等.思茅松树干生物量、树皮率与基本密度研究[J].林业科技,2008,33(4):20-23.
    [45]李文华,罗天祥.中国云杉林生物生产力格局及其数学模型[J].植物生态学报,1997,17(5):511-588.
    [46]林裕仁,刘夏霖,林俊成.台湾地区主要用材比重和碳含量测定[J].台湾林业科学,2002,17(3):291-299.
    [47]林清山,洪伟.中国森林碳储量研究综述[J].中国农学通报,2009,25(6):220-224.
    [48]刘国华,马克明,傅伯杰,等.岷江干旱河谷主要灌丛类型地上生物量研究[J].生态学报,2003,23(9):1757-1764.
    [49]刘华,雷瑞德.我国森林生态系统碳储量与碳平衡的研究方法及进展[J].西北植物学报,2005,25(4):835-843.
    [50]刘纪远,于贵瑞,王绍强.中国陆地生态系统碳循环研究[A].见:魏殿生.造林绿化与气候变化碳汇问题研究[M].北京:中国林业出版社,2003:82-98.
    [51]刘金婷.全球变化背景下的几个科技名词[J].中国科技术语,2008(6):46-48.
    [52]刘允芬,宋霞,孙晓敏,等.千烟洲人工针叶林C02通量季节变化及其环境因子的影响[J].中国科学D辑(地球科学),2004(34):109-117.
    [53]刘世荣.全球变化条件下的林业对策[A].见:方精云.全球生态学:气候变化与生态响应[M].北京:高等教育出版社,2002:222-225.
    [54]刘兴良,鄢武先,向成华,等.沱江流域亚热带次生植被生物量及其模型[J].植物生态学报,1997,21(5):441-454.
    [55]吕晓涛,唐建维,何有才,等.西双版纳热带季节雨淋的生物量及其分配特征[J].植物生态学报,2007,31(1):11-22.
    [56]罗云建,张小全,王效科,等.森林生物量的估算方法及其研究进展[J].林业科学,2009,45(8):129-133.
    [57]罗云建,王效科,张小全,等.华北落叶松人工林的生物量估算参数[J].林业科学,2010,46(2):6-11.
    [58]罗云建,张小全,侯振宏,等.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报,2007,31(6):111.
    [59]马明东,江洪,刘跃建.楠木人工林生态系统生物量含碳率碳贮量及其分布[J].林业科学,2008,44(3):35-39.
    [60]马钦彦,陈遐林,王娟蔺,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):96-100.
    [61]孟春,王立海,游祥飞.人工林樟子松与碳氢含量的关系分析[J].森林工程,2008,24(4):11-15.
    [62]欧晓昆,张云春.长穗高山栎萌生灌丛优势种群分布格局及群落生物量的初步研究[J].云南大学学报(自然科学版),1992,14(2):198-201.
    [63]彭长辉,潘愉德.陆地植被第一性生产力及其地理分布[A].见:方精云.全球生态学:气候变化与生态响应[M].北京:高等教育出版社,2002:222-225.
    [64]彭鉴,丁圣彦,王宝荣,等.昆明地区常绿栋类萌生灌丛群落特征与地上部分生物量的研究[J].云南大学学报(自然科学版),1992,14(2):167-177.
    [65]彭鉴,丁圣彦.滇中地区滇青冈萌生灌木群落地上部分生物量的研究[J].云南大学学报(自然科学版),1992,14(2):191-196.
    [66]彭鉴,苏文华,王宝荣,等.滇石栎萌生灌丛生物量与净初级生产量的研究[J].云南大学学报(自然科学版),1992,14(2):179-184.
    [67]彭少麟,张祝平.鼎湖山地带性植被生物量生产力和光能利用率[J].中国科学(B辑),1994,24(5):497-502.
    [68]彭少麟.热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003:64.
    [69]彭少麟,周婷.通过生态恢复改变全球变化[J].生态学报,2009,29(9):51-61.
    [70]朴世龙.方精云.1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2003,58(1):119-125.
    [71]平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].生态学报,2010,34(1):100-111.
