苹果属植物种间水分利用效率的差异及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱半干旱地区水分不足是限制农业生产的主要因素,因此干旱环境条件下的农业生产必须以水分高效利用为中心,而提高植物自身的水分利用效率(WUE)是实现节水和增产的重要途径之一。本文以我国10个苹果(Malus)砧木为试材,采用盆栽方式研究了不同砧木碳同位素组成(δ~(13)C)、长期水分利用效率(WUE_L)、瞬时水分利用效率(WUE_i)、耗水量和耐旱性的差异,分析了苹果属植物种间WUE差异的形态和生理基础。在此基础上,以WUE差异显著的新疆野苹果(M. sieverii (Ledeb) Roem.)和平邑甜茶(M. hupehensis (Pamp) Rehd.)为材料研究了水孔蛋白与植物WUE(WUE_i)的关系,以及外源脱落酸(ABA)和施肥处理对新疆野苹果和平邑甜茶WUE的影响,分析了气孔和光合能力对WUE的调节。
     主要研究结果如下:
     1.正常供水和干旱条件下,苹果属植物种间WUE都存在显著差异,而且这种差异在两种水分条件下表现出一致性。综合分析不同砧木的WUE、耐旱性和耗水量表明:楸子(M. prunifolia(Willd)Borkh.)WUE高、耐旱性强、耗水量大,八棱海棠(M. robusta Rehd.)WUE高、耗水量大、耐旱性中等,新疆野苹果和西府海棠(M. micromalus Hemsl.)WUE中等、耗水量低、耐旱性强,平邑甜茶和变叶海棠(M. toringoides (Rehd) Hughes.)WUE和耐旱性均较低。苹果属植物种间叶片的δ~(13)C差异显著,随土壤含水量的降低δ~(13)C显著增加。两种水分条件下,δ~(13)C都与WUE_L和WUE_i表现出显著的正相关性,种和处理对δ~(13)C没有互作效应,说明δ~(13)C可以用于苹果属植物WUE的评价。
     2.苹果属植物的WUE受形态特征、生理因子及其交互作用的影响。正常供水和干旱条件下,不同砧木的整株干重、根/冠比和叶面积比与δ~(13)C之间均不存在显著的相关性,δ~(13)C与根系蒸腾速率、叶面积蒸腾速率呈显著的负相关关系。这说明可以选育同时具有高WUE和生长快的苹果砧木,与生物量的分配方式相比,叶和根的生理活动对苹果属植物WUE的影响更大。两种水分条件下,δ~(13)C与比叶面积、气孔长度、气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度呈显著的负相关关系,与气孔密度、叶片氮含量呈显著的正相关关系。光合速率(Pn)不是种间WUE差异的主要因素,但叶片氮含量通过Pn影响δ~(13)C。两种水分条件下,δ~(13)C与叶片内源激素ABA、GA、ZR、IAA、ABA/(ZR+IAA)均不存在显著的相关性。多元逐步回归分析表明,正常供水条件下,气孔密度和Gs是引起种间WUE差异的关键因素;干旱条件下,比叶面积和Gs是种间WUE差异的主要因素。
     3.在1/2Hoagland营养液、20%PEG6000溶液、60μmol.L-1 ABA溶液中,分别用50μmol.L-1 HgCl2处理新疆野苹果和平邑甜茶幼苗。结果表明,水孔蛋白活性被抑制后两种砧木叶片WUE_i均显著降低。干旱条件下,新疆野苹果和平邑甜茶的盆栽苗WUE_i、叶和根中PIP1基因表达水平在胁迫初期都有所上升,新疆野苹果和平邑甜茶分别在第4 d和第2 d达到最大,之后随干旱胁迫程度的加重WUE_i和PIP1基因表达量开始下降。在mRNA水平上,新疆野苹果叶和根中PIP1表达量高于平邑甜茶。复水后新疆野苹果WUE_i和PIP1基因表达水平趋于恢复正常,平邑甜茶WUE_i和PIP1基因表达水平仍低于对照,但也表现出缓慢上升趋势。叶和根中ABA的变化与PIP1在mRNA水平上的表达量变化趋势一致。说明水孔蛋白可能参与了苹果属植物WUE_i的调控,叶和根中PIP1的表达有可能受ABA的诱导。
     4.正常供水和干旱条件下,外源ABA均显著增加了一年生新疆野苹果和平邑甜茶的WUE_i、WUE_L、δ~(13)C、气孔密度、内源ABA含量,并且显著降低了气孔长度、Gs、Tr和Pn;同时外源ABA显著降低了两种砧木的株高、整株干重和总叶面积。但新疆野苹果对外源ABA更敏感,表现在有更大的Gs、Tr降低幅度,更高的生物量分配可塑性,以及更高的WUE、ABA含量增加幅度。这表明苹果砧木对外源ABA敏感性因种的不同而不同。两种水分条件下,外源ABA对两种砧木的最大光化学效率(FV/FM)、电子传递速率(ETR)、叶绿素含量和RuBPcase活性均不存在显著影响。说明外源ABA是通过气孔因素提高了苹果砧木的WUE,而对光合机构没有造成直接影响。研究结果还表明外源ABA增强了两种砧木的耐旱能力。
     5.正常供水和干旱条件下,施肥均显著提高了新疆野苹果和平邑甜茶的WUE_i、WUE_L和δ~(13)C,水分充足条件下施肥效果更显著。与新疆野苹果相比,水分充足条件下,施肥使平邑甜茶的耗水量、总叶面积、整株干重、Pn、Tr增加幅度更大。正常供水条件下,施肥处理显著增加了Pn、Gs和Tr,但Gs和Tr增加幅度远低于Pn;干旱条件下,施肥对Gs和Tr没有显著影响,而Pn显著增加。两种水分条件下,施肥处理均显著增加了两种砧木的光饱和点、叶片氮含量、叶绿素含量、RuBPcase活性、FV/FM、光化学猝灭系数(qP)和ETR,显著降低了非光化学猝灭系数(qN)和光补偿点。表明施肥处理使叶片的PSⅡ活性升高,光合电子传递速率加快,光合能力增强。施肥处理可能主要是通过改变光合碳同化效率来提高苹果砧木的WUE。
Water availability is a major determinate of agricultural productivity in arid and semi-arid regions of the world. Therefore, higher water use efficience should be center of the agricultural production in these regions. One solution to the problem is to improve water use efficiency (WUE) of plants themselves. In this study, we examined the differences of carbon isotope composition (δ~(13)C), long-term water use efficiency (WUE_L), instantaneous water use efficiency (WUE_i), total water consumption and drought tolerance in ten Malus rootstocks, and elucidated morphological and physiological traits in relation to this variation in WUE. In addition, in order to gain a better understanding on the regulation of stomatal and photosynthetic capacity on WUE, M. sieverii and M. hupehensis were used to study the relationships of WUE (WUE_i) and aquaporin gene expression, and to investigate the effects of long-term exogenous abscisic acid (ABA) application and fertilization on WUE.
     The results were as follows:
     1. There was large variation in the WUE of Malus under both well-watered and drought-stressed conditions, the ranking and degree of response in WUE of the different species generally remained the same under both watering regimes. Analysis of WUE, drought resistance and total water consumption of different Malus rootstocks showed that M. prunifolia had high WUE, high drought resistance and large total water consumption, M. robusta had high WUE and total water comsuption but moderate drought tolerance, M. sieverii and M. micromalus had moderate WUE level, low total water consumption and high tolerance to drought stress, while M. hupehensis and M. toringoides had low WUE and drought resistant capability. Theδ~(13)C value in Malus differed significantly. Foliarδ~(13)C values increased significantly with the decreasing total soil water content. There was a positive correlation betweenδ~(13)C and both WUE_i and WUE_L, while the species×treatment interaction was non-significant forδ~(13)C, suggesting that it should be possible to useδ~(13)C as a surrogate for WUE and to select Malus rootstock for high WUE.
     2. WUE of Malus was affected by morphological and physiological properties.δ~(13)C did not correlated with total dry weight, root/shoot ratio and leaf area ratio either in the well-watered condition or in the dry treatment. This result opens a way for selecting Malus rootstock combining large WUE and high relative growth rate. In addition, these results showed that the specific activities of leaves and roots were more important in determining the water use of the plant than the allocation to leaves and roots. Under both well-watered and drought-stressed conditions,δ~(13)C was negatively correlated with transpiration per plant weight, transpiration per leaf area, special leaf area, stomatal length, stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 concentration, and positively correlated with stomatal density and leaf nitrogen content. Pn was not primarily responsible for differences inδ~(13)C. However, the positively relationship betweenδ~(13)C and leaf nitrogen content could re?ect the fact that the diversity forδ~(13)C may also be partly driven by Pn. Under both well-watered and drought-stressed conditions,δ~(13)C were not correlated with ABA, ZR, IAA, GA and ABA/(ZR+IAA). Multiple stepwise regression analysis showed that stomatal density and Gs were key determinants of difference in WUE under well-watered condition, and that the diversity for WUE was mainly driven by special leaf area and Gs under drought-stressed condition.
     3. Under three conditions (1/2Hoagland solution, 20%PEG6000, 60μmol.L-1 ABA), WUE_i of seedlings of M. sieverii and M. hupehensis markedly decreased after HgCl2’s inhibition to the activities of aquaporins. Under drought stress, WUE_i and gene expression of PIP1 in roots and leaves of potted apple plants of M. sieverii and M. hupehensis increased with the continuance of drought stress. WUE_i and gene expression of PIP1 of M. sieverii and M. hupehensis reached the highest at 4d and 2d, respectively, followed by an obvious decline with further increasing of drought level. At the mRNA level, the leaf and root PIP1 expression level of M. sieverii. were higher than that of M. hupehensis. After re-watering, WUE_i and PIP1 expression level began to reverse, but M. hupehensis still lower than control. ABA content in leaves and roots showed the similar changes as PIP1 expression levels. Our results showed that aquaporins may regulate WUE (WUE_i) of Malus rootstocks. The PIP1 expression of leaves and roots may be triggered by ABA.
     4. For M. sieverii and M. hupehensis, long-term exogenous ABA application significantly increased WUE_i, WUE_L,δ~(13)C, endogenous ABA concentration, stomatal density, and root/shoot ratio, and markedly decreased total dry weight, stomatal length, Pn, Gs and Tr under both well-watered and drought-stressed conditions. However, M. sieverii was more responsive to exogenous ABA application than M. hupehensis, as indicated by the strong stomata closure and by greater plasticity of biomass allocation, as well as by higher WUE and ABA content. We concluded that sensitivity to exogenous ABA application is species dependent in Malus.Under both well-watered and drought-stressed conditions, maximal efficiency of PSⅡ(FV/FM), electron transport rate (ETR), Chlorophyll content and RuBPcase activity of two contrasting Malus rootstocks were unaffected by exogenous ABA application. These results showed that ABA applied to leaf surfaces of two contrasting Malus rootstocks improved WUE and produced leaves with much-increased stomatal density and potential stomatal conductance, but had not a direct effect on photosynthetic apparatus. In addition, application of exogenous ABA appears to enhance the tolerance of two Malus species to drought-stress.
     5. Under both well-watered and drought-stressed conditions, fertilization increased the WUE_i, WUE_L andδ~(13)C of M. sieverii and M. hupehensis. However, fertilization treatment had evident promoting effect on WUE under well-watered conditions. Under well-watered and fertilization treatment, the changes trends of total water consumption, total leaf area, total dry weight, Pn and Tr were consistent in M. sieverii and M. hupehensis seedlings, but the increased extent of them in M. hupehensis were more than that of M. sieverii. Under well-watered condition, treatment of fertilization increased Pn, Gs and Tr, but the increased extent of Gs and Tr were less than Pn. Fertilization treatment caused no significant changes in Gs and Tr under drought condition. However, under both well-watered and drought-stressed conditions, fertilization treatment significantly increased Pn, light saturation point, leaf nitrogen content, Chlorophyll content, RuBPcase activity, FV/FM, qP and ETR, and significantly decreased qN and light compensation point. These results indicated that application of fertilization could increase the light energy conversion efficiency, the potential activity of photosynthetic reaction center which can prevent leaf photosynthetic apparatus from damage of environmental stress. Fertilization treatment may improve WUE of Malus rootstocks through changes in carbon assimilation.
引文
[1]山仑.生物节水研究现状及展望[A].香山科学会议第267次学术讨论会集[C], 2005.
    [2]王会肖,蔡燕,刘昌明.生物节水及其研究的若干方面[J].节水灌溉,2007,6:32-36.
    [3]山仑,邓西平,张岁岐.生物节水研究现状及展望[J].中国科学基金,2006,2:66-71.
    [4] Stanhill G. Irrigation in a Iarael: past achievements, present challenges, and future possibilities. In: Shalheveret J, Liu Changming and Xu Yuexian(eds), Water Use Efficiency in Agriculature[M]. Priel Publishers, 1992, 63-77.
    [5] Guehl J M, Picon C, Aussenac G, et al. Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species[J]. Tree Physiology, 1994, 14: 707-724.
    [6]张正斌,徐萍,董宝娣,等.水分利用效率—未来农业研究的关键问题[J].世界科技研究与发展,2005,1:52-61.
    [7]山仑.植物水分利用效率和半干旱地区农业用水[J].植物生理学通讯,1994,1:61-66.
    [8]赵慧.小麦水分利用效率杂交遗传育种规律研究[D].中国科学院遗传与发育生物学研究所农业资源研究中心硕士论文,2006.
    [9]梁宗锁,康绍忠.植物水分利用效率及其提高途径[J].西北植物学报,1996,16(6):79-84.
    [10] Cernusak L A, Aranda J, et al. Marshall and Klaus Winter,Large variation in whole-plant water-use efficiency among tropical tree species[J], New phytologist, 2007, 173: 294 -305.
    [11] Fisher R A. Optimizing the use of water and nitrogen through breeding of crops[J], Plant and Soil, 1981, 58: 249-278.
    [12]张正斌,徐萍,周晓果,等.作物水分利用效率的遗传改良研究进展[J].中国农业科学,2006,39(2):289-294.
    [13]刘昌明,王会肖.土壤作物大气界面水分过程与节水调控[M].北京:科学出版社,1999.