    [72]曲建升,葛全胜,张雪芹.全球变化及其相关科学概念的发展与比较[J].地球科学进展,2008,23(12):1277-1284.
    [73]沈国舫主编.森林培育学[M].北京:中国林业出版社,2001:97-118.
    [74]沈艳,刘允芬,王堰.应用涡动相关法计算水热、CO2通量的国内外进展概况[J].南京气象学院学报,2005,28(4):560-565.
    [75]思茅市林业局.思茅市森林资源规划设计调查汇总报告[R].2006:33-34.
    [76]宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究[J].江西科学,2003,21(3):206-210.
    [77]苏文华,彭鉴,王宝荣,等.长穗高山栎萌生灌丛地上部分生物量及净初级生产量的研究[J].云南大 学学报(自然科学版),1992,14(2):185-90.
    [78]孙玉军,张俊,韩爱惠,等.兴安落叶松幼中龄林的生物量和碳汇功能[J].生态学报,2007,27(5):1756-1762.
    [79]唐建维,张建侯,宋启示,等.西双版纳热带次生林生物量的初步研究[J].植物生态学报,1998,22(6):489-498.
    [80]唐宵,黄从德,张健,等.四川主要针叶树种含碳率测定分析[J].四川林业科技,2007,28(2):20-23.
    [81]佟金权.不同地位指数不同密度杉木人工林生产力的比较[J].福建农林大学学报(自然科学版),2008,37(4):369-373.
    [82]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学报,1999,18(5):29-35.
    [83]王兵,魏文俊.江西省森林碳储量与碳密度研究[J].江西科学,2007,25(6):681-687.
    [84]王达明.思茅松工业人工林培育关键技术[J].云南林业科技,1999,(1):1-7.
    [85]王鹏程,邢乐杰,肖文发,等.三峡库区森林生态系统有机碳密度及碳储量[J].生态学报,2009,29(1):97-106.
    [86]王文杰,石福臣.陆地生态系统二氧化碳通量网的建设和发展[J].东北林业大学学报,2002,30(4):57-61.
    [87]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [88]王雪红.林业碳汇项目及其在中国的发展潜力浅析[J].世界林业研究,2003(8):7-12.
    [89]王雪军,黄国胜,孙玉军,等.近20年辽宁省森林碳储量及其动态变化[J].生态学报,2008,28(10):4747-4764.
    [90]王植,刘世荣.全球环境变化对植物物候的影响[J].沈阳农业大学学报(社会科学版),2007,9(3):350-353.
    [91]万方浩,郭建英,张峰.中国生物入侵研究[M].北京:科学出版社,2009:2-7.
    [92]尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究[J].西北农林科技大学学报(自然科学版),2007,35(1):171-174.
    [93]武吉华,张绅.植物地理学[M].北京:高等教育出版社,1995:29-30.
    [94]吴家兵,张玉书,关得新.森林生态系统C02通量研究方法与进展[J].东北林业大学学报,2003,31(6):49-51.
    [95]吴建国,张小全,徐德应,等.六盘山地区几种土地利用方式植被活体生物量C储量的研究[J].林业科学研究,2006,19(3):277-283.
    [96]吴庆标,王效科,段晓男,等.中国森林生态系统植被固碳现状和潜力[J].生态学报,2008,28(2):517-523.
    [97]吴兆录,党承林.云南昌宁县思茅松林的生物量和净第一性生产力[J].云南大学学报(自然科学版),1992a,14(2):137-145.
    [98]吴兆录,党承林.云南普洱地区思茅松林的生物量[J].云南大学学报(自然科学版),1992b,14(2):161-167.
    [99]吴兆录,党承林,王崇云,等.滇西北高山松林生物量的初步研究[J].云南大学学报(自然科学版),1994a,16(3):220-224.
    [100]吴兆录,党承林,和兆荣,等.滇西北油麦吊云杉林生物量的初步研究[J].云南大学学报(自然科学版),1994b,16(3):230-234.
    [101]吴兆录,党承林.昆明附近灰背栎林生物量和净第一性物产力的初步研究[J].云南大学学报(自然科学版),1994c,16(1):235-244.