    [14]赵凤君.不同水分处理下黑杨新品系间WUE的差异及其机理研究[D].北京林业大学硕士学位论文,2004.
    [15]曲桂敏.不同品种苹果树水分利用效率及有关参数的日变化[J].果树科学,2000,17(1):7-11.
    [16]费永俊,廖启蓉,曾璇.4个狗牙根品种水分利用效率的比较[J].长江大学学报(自科版)农学卷,2007,4(3):37-39.
    [17] Wright I J, Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaf trait relationships[J]. New phytologist, 2005, 166: 485-496.
    [18] Zimmermann M H, Jeje A A. Vessel-length distribution in stems of some American woody plants[J]. Can J Bot, 1981, 59: 1882-1892.
    [19] Tyree M T, Davis S D, Cochard H. Biophysical perspectives of xylem evolution: is there a trade off of hydraulic efficiency for vulnerability to dysfunction[J]. IAWA J, 1994, 15: 335-360.
    [20] Sobrado M A. Relation of water transport to leaf gas exchange properties in three mangrove species[J]. Trees, 2000, 14: 258-262.
    [21] Kocacinar F, Rowan F. Sage photosynthetic pathway alters hydraulic st ructure and function in woody plants[J]. Oecologia, 2004, 139: 214-223.
    [22] Hacke U G, Sperry J S. Functional and ecological xylem anatomy[J]. Perspect Plant Ecol Evol Syst,2001, 4: 97-115.
    [23]王玉涛.北京城市优良抗旱节水植物材料的筛选与评价研究[D].北京林业大学博士学位论文,2008.
    [24] Schulze E D, Robichaux R H, Grace J, et al. Plant water balance[J]. Bioscience. 1987, 37: 30-37.
    [25] Nilson S E, Assmann S M. The control of transpiration.Insights from Arabidopsis[J]. Plant Physiology, 2007. 143: 19-27.
    [26] Cowan I R. Stomatal behaviour and environment[J]. Adv Bot Res, 1977, 4: 117-228.
    [27] Buckley T N, Farquhar G D, Mott K A. Carbon-water balance and patchy stomatal conductance[J]. Oecologia, 1999, 118: 132-143.
    [28]张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003:1-60.
    [29] Herppich W B, Willert D J. Dynamic changes in leaf bulk water relations during stomatal oscillations in mangrove species: continuous analysis using a dewpoint hygrometer[J]. Physiologia Plantarum, 1995, 94(3): 479-485.
    [30]王根轩,廖建雄,吴冬秀.荒漠条件下甘草气孔振荡的水被动证据[J].植物学报,2001,43(1):41-45.
    [31] Steppe K, Dzikiti S, Lemeur R, et al. Stomatal oscillations in Orange trees under natural climatic conditions[J]. Annals of Botany, 2006, 97(5): 831-835.
    [32] Wang H, Li Y, Gao Y, et al. CO2, H2O exchange and stomatal regulation of regenerated Camptotheca acuminata plantlets during ex vitro acclimatization[J]. Journal of Forestry Research, 2006, 17(4): 273-276.
    [33] Zu Y, Wang W, Yang F, et al. Stomatal regulation on the gas exchange of Eupatorium adenophorum: implication on its inva-sive ability[J]. Scientia Silvae Sinicae, 2006, 41(3): 25-35.
    [34] Aranda I, Pardos M, Puértolas J, et al. Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities[J]. Tree Physiology, 2007, 27: 671-677.
    [35] Evans J R, Vellen L. Wheat cultivars differ in transpiration efficiency and CO2 diffusion inside their leaves. In Crop Research in Asia: Achievements and Perspective (eds R. Ishii & T.Horie), Asian Crop Science Association, Tokyo, Japan. 1996, 326-329.
    [36] Lauteri M, Scartazza A, Guido M C, et al. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments[J]. Functional Ecology, 1997, 11: 675-683.
    [37] Flexas J, Riabas-CarbóM, Diaz-Espejo A, et al. Mesophyll conductance to CO2: current knowledge and future prospects[J]. Plant, Cell and Environment, 2008, 31: 602-621.
    [38] Beerling D J, Chaloner W G. The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur Lammad leaves[J]. Annals of Botany, 1993, 71: 231-235.
    [39] Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12): 3317-3325.
    [40] Yang L, Han M, Zhou G, et al. The changes of water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect[J]. Acta Ecologica Sinica, 2007, 27: 16-24.
    [41] Austin R B, Morgan C L, Ford M A, et al. Flag Leaf Photosynthesis of Triticum aestivum and Related Diploid and Tetraploid Species[J]. Annals of Botany, 1982, 49: 177-189.
    [42] Blake T J, Tschaplinski T J, Eastham A. Stomatal control of water use efficiency in poplar clones andhybrids[J]. Canadian Journal of Botany, 1984, 62: 1344-1351.
    [43] Dillen S Y, Marron N, Koch B, et al. Genetic Variation of Stomatal Traits and Carbon Isotope Discrimination in Two Hybrid Poplar Families (Populus deltoides‘S9-2’×P. nigra‘Ghoy’and P. deltoides‘S9-2’×P. trichocarpa‘V24’) [J]. Annals of Botany, 2008, 5: 1-9.
    [44]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004.
    [45]黄玲.麦类作物进化材料根冠特性及水分利用效率的研究[D].甘肃农业大学硕士学位论文,2003.
    [46] Anderson J E, Williams J, Kriedemann P E, et al. Correlations between carbon isotope discrimination and climate of native habitats for diverse Eucalypt taxa growing in a common gardon[J]. Aust. J. Plant Physiol. 1996, 23: 311-320.
    [47] Li C. Carbon isotope composition, water-use efficiency and biomass productivity of Eucalyptus microtheca populations under different water Supplies[J]. Plant and Soil, 1999, 214: 165-171.
    [48] Larcher W. Physiological plant ecology(fourth edition)[M]. New York: Heidelberg Springer-Verlag, 2003, 231-245.
    [49]邓西平,山仑.旱地春小麦对有效灌溉水高效利用的研究[J].干旱地区农业研究,1995,13(3):42-46.
    [50]张大勇,姜新华,赵松龄,等.半干旱区作物根系生长冗余的生态学分析[J].西北植物学报,1995,15 (5):110-1140.
    [51] Brouwer R. Functional equilibrium: sense or nonsense[J]. Agric Sci, 1983, 31:335-348.
    [52]杨洪强,接玉玲.果树根系对地上部的调控及其与水分利用效率的关系[J].园艺学报,2001,28(增刊):603-608.
    [53]慕自新,张岁岐,郝文芳,等.玉米根系形态性状和空间分布对水分利用效率的调控[J].生态学报,2005,25:2896-2900.
    [54] Vamerali T, Saccomani M, Bona S, et al. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids[J]. Plant and Soil, 2003, 255: 157-167.
    [55] Donovan L A, Ehleringer J R. Potential for selection on plant for water use efficiency as estimated by carbon isotope discrimination[J]. American J. Botany, 1994, 81: 927-935.
    [56] Soyza A G, Franco A C, Viginia R A, et al. Effects of plant size on phyotosynthesis and water relation in the desert shrub Fabacae[J]. American J. Bot, 1996, 83(1): 99-105.
    [57] Xue Q, Zhu Z, Musick J T, Stewart B A. et al. Root growth and water uptake in winter wheat under deficit irrigation[J]. Plant and Soil, 2003, 257: 151-161.
    [58] Wu F, Bao F, Wu N. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings[J]. Environmental and Experimental Botany, 2008, 63: 248-255.
    [59] Jensen C R, Mogensen V O, Mortensen G, et al. Leaf photosynthesis and drought adaptation in field-grown oilseed rape (Brassica napus L.) [J]. Aust. J. Plant Physiol, 1996, 23: 631-644.
    [60] Craufurd P Q, Wheeler T R, Ellis R H, et al. Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination, and specific leaf area in peanut[J]. Crop Sci. 1999, 39: 136-142.
    [61] Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress[J]. Scientia Horticulturae, 2004, 102:15-27.
    [62] Meziane R, Shipley B. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply[J]. Annals of Botany, 2001, 88: 915-927.
    [63] Reich P B, Kloeppel B D, Ellsworth D S, et al. Generality of leaf trait relationships: a test across six bimes[J]. Eclogy, 1999, 80: 1955-1969.
    [64] Li C, Liu S. Different responses of two contrasting Populus davidiana populations to exogenous abscisic acid application[J]. Environmental and Experimental Botany, 2004, 51: 237-246.
    [65] Feng Y, Fu G, Zheng Y. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners[J]. Planta, 2008, 228: 383-390.
    [66] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15: 423-434.
    [67]康博文,刘建军,徐学选,等.黄土高原常见树种比叶重及与光合能力的关系[J].西南林学院学报,2005,25(2):1-4.
    [68]范晶,赵惠勋,李敏.比叶重与光合能力的关系[J].东北林业大学学报,2003,31(5):37-39.
    [69] Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress[J]. Scientia Horticulturae, 2004, 102: 15-27.
    [70] Bhagsari A S, Brown R H. Leaf photosynthesis and its correlation with leaf area[J]. Crop Sci, 1986, 26:127-132.
    [71] Morgan J A, Lecain D R. Leaf gas exchange and related leaf traits among 15 winter wheat genotypes[J]. Crop Sci, 1991, 31: 443- 448.
    [72] Davies W J, Zhang J H. Root signals and the regulation of growth and development of plants in drying soil[J]. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 55-76.
    [73] Trejo C L, Clephan A L, Davies W J. How do stomata read abscisic acid signals? [J]. Plant Physiol 1995, 109: 803-811.
    [74] Brown K W, Jordan W R, Thomas J C. Water stress induced alterations of the stomatal response to decreases in leaf water potential[J]. Physiol Plant, 1976, 37: 1-5.
    [75] Cutler J M, Rains D W, Loomis R S. The importance of cell size in the water relations of plants[J]. Physiol Plant, 1977, 40: 255-260.
    [76] Spence R D, Wu H, Sharpe P J H, Clark K G. Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells[J]. Plant Cell Environ, 1986, 9: 197-202.
    [77] Lake J A, Woodward F I. Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid[J]. New Phytologist, 2008, 179: 397-404.
    [78]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(1):11-17.
    [79]张岁岐.根冠关系对作物水分利用效率的调控[D].西北农林科技大学博士学位论文,2001.
    [80]董永华,史吉平.外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J].西北植物学报,1998,18(2):202-206.
    [81]尹春英.青杨组不同种对干旱胁迫的反应差异[D].成都中国科学院研究生院博士学位论文,2005.
    [82] Snaith P J, Mansfield T A. Control of the CO2 responses of stomata by indol-3ylacetic acid and abscisic acid[J]. J Exp Bot, 1982a, 33: 360-365.
    [83] Merritt F, Kemper A, Tallman G. Inhibitors of ethylene synthesis inhibit auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba. L[J]. Plant Cell Physiol, 2001, 42: 223-230.
    [84] Beck E H. Regulation of shoot/root ratio by cytokinins from roots in Urtica dioica: opinion[J]. Plant Soil 1996, 185: 3-12.
    [85] Tanaka Y, Sano T, Tamaoki M, et al. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis[J]. Plant Physiol, 2005, 138: 2337-2343.
    [86] Tanaka Y, Sano T, Tamaoki M, et al. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis[J]. J Exp Bot, 2006, 57: 2259-2266.
    [87] Acharya B R, Assmann S M. Hormone interactions in stomatal function[J]. Plant Mol Biol, 2009, 69: 451-462.
    [88]郑有飞,万长建,颜景义,等.小麦的水分利用效率及其最优化问题[J].中国农业气象,1997,18 (4):13-17.
    [89] Ponton S, Dupouey J, Breda N, et al. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype×environment interaction[J]. Tree Physiology, 2002, 22: 413-422.
    [90] Crookston R K, Treharne K J, Ludford P. Response of beans to shading[J]. Crop Sci,1975 15:412-416
    [91]战吉宬,黄卫东,王秀芹,等.弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化[J].植物生态学报,2005,29(l):26-31.
    [92]许大全.光合作用“午睡”现象的生理生态与生化[J].植物生理学通讯,1990,6:5-11.
    [93]王根轩.在大气干旱条件下胀果甘草气孔震荡的RLC电路模拟[J].应用生态学报,1993,2:131-135.
    [94] Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves[J]. Austr J Plant Physiol, 1982, 9 :121-137.
    [95]渠春梅,韩兴国,苏波,黄建辉,等.云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示[J].植物学报,2001,43(2):186-192.
    [96]严昌荣.北京山区落叶阔叶林优势种水分生理生态研究[D].北京中国科学院植物研究所,1997
    [97]蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异[J].植物学报,1999,41(10):1114-1124.
    [98] Damesin C,Rambal S,Joffre R. Between-tree variations in leafδ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability[J]. Oecologia,1997,111: 26-35.
    [99] Clavel D, Drame N K, Roy-Macauley H, et al. Analysis of early responses to drought associated with field drought adaptation in four Sahelian groundnut (Arachis hypogaea L.) cultivars[J]. Environ.Exp. Bot, 2005, 54: 219-230.
    [100] Golluscio R A, Oesterheld M. Water use efficiency of twenty-five co-existing Patagonian species growing under different soil water availability[J]. Oecologia, 2007, 154: 207-217.
    [101] Yin C, Wang X, Duan B, et al. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress[J]. Environmental and Experimental Bontany, 2005, 53: 315-322.
    [102]康绍忠,张富仓,梁银丽,等.土壤水分和CO2浓度增加对小麦、玉米、棉花蒸散、光合和生长的影响[J].作物学报,1999,25(1):55-63.
    [103] Drake B G, Gonzalez-Meler M A, Long S P. More efficient plants: a consequence of rising atmospheric CO2? [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 609-639.
    [104] Stitt M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells[J]. Plant Cell Environ, 1991, 14: 741-762.
    [105] Luo Y, Reynolds J, Wang Y, et al. A search for predictive understanding of plant responses to elevated [CO2][J]. Glob Chang Biol, 1999, 5: 143-156.
    [106] Makino A. Biochemistry of C3-photosynthesis in high CO2[J]. J Plant Res, 1994, 107: 79-84.