    [102]吴兆录,党承林,和兆荣.等.滇西北黄背栎林生物量与净第一性物产力的初步研究[J].云南大学学报(自然科学版),1994d,16(3):245-249.
    [103]吴中伦.中国森林(第二卷,针叶林)[M].北京:中国林业出版社,1999:983.
    [104]肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J].世界林业研究,2006,19(1):53-57.
    [105]肖兴威主编.中国森林资源清查[M].北京:中国林业出版社,2005:3-10.
    [106]熊平生,谢世友.中国全球变化研究优势领域及进展[J].地理与地理信息科学,2008,24(3):86-95.
    [107]徐德应.中国大规模造林减少大气碳积累的潜力及其成本效益分析[J].林业科学,1996,32(6):491-499.
    [108]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007,26(6):1-9.
    [109]徐永椿,毛品一,伍聚奎,等.云南树木图志(上)[M].昆明:云南科技出社,1988:90.
    [110]闫平,冯晓川.原始阔叶红松林碳素储量及空间分布[J].东北林业大学学报,2006,34(5):23-25.
    [111]云南省林业厅.云南省森林资源规划设计调查操作细则(试行)[S].2004:52-53,58.
    [112]云南省林业科学研究所.云南主要树种造林技术[M].昆明:云南人民出版社,1985:13-16.
    [113]云南省森林资源连续清查办公室.国家森林资源连续清查云南省第五次复查操作细则[S].2007:1,66,72.
    [114]赵敏,周广胜.中国森林生态系统碳储量及其影响因子分析[J].地理科学,2004,24(1):50-53.
    [115]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报,2004,15(8):1368-1472.
    [116]赵平,彭少麟,曾小平.全球变化背景下大气CO:浓度升高与森林群落结构和功能的变化[J].广西植物,2001,21(4):287-294.
    [117]赵文书,唐社云,李莲芳,等.思茅松优树选择[J].云南林业科技,1995,(3):1-5.
    [118]赵文书,唐社云,李莲芳,等.普文试验林场思茅松无性系种子园营建技术[J].云南林业科技,1998,(1):1-10.
    [119]张国斌,刘世荣,张远东,等.岷江上游亚高山林区老龄林地上生物量动态变化[J].生态学报,2008,28(7):3176-3184.
    [120]张琼,洪伟,吴承桢.巨桉含碳率的空间结构特征研究[J].广西植物,2007,27(4):585-589.
    [121]张小全,侯振宏.森林、造林、再造林和毁林的定义与碳计量问题[J].林业科学,2003,39(2):145-152.
    [122]张小全,陈先刚,武曙红.土地利用变化和林业活动碳贮量变化测定与监测中的方法学问题[J].生态学报,2004,24(9):2068-2073.
    [123]张小全,武曙红,何英.森林、林业活动与温室气体的减排增汇[J].林业科学,2005,41(6):150-156.
    [124]张小全,武曙红,中国CDM造林再造林指南[M].北京:中国林业出版社,2006:1-15.
    [125]张小全,朱建华,侯振宏.主要发达国家林业有关碳源汇及其计量方法与参数[J].林业科学研究,2009,22(2):285-293.
    [126]郑帷婕,包维楷,辜彬,等.陆生高等植物含碳率及其特点[J].生态学杂志,2007,26(3):307-313.
    [127]曾伟生,唐守正.东北落叶松和南方马尾松地下生物量模型研建[J].北京林业大学学报,2011,33(2):1-6.
    [128]曾觉民.昌宁森林植被[R].1991:24.
    [129]曾立雄,王鹏程,肖文发,等.三峡库区主要植被生物量与生产力分配特征[J].林业科学,2008,44(8):16-22.
    [130]中华人民共和国.中华人民共和国气候变化初始国家信息通报[M].北京:中国计划出版社,2004.
    [131]周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995,19(3):193-200.
    [132]周国模,姜培坤.毛竹林含碳率碳贮量及其空间分布[J].林业科学,2004,40(6):20-24.
    [133]庄贵阳主编.低碳经济知识读本[M].北京:中国人事出版社,2010:1-22.