    [107] Eguchi N, Fukatsu E, Funada R, et al. Changes in morphology, anatomy, and photosynthetic capacity of needles of Japanese larch (Larix kaempferi) seedlings grown in high CO2 concentrations[J]. Photosynthetica, 2004, 42: 173-178.
    [108] Sigurdsson B D. Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study[J]. Trees, 2001, 15: 403-413.
    [109]何新华.面向大气CO2浓度升高的21世纪植物营养科学[M].见张福锁,龚元石,李晓林主编,土壤与植物营养研究新动态(第三卷),北京,中国农业出版社,1995,281-301.
    [110]蒋高明,韩兴国.大气CO2升高对植物的直接影响[J].植物生态学报,1997b,21(6):489-502.
    [111] Webb A A R, Taylor J E, Mcainsh M R, et al. Calcium ions as intracellular second messengers in plants[J]. Adv. Bot. Res., 1996, 22: 45-96.
    [112] McKenney M S, Rosenberg N J. Sensitivity of some potential evapotranspiration estimation methods to climate change[J]. Agricultural and Forest Meteorology, 1993, 64: 81-110.
    [113] Samarakoon A B, Gifford R M. Soil water content under plants at high CO2 concentration and interactions with the direct CO2 effects: a species comparison[J]. J. Biogeogr. 1995, 22: 193-202.
    [114]谷洁,高华.半湿润偏旱区施肥对向日葵水分利用效率影响的研究[J].中国油料作物学报,1999,21(4):57-59.
    [115]张仁陟,李小刚,胡恒觉.施肥对提高旱地农田WUE的机理[J].植物营养与肥料学报,1999,5 (3) :221-226.
    [116]李立科,田家驹.磷肥技术渭北旱原小麦抗旱增产作用[J].陕西农业科学,1982,5:7-9.
    [117]张岁岐,李秧秧.施肥促进作物水分利用机理及对产量影响的研究[J]..水土保持研究,1996,3 (1):185-191.
    [118] Carvajal M, Cooke D T, Clarkson D T. Responses of wheat Plants to nutrient deprivation may involve the regulation of water-channel function[J]. Planta, 1996, 199: 372-381.
    [119]徐萌,山仑.无机营养对春小麦抗旱适应性的影响[J].植物生态学与地植物学学报,1991,15(1):79.
    [120] Angus J F, van Herwaarden A F. Increase water use and water use efficiency in dryland wheat[J]. Apron. J., 2001, 93: 290-298.
    [121]张岁岐,山仑.磷素营养和水分胁迫对春小麦产量及水分利用效率的影响[J].西北农业学报,1997,6(1):22-25.
    [122]李裕元,郭永杰,邵明安.施肥对丘陵旱地冬小麦生长发育和水分利用的影响[J].干旱地区农业研究,2000,18(1):15-21.
    [123]钟兆站,居辉,赵聚宝,等.豫西配方施肥对旱地冬小麦水分利用效率的影响[J].干旱地区农业研究,2000,18(1):9-14.
    [124] Toft, N L, Anderson J E, Nowak R S. Water use-efficiency and carbon isotope composition of plants in a cold desert environment[J]. Oecologia, 1989, 80: 11-18.
    [125] Meinzer F S, Perry M H, Thom M. Partitioning of carboxylase activity in nitrogen stressed sugarcane and its relationship to bundle sheath leakiness to CO2, photosynthesis and carbon isotope discrimination[J]. Aust. J. Plant Physiol., 1995, 22: 903-911.
    [126] Ivingston N J, Guy R D, Sun Z J, et al. The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca(Moench) Voss) seedlings[J]. Plant Cell Environ, 1999, 22: 281-289.
    [127] Bowman W D, Conant R T. Shoot growth dynamic and photosynthetic response to increased nitrogen availability in the alpine willow Salix glauca[J]. Oecologia, 1994, 97: 93-99.
    [128]李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20 (1):22-28.
    [129]曲桂敏.钾对苹果树水分利用效率及有关参数的影响[J].土壤学报,2000,5:257-262.
    [130]康绍忠,史文娟,胡笑涛.调亏灌溉对玉米生理指标及WUE的影响[J].农业工程学报,1998,14(2):82-87.
    [131]孙双峰,黄建辉,林光辉,等.稳定同位素技术在植物水分利用研究中的应用[J].生态学报,2006,25(9):2362-2371.
    [132] Sandquist D R, Ehleringer J R. Carbon isotope discrimination differences within and between contrasting populations of Encelia farinosa raised under common-environment conditions[J]. 2003, Oecologia, 134: 463-470.
    [133] Steven C, Grossnickle S F, Russell J H. Variation in gas exchange and water use efficiency patterns among populations of western redcedar species growing under different soil water availability[J]. Trees, 2005, 19: 32-42.
    [134] Osorio J, Pereira J S. Genotypic differences in water use efficiency and 13C discrimination in Eucalyptus globules[J]. Tree Physiology, 1994, 4: 871-882.
    [135] Saur M, Sigenthaler U. The climate-carbon isotope relationship in tree rings and the significance of site conditions[J]. Plant Phsiol., 1995, 40: 320-330.
    [136]韩兴国,严昌荣,陈灵芝.暖温带地区几种木本植物碳稳定同位素的特点.应用生态学报,2000,11(4):497-500.
    [137] White J W, Castillo J A, Ehleringer J R. Association between productivity, root growth and carbon isotope discrimination in Phaseolus vulgaris under water deficit[J]. Australian Journal of Plant Physiology 1990, 17: 89-198.
    [138] Condon A G, Riehards R A, Farquhar C D. Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field-grown wheat[J]. Crop Science, 1987, 27: 996-1001.
    [139] Ehleringer J R. 13C/12C (fractionation and its utility in terrestrial plant studies. In Carbon Isotope Techniques (eds D.C.Coleman & B. Fry), Academic Press, San Diego. 1991, 187-100.
    [140]李荣生,许煌灿,尹光天,等.植物水分利用效率的研究进展[J].林业科学研究,2003,16(3) :366-371.
    [141]金善宝.中国小麦学[M].北京,中国农业出版社,1996,759-758.
    [142] Elumalai S, Bahieldinl A, Wraith J M, et al. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barely HVA1 gene[J]. Plant Science, 2000, 155: 1-9.
    [143] Gorin M B, Yancey S B, Cline J, et al. The major intrinsic protein(MIP)of the bovine lens fiber membrane: Characterization and structure based on cDNA cloning[J]. Cell, 1984, 39: 49-59.
    [144] King L S, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology[J]. Nature, 2004, 5: 687-698.
    [145] Kammerloher W, Fischer U, Piechottka G P, et al. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system[J]. The Plant Journal, 1994, 6: 187-199.
    [146] Chaumont F, Barrieu F, Wojcik E, et al. Aquaporins constitute a large and highly divergent protein family in maize[J]. Plant Physiology, 2001, 125: 1206-1215.
    [147] Sakurai J, Ishikawa F, Yamaguchi T, et al. Identification of 33 rice aquaporin genes and analysis of their expression and function[J]. Plant Cell Physiology, 2005, 46: 1568-1577.