    [134]Binkley D, Valentine D.50-year biogeochemical effects of green ash, white-pine, and Norway spruce in a replicated experiment [J]. Forest Ecology and Management,1991,40:13-25.
    [135]Birdsey R A, Plantinga A J, Health L S. Past and Prospective carbon storage in United Stetes forests[J]. Forest Ecology and Management,1993,58(1-2):33-40.
    [136]Barber V A, Juday G P, Finney B P. Reduced growthof Adaskan white spruce in the twentieth century from tern-perature-induced drought stress[J]. Nature,2000,405(2):668-673.
    [137]Bray J R. Root production and the estimation of net productivity[J]. Canadian Journal of Botany, 1963,41:65-72.
    [138]Brian J. Enquist. Universal scaling in tree and vascular plant allometry:toward ageneral quantitative theory linking plant form and function from cells to ecosystems[J]. Tree Physiology,2002, (22): 1045-1064.
    [139]Brown S. Measuring carbon in forests:current status and future challenges[J]. Environmental Pollution,2002,116:363-372.
    [140]Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J]. Biotropica,1982,14:161-187.
    [141]Brown S, Lugo A E, Chapman J. Biomass of tropical tree plantations and its implications for the global carbon budgets[J]. Can J For Res,1986,16:390-394.
    [142]Brown S, Sathaye J,Canell M, et al. Mitigation of carbon emission to the atmosphere by forest management[J]. Commonwealth Forestry Review,1996a,75:80-91.
    [143]Brown S. Present and potential roles of forests in the global climate change debate[J].Unasylva, 1996b,47:3-10.
    [144]Brown S. Estimating biomass and biomass change of tropical forests:a primer UN FAO Forestry Paper 134[D], Rome,1997,55.
    [145]Brown S, Paul Schroeder, Jeffrey S. Kern. Spatial distribution of biomass in forests of the eastern USA [J]. Forest Ecology and Management,1999,123:81-90.
    [146]Cairns M A, Brown S, Helmer E H, et al. Root biomass allocation in the world's upland forests[J]. Oecologia,1997,(111):1-11.
    [147]Chambers J Q, Higuchi N, Tribuzy E S, et al. Carbon sinks for a centry [J]. Nature,2001,410-429.
    [148]Chave J, Andalo C., Brown S. et al. Tree Allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecolgia.2005,145(1):87-99.
    [149]Chen panqin. Global change studies at CAS over the past 30years [J]. Bulletin of the Chinese Academy of Sciences,2009,23(4):192-196.
    [150]Ciais P, Cramer W, Jarvis P, et al. Summary for policy makers:Land use, land use change and Forestry[M]. In:Watson R T, Noble I R, Bolin B, et al.(Eds), Land use, land use change and forestry, A special report of the IPCC. Cambrage:University Press,2000:1-45.
    [151]Day M E, Schedlbauer H, Livingston W H, et al. Influence of seedbed light environment, and elevated temperature on growth and carbon allocation in pitch pine (Pinnus rigida) and jack pine (Pinnus banksiana) seedlings [J]. Forest ecology and management,2007,205:59-71.
    [152]Dixon R K., Brown S, Houghton R A. et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185-190.
    [153]Dominish T, Finer L, Lehto.Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of grpwing season[J]. Tree Physiology, 2001,21:465-472.
    [154]Eltaro F, Yoko F, Makoto T, Ryogo N. Clonal viration of carbon content in wood of Larix kaempferi(Japanese larch)[J]. JWoodSci,2008,54:247-251.
    [155]Ertugrul B, Omer K. Estimating aboveground fuel biomass in young calabrian pine (pinus brutia)[J]. Energy & Fuels,2008,5:47-51.
    [156]Elias M, Potvin. Assessing inter-and intra-specific variation in trunk carbon concentration for 32 neotropical tree species[J]. Can J Forest Res,2003,33:1039-1045.
    [157]Feng Y L, Wang J F, Sang W G. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels[J]. Acta Oecologica,2007,31:40-47.