    [148] Suga S, Imagawa S, Maeshima M. Specificity of the accumulation of mRNAs and proteins of the plasma membrane and tonoplast aquaporins in radish organs[J]. Planta, 2001, 212: 294-304.
    [149] Moshelion M, Becker D, Biela A, et al. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation[J]. The Plant Cell, 2002, 14: 727-739.
    [150] Zelazny E, Borst J W, Muylaert M, et al. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 12359-12364.
    [151] Jung J S, Preston G M, Smith B L, et al. Molecular structure of the water channel through aquaporin CHIP.The hourglass model[J]. J Biol Chem, 1994, 269: 14648-14654.
    [152] Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1[J]. Nature, 2000, 407: 599-605.
    [153]孙梅好.植物水孔蛋白的功能研究[D].中国科学院植物生理生态研究所博士学位论文,2001.
    [154]刘红艳.水稻水孔蛋白与钾通道协同调控及参与种子萌发[D].中国科学院植物生理生态研究所博士学位论文,2006.
    [155] Henzler T, Waterhouse R N, Smyth A J, et al. Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus[J]. Planta, 1999, 10: 50-60.
    [156] Otto B, Kaldenhoff R. Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum[J]. Planta, 2000, 211: 167-172.
    [157] Kaldenhoff R, Grote K, Zhu J J, Zimmermann U. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana[J]. The Plant Journal, 1998, 14: 121-128.
    [158] Beaudette P C, Janet Yee M C, Neil Emery R J. Relationships of root conductivity and aquaporin gene expression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA[J]. Journal of Experimental Botany, 2007, 58(6): 1291-1300.
    [159] Tyerman S D, Niemietz C M, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles[J]. Plant Cell Environ, 2002, 25: 173-194.
    [160] Vera-Estrella R, Barkla B J, Bohnert H J, et al. Novel regulation of aquaporins during osmotic stress[J]. Plant Physiology, 2004, 135: 2318-2329.
    [161] Boursiac Y, Chen S, Luu D T, et al. Early effects of salinity on water transport in Arabidopsis Roots: molecular and cellular features of aquaporin expression[J]. Plant Physiology, 2005, 139: 790-805.
    [162] Kaldenhoff R, Ribas-carbo M, Sans J F, et al. Aquaporins and plant water balance[J]. Plant, Cell and Environment, 2008, 31: 658-666.
    [163] Sarda X, Tousch D, Ferrare K, et al. Two TIP-like genes encoding aquaporins are expressed in sun?ower guard cells[J]. The PlantJournal, 1997, 12: 1103-1111.
    [164]崔香环.蚕豆水孔蛋白可能参与微丝骨架对气孔运动的调节[J].植物生理学通讯,2007,43:61-64.
    [165]杨惠敏,张晓艳,王根轩.植物水通道的生理生态特性及其参与气孔运动的研究进展[J].植物学通报,2005,22 (3):276-283.
    [166] Tornroth-Horsefield S, Wang Y, Hedfalk K, et al. Structural mechanism of plant aquaporin gating[J]. Nature, 2006, 439: 688-694.
    [167]俞德俊.中国果树分类学[M],北京:中国农业出版社,1979.
    [168]任庆棉,刘悍中,刘立军.几种野生苹果的抗寒性评价[J]..北方果树,1998,4:23-26.
    [169]刘悍中,任庆棉,刘立军.苹果砧木资源抗腐烂病研究与评价[J].果树科学,1990,2:65-70.
    [170]叶乃好,翟衡,杜中军,等.水分胁迫条件下10种苹果砧木抗旱性评价[J].果树学报,2004,21(5):395-398.
    [171]翟衡,杜中军,罗新书.苹果砧木耐盐性鉴定[J].山东农业大学学报,1999,30(3).
    [172]白团辉,马锋旺,李翠英,等.苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析[J].中国农业科学,2008,41(12):4140-4148.
    [173]苑克俊,刘庆忠,李圣龙,等.利用数码相机测定果树叶面积的新方法[J].园艺学报,2006,33(4):829-932.
    [174]李合生.植物生理生化实验原理和术[M].北京:高等教育出版社,2000.
    [175] Bradford M M. A rapid and sensitive method for quantities of microgram of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254.
    [176]张志良,瞿伟菁.植物生理学实验指导[M] .北京:高等教育出版社,2003.
    [177]高俊凤.植物生理学实验指导[M].高等教育出版社,2006.
    [178] Gerber M A, Dawson T E. Genetic variation in and covariation between leaf gas exchange, morphology, and development in polygonum arenastrum an annual plant[J]. Oecologia, 1990, 85: 153-158.
    [179] Zhang J W, Cregg B M. Growth and physiological responses to varied environments among populations of Pinus ponderosa. [J]. Forest Ecology and Management, 2005, 219: 1-12.
    [180] Condon A G, Richards R A, Rebetzke G J, et al. Improving intrinsic water-use efficiency and crop yield [J]. Crop Science, 2002, 42: 122-131.
    [181] Rebetzke G J, Condon A G, Richards R A,et al. Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed Bread Wheat[J]. Crop Sciences 2002, 42: 739-745.
    [182] Brendel O, Pot D, Plomion C, et al. Genetic parameters and QTL analysis of delta 13C and ring width in maritime pine[J]. Plant, Cell & Environment, 2002, 25: 945-953.
    [183] Guehl J M, Domenach A M, Bereau M, et al. Functional diversity in an Amazonian rainforest ofFrench Guyana: a dual isotope approach (delta 15N and delta 13C) [J]. Oecologia 1998, 116: 316-330.
    [184] Roupsard O, Joly H I, Dreyer E. Variability of initial growth, water-use efficiency and carbon isotope discrimination in seedling of Faidherbia albida (Del.) A. chev., a multipurpose tree of semi-arid Africa. Provenance and drought effects[J]. Annales Des Sciences Forestières 1998, 55: 329-348.
    [185] Bonal D, Sabatier D, Montpied P, et al. Interspecific variability ofδ13C among trees in rainforests of French Guiana: functional groups and canopy integration[J]. Oecologia, 2000, 124: 454-468.
    [186] Fischer D G, Hart S C, Whitham T G, et al. Ecosystem implications of genetic variation in water-use of a dominant riparian tree[J]. Oecologia, 2004, 139: 288-297.
    [187] Zhang X, Wang T, Li C. Different responses of two contrasting wheat genotypes to abscisic acid application[J]. Biologia Plantarum, 2005, 49(4): 613-616.
    [188]孙惠玲,马剑英,陈发虎,等.准噶尔盆地伊犁郁金香稳定碳同位素组成变化特征[J].植物学报,2009,44 (1):86-95.
    [189] Saurer M, Sigenthaler U, Schweingruber F. The climate-carbon isotope relationship in tree rings and the significance of site conditions[J]. TellusB, 1995, 468: 320-330.
    [190] Casper B B, Forseth I N, Wait D A. Variation in carbon isotope discrimination in relation to plant performance in a natural population of Cryptantha ?ava[J]. Oecologia, 2005, 145: 541-548.
    [191] Zhang J W, Marshall J D. Population differences in water-use efficiency of well-watered and water-stressed western larch seedlings[J]. CAN.J.FOR.RES, 1994, 24: 92-99.