    [158]Gibbs H K, Brown S, Niles J O. Monitoring and estimating tropical forestcarbon stocks:making REDD a reality[J]. Environmental research letters,2007,2:1-13.
    [159]Grace J. Undrstanding and managing global carbon cycle[J]. Journal of Ecology,2004,92:189-202.
    [160]Houghton R A. Converting terrestrial ecosystems from sources to sinks of carbon [J]. AMBIO,1996, 25(4):267-272.
    [161]Houghton R A, Lawrence K L, Hackler J L. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates [J]. Global change biology,2001,7:731-746.
    [162]Huang B R, Fu J M. Photosynthesis, respiration, and carbon allocation of two cool season perennial grasses in response to surface soil drying[J]. Plant and Soil,2000,227:17-26.
    [163]Intergovernmental Panel on Climate Change. The Physical Science Basis-Summary for Policymakers of the Working Group I Report[M]. Cambridge:Cambridge University Press,2007: 5-25.
    [164]IPCC. IPCC Guidelines for National Greenhouse Gas Inventory[M]. IPCC/ICES, ISBN, Hayama, Japan,2006,4-88788-032-4.
    [165]IPCC(International Panel on Climate Change). Good Practice Guidance for Land Use, Land Use Change and Forestry[M]. Hayama, Japan,2003, IPCC/ICES, ISBN,4-88788-003-0.
    [166]Jingyun F, Anping C, Changhui P, et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998[J].Science,2001,292:2320-2322.
    [167]JingY F, Zhang M W. NOTE AND COMMENT:Forest biomass estimation at regional and global levels, withspecial reference to China's forest biomass[J]. Ecological Research,2001,6:587-592.
    [168]Kim H, Lieffering M, Kobayashi K, et al. Seasonal changes in the efects of elevated CO2 on rice at three levels ofnitrogen supply:a free air CO2 enrichment(FACE)experiment[J]. Global Change Biology,2003,9:826-837.
    [169]Lamlom S H, Savidge R A. A reassessment of carbon content in wood:variation within and between 41 North American species[J]. Biomass Bioenerg,2003,25:381-388.
    [170]Levy P E, Hale S E, Nieotl B C. Biomass expansion factors and root:shoot ratios for coniferous tree species in Great Britain[J]. Forestry,2004,77(5):421-430.
    [171]Litton C M, Ryan J W, Knight D H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine[J]. Ecological Applications,2004,14:460-475.
    [172]Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical, temperate and boreal forests[J]. Plant, Cell and Environment,1999,22:715-740.
    [173]Menzela A. Plant phenological anomalies in Germany and their relation to air temperature and NAO [J]. Climatechange,2003,(57):243.
    [174]Michael A. Cairns, Ingrid Olmsted. Composition and aboveground tree biomass of a drysemi-evergreen forest on Mexico's Yucatan Peninsula [J]. Forest Ecology and Management,2003, (186):125-132.
    [175]Milena S, Markku K. Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica[J]. BIOTROPICA,2005,37(1):2-8.
    [176]Mokany K, Raison J R, Prokushkin S A. Critical an alysis of root:shoot ratios in terrestrial biomes[J]. Global Change Biology,2006, (12):84-96.
    [177]Mora-Costa P. Tropical forestry practices for carbon sequestration[M]. In:A. Zchulte, D.Schone(eds). Dipterocarps Forests Ecosystems:Towards Sustainable Management. Singapore:World Scientific, 1996:308-334.
    [178]Ngugi M R, Hunt M A, Doely D, et al. Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits[J]. New Forests,2003,26: 187-200.
    [179]UNFCCC. Kyoto Protocol to the United Nations Framework on Climate Change Convention.1997, [DB/OL], http://unfccc.int/text/resource/convkp.html,2003-03-06.
    [180]Nemani R R, Keeling C D, Hashimoto H, et al. Climate driven increases in global terrestrial net prim ary production from 1982 to 1999[J]. Science,2003,300(5625):1560.
    [181]NSTC. Our changing planet. The FY 1995 U.S Global change research program. Washington D C.
    [182]Olson J, Watts J, Alison L. Carbon in live vegetation of major world ecosystems.(Rep. ORNL-58620, Oak Ridge National laboratory, Oak Ridge, Tennessee).1983
    [183]Philippines O L,Malhi Y, Vinceti B, et al,.Changes in the biomass of tropical forests:evaluating potential biases[J]. EcolAppl,2002,12:576-587.
    [184]Ravindranath N H, Ostwald M著.林业碳汇计量[M].李怒云,吕佳译.北京:中国林业出版社,2009:6-10,40-44.
    [185]Sabine C L, Heimann M, Artaxo P, et al. Current status and past trends Of the global carbon cycle[M]. Field C B, Ranpach M R, MacKenzie S H.11Ie global carbon cycle:integrating humans, climateand the natural world. Washington:Island Press,2004:17-44.
    [186]Sails S M, Assis M A, Mattos P P, et al. Estima tingthe aboveground biomoss an d wood volume of savan na woodlan ds in Brazil's Pan tanal wetlands based on allometric correlations[J]. Forest Ecology and Management,2006,228:61-68.
    [187]Schroeder P. Carbon storage potential of short rotation tropical tree plantations[J]. Forest ecologiy and management,1992,50:31-41.
    [188]Schroeder P, Brown S, et al.. Estimation for Temperate Broadleaf Forests of the United States Using Inventory Data[J]. Forest Science,1997,43(3):424-434.
    [189]Thomasa S.C., Malczewski G.. Wood carbon content of tree species in Eastern China:Interspecific variability and the importance of the volatile fraction[J]. Journal of Environmental Management, 2007, (85):659-662.
    [190]Shilong Piao, Jingyun Fang, Biao Zhu, et al., Forest biomass carbon stocks in China over the past 2 decades:Estimation based on integrated inventory and satellite data [J]. Journal of geophysical research,2005,110:10.
    [191]Shilong P, Philippe C, Pierre F, et al., Net carbon dioxide losses of northern ecosystems inresponse to autumn warming[J]. Nature,2008,451(3):49-53.
    [192]Sigee D C, Bahram F, Estrada, et al. The influence of phosphorus availability on canbon allocation and p quota in Scenedesmus subspicatusr: a synchrotron-based FTIR analysis[J]. Phycologia,2007, 46:583-592.
    [193]Suzana M. Salis, Marco A. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil's Pantanal wetlands based on allometric correlations[J]. Forest ecology and management,2006, (228):61-68.
    [194]Ueyama M, Ichii K, Hirata R. et al. Simulating carbon and water cycles of larch forests in East Asia bythe BIOME-BGC model with AsiaFlux data [J]. Biogeosciences,2010,7:959-977.
    [195]Valentini R, Matteucci G, Dohn an A J, et al. Respiration as the main determinant of carbon halance in European forests [J]. Nature,2000,404:861-865.
    [196]Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China [J]. Forest Ecology and Management,2008,255:4007-4020.
    [197]Wang R, Wang Y Z. Invation dynamics and potential spread of invasive alien plant species Ageratina adenophora. in China [J]. Diversity and distributions,2006,12(4):397-408.
    [198]Weiner J. Allocation,plasticity and allometry in plants[J]. Perspective in plant ecology, evolution and systmmetics,2004,107:117-126.
    [199]Whittaker R H, Likens G E. The biosphere and Man[A]. Leith H & Whittaker R H.Primary productivity of the biosphere[M]. Nework:Springerverlag,1975:305-328.
    [200]Winjum J K, Schroeder P E. Forest plantations of the world:their extent, ecological attributes, and carbon storage[J]. Agricultural and Forest Meteorology,1997,84:153-167.
    [201]Zak D R, Pregitzr K S, Curtis P S, Vogel C S, et al. Atmospheric CO2 soil-N availability, and allocation of biomass and nitrogen by populus tremuloides[J]. Ecological Appilications,2000,10: 34-46.
    [202]Zhaodi Guo, Jingyun Fang, Yude Pandeng, et al. Inventory-based estimates of forest biomass carbon stocks in China:A comparison of three methods[J]. Forest Ecology and Management,2010, (259):1225-1231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700