    [192]张岁岐,山仑,邓西平.小麦进化中水分利用效率的变化及其与根系生长的关系[J].科学通报,2002,47(17):1327-1331.
    [193]王青宁,唐静,衣学慧.基于多元统计评价毛白杨无性系的抗旱性[J].西北林学院学报,2005,20(4):21-26.
    [194] Passioura J B. Water in the soil-plant-atmosphere continuum. In: (eds) Lange O L, Nobel P S, Osmond C B and Ziegler H, Physiological Plant Ecology 2. Water Relations and Carbon As-similation, Encyclopedia of Plant Physiology, New Series, Volume 12B. Springer Verlag, Berlin. 1982, 5-33.
    [195]李育农.苹果起源演化的考察研究[J].园艺学报,1999,26(4):213-220.
    [196]景蕊莲.冬小麦不同基因型幼苗形态性状遗传力和抗旱性研究[J].西北植物学报,1997,17(2):152-157.
    [197] Boogaard R V, Aleewijnse D, Veneklaas E J, et al. Growth and water use-efficiency of 10 Triticum aestivum cultivars at different water availability in relation to allocation[J]. Plant cell and environment, 1997, 20: 200-210.
    [198]鲍士旦.土壤农化分析[D].北京:中国农业出版社,2000.
    [199] Monclus R, Dreyer E, Delmotte F M, et al. Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoides×P. nigra clones[J]. New Phytologist, 2005, 167: 53-62.
    [200] Brouwer R. Functional equilibrium: sense or nonsense[J]. Agric Sci, 1983, 31: 335-348.
    [201]张正斌,山仑.小麦水分利用效率研究进展.生态农业研究[J].1997,5(3):28-32.
    [202] Dorlodot S, Forster B, Pagès L, et al. Root system architecture: opportunities and constraints for genetic improvement of crops[J]. TRENDS in Plant Science, 2007, 12(10): 474-481.
    [203] Roderick M L, Berry S L, Noble I R. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves[J]. FunctionalEcology, 2000, 14: 423-437.
    [204] Stanhill G. Water use efficiency[J]. A dvances in agronomy, 1986, 39: 53- 85.
    [205] Lamont B B, Groom P K, Cowling R M. High leaf mass per area of related species assemblages may re?ect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations[J]. Functional Ecology, 2002, 16: 403-412.
    [206] Hoffmann W A, Franco A C, Moreira M Z, et al. Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees[J]. Functional Ecology, 2005, 19: 932-940.
    [207] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821-827.
    [208] Marron N, Villar M, Dreyer E, et al. Diversity of leaf traits related to productivity in 31 Populus deltoides×Populus nigra clones. Tree Physiology, 2005, 25: 425-435.
    [209] Masle J, Farquhar G D. Effects of so il st rength on the relation of water use eff iciency and grow th to carbon isotope discrimination in wheat seedlings[J]. Plant Physiol, 1988, 83: 32- 38.
    [210] Rao N R C, Wright G C. Stability of the relationship between specific leaf area and carbon isotope discrim ination across environment in peanut [J]. Crop Sci, 1994, 34: 98 -103.
    [211]蒋高明.植物气孔阻力及其测定[J].植物杂志,1996,6:27-28.
    [212]马书荣,阎秀峰,陈柏林.不同海拔裂叶沙参和泡沙参气孔形态的对比研究[J].东北林业大学学报,1999,27 (6) :94-97.
    [213]赵凤君,沈应柏,高荣孚,等.黑杨无性系间长期水分利用效率差异的生理基础[J].生态学报,2006,26(7):2079-2086.
    [214]李少昆,马富裕,李蒙春,等.棉花叶片水分利用效率及其影响因素的研究[J].棉花学报,1997,9(4):314-317.
    [215]赵明,李少坤,王美云.影响玉米单叶水分利用效率内在因素研究[J].中国农业大学学报,1997,2(1):89-94.
    [216] Wright G, Hubick K T, Farquhar G D. Discrimination in carbon isotopes of leaves correlates with water-use efficiency of field grown peanut cultivars[J]. Aust J Plant Physiol, 1988, 15: 85-25.
    [217] Silim S N, Guy R D, Patterson T B, et al. Plasticity in water-use efficiency of Picea sitchensis, P. glauca and their natural hybrids[J]. Oecologia, 2001, 128: 317-325.
    [218] Sun Z J, Livingston N J, Guy R D, et al. Stable isotopes as indicators of increased water use efficiency and productivity in white spruce (Picea glauca (Moench) Voss) seedlings[J]. Plant Cell Environ, 1996, 19: 887-894.
    [219] Martin B J, Nienhuis G K, Schaefer A. Restrication fragment length polymorphisms ass ociated with water use efficiency in tomato[J]. Science, 1989, 243 : 1725-1728.
    [220] Ehleringer J R. Correlations between carbon isotope discrimination and leaf conductance to water vapour in common beans[J]. Plant Physiol, 1990, 93: 1422-1425.
    [221] Hubick K T, Farquhar J D, Shorter R. Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm[J]. Aust J Plant Physiol, 1986, 13: 803-816.
    [222]牛书丽.浑善达克沙地优势豆科植物光合生理特性研究[D].中国科学院植物研究所博士学位论文,2004.
    [223] Hikosaka K, Shigeno A, The role of Rubisco and cell walls in the interspeciec variation in photosynthetic capacity[J]. Oecologia, 2009, DOI 10.1007/s00442-009-1315-z.
    [224]郑炳松,程晓建,蒋德安,等.钾元素对植物光合速率Rubisco和RCA的影响[J].浙江林学院学报,2002,19:104-108.
    [225]许大全,沈允钢.光合作用的限制因素[M].科学出版社,1999,P:262-276.
    [226]马剑英,方向文,夏敦胜,等.荒漠植物红砂叶片元素含量与气候因子的关系[J].植物生态学报,2008,32 (4): 848-857.
    [227] Damatta F M, Loos R A, Silva E A, et al. Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre[J]. Trees, 2002, 16: 555-558.
    [228] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination in photosynthesis[J]. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 503-537.
    [229] Hamerlynck E P, Huxman T E, McAuliffe J R, et al. Carbon isotope discrimination and foliar nutrient status of Larrea tridentate (creosote bush) in contrasting Mojave Desert soils[J]. Oecologia, 2004, 138: 210-215.
    [230] Ares A, Fownes J H. Water supply regulates structure, productivity, and water use efficiency of Acacia koa forest in Hawaii[J]. Oecologia, 1999, 121: 458-466.
    [231] Anderson J E, Kriedemann P E, Austin M P, et al. Eucalypts forming a canopy functional type in dry sclerophyll forests respond differentially to environment[J]. Australian Journal of Botany, 2000, 48: 759-775.
    [232] Coursol S, Fan L M, Stunff L, Spiegel S, et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins[J]. Nature, 2003, 423: 651-654.
    [233] Wang X Q, Ullah H, Jones A M, et al. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells[J]. Science, 2001, 292: 2070-2072.
    [234] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406: 731-734.
    [235] Bright J, Desikan R, Hancock J T, et al. ABA induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis[J]. Plant J, 2006, 45: 113-122.
    [236] Sokolovski S, Hills A, Gay R, et al. Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells[J]. Plant J, 2005, 43: 520-529.
    [237] Allen G J, Chu S P, Schumacher K, et al. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant[J]. Science, 2000, 289: 2338-2342.
    [238] Murata Y, Pei Z M, Mori I C, et al. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants[J]. Plant Cell, 2001, 13: 2513-2523.
    [239] Cramer M D, Nagel O W, Lips S H, et al. Reduction, assimilation and transport of N in normal and gibberellin deficient tomato plants[J]. Physiol Plant, 1995, 95: 347-354.
    [240] Saibo N J, Vriezen W H, Beemster GT, et al. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins[J]. Plant J, 2003, 33: 989-1000.
    [241] Lohse G, Hedrich R. Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells[J]. Planta, 1992, 188: 206-214.
    [242] Blatt M R, Thiel G. K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin[J]. Plant J, 1994, 5: 55-68.
    [243] Kaldenhoff R, Kolling A, Meyers J, et al. The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as indifferentiating cells and encodes a putative channel protein of the plasmalemma[J]. The Plant Journal, 1995, 7: 87-95.
    [244] Kaldenhoff R, Kolling A, Richter G. Regulation of the Arabidopsis thaliana aquaporin gene AthH2 (PIP1b) [J]. Journal of Photochemistry and Photobiology, 1996, 36: 351-354.
    [245] Thompson A J, Andrews J, Mulholland B J, et al. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion[J]. Plant Physiology, 2007, 143: 1905-1917.
    [246] Huang R F, Zhu M J, Kang Y, et al. Identification of Plasma Membrane Aquaporin in Guard Cells of Vicia faba and Its Role in Stomatal Movement[J]. Acta Botanica Sinica, 2002, 44(1): 42-48.
    [247] Biela A, Grote K, Otto B, et al. The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol[J]. The Plant Journal, 1999, 18: 565-570.
    [248] Daniels M J, Mirkov T E, Chrispeels M J. The plasma membrane of Arabidopsis thaliana contains a mercury insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP[J]. Plant Physiology, 1994, 106: 1325-1333.
    [249] Johanson U, Karlsson M, Johansson I, et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiology, 2001, 126: 1358-1369.
    [250] Otto B, Kaldenhoff R. Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum[J]. Planta, 2000, 211: 167-172.
    [251] Yu Q J, Hu Y L, Li J F,et al. Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought resistance[J]. Plant Sci, 2005, 169: 647-656.
    [252] Yamada S, Komori T, Myers P N, et al. Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior[J]. Plant Cell Physiol, 1997, 38: 1226-1231.
    [253] Alexandersson E, Fraysse L, Sjovall-Larsen S, et al. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Mol. Biol., 2005, 59: 469-484.
    [254] Xue J, Yang F, Gao J. Isolation of Rh-TIP1;1, an aquaporin gene and its expression in rose ?owers in response to ethylene and water deficit[J]. Postharvest Biol. Technol, 2008, doi:j.postharvbio.2008.08.011
    [255] Jang J K, Kim D G, Kim Y O, et al. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana[J]. Plant Molecular Biology, 2004, 54: 713-725.
    [256] Suga S, Komatsu S, Maeshima M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings[J]. Plant and Cell Physiology, 2002, 43: 1229-1237.
    [257]连红莉.响应水分胁迫的稻水孔蛋白[D].北京中国科学院研究生院博士学位论文,2006.
    [258]苏维埃.生物节水技术及其发展前景[J].北京香山科学会议,2005.
    [259] Lovisolo C, Perrone I, Hartung W, et al. An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought[J]. New Phytologist, 2008,180: 642-651.
    [260] Daviesw J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Ann.Plant siol. Plant Molec. Biol., 1991, 42: 55-76.
    [261] Imai R, Moses M S, Bray E A. Expression of an ABA-induced gene of tomato in transgenic tobacco during periods of water deficit[J]. Journal of Experimental Botany, 1995, 46: 1077-1084.
    [262] Mitchell R A, Mitchell V J, Lawlor D V V. Response of wheat canopy C02 and water gas-exchange to soil water content under ambient and elevated CO2[J]. Change Biol., 2001, 7: 599-611.
    [263] Li C, Junttila O, Heino P, et al. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application[J]. Tree Physiology, 2003, 23: 481-487.
    [264] Van Kooten O, Snel J F H. The use of chlorophyll ?uorescence nomenclature in plant stress physiology[J]. Photosyn. Res, 1990, 25: 147-150.
    [265] Arnon D I. Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris[J]. Plant Physiol, 1949, 24: 1-15.
    [266] Lilley R C, Walker D A. An improved spectrophotometric assay of ribulose bisphosphate carboxylase[J]. Biochim Biophys Acta, 1974, 358: 226-229.
    [267] Beaudoin N, Serizet C, Gosti F, et al. Interactions between abscisic acid and ethylene signaling cascades[J]. Plant Cell, 2000, 12: 1103-1116.
    [268] Chen C W, Yang Y W, Lur H S, et al. A novel function of abscisic acid in the regulation of rice root growth and development[J]. Plant Cell Physiol, 2006, 47: 1–13.
    [269] Chen G, Shi Q, Lips S H, et al. Comparison of growth of ?acca and wild-type tomato grown under conditions diminishing their differences in stomatal control[J]. Plant Science , 2003, 164: 753-757.
    [270] Kage H, Kochler M, Stützel H. Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation[J]. European Journal of Agronomy, 2004, 20: 379-394.
    [271] Yin C, Duan B, Wang X, et al. Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application[J]. Plant Science, 2004, 167: 1091-1097.
    [272] Fischer E K, Raschke K. Effects of abscisic acid on photosynthesis in whole leaves: changes in CO2 assimilation, levels of carbon reduction cycle intermediates, and activity of ribulose 1,5-bisphosphate carboxylase[J]. Planta, 1986, 169: 536-545.
    [273] Popova L P, Tsonev T D, Lazova G N, et al. Drought and ABA-induced changes in photosynthesis of barley plants[J]. Physiol Plant, 1996, 96: 623-629.
    [274] Xie Z, Jiang D, Dai T, et al. Effects of exogenous ABA and cytokinin on leaf photosynthesis and grain protein accumulation in wheat ears cultured in vitro[J]. Plant Growth Regulation, 2004, 44: 25-32.
    [275] Dubbe D R, Farquhar G D, Raschke K. Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata[J]. Plant Physiol, 1978, 62: 413-417.
    [276] Mawson B T, Colman B, Cummins W R. Abscisic acid and photosynthesis in isolated leaf mesophyll cell[J]. Plant Physiol, 1981, 67: 233-236.
    [277] Terashima I, Wong S C, Osmond C B, et al. Characterization of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies[J]. Plant Cell Physiol, 1988, 29:385-394.
    [278] Mott K A. Effects of patchy stomatal closure on gas exchange measurements following abscisic acid treatment[J]. Plant Cell Environ, 1995, 18: 1291-1300.
    [279] Bradford K J, Sharkey T D, Farquhar G D. Gas exchange, stomatal behavior, and d13C values of the flacca tomato mutant in relation to abscisic acid[J]. Plant Physiol, 1983, 72: 245-250.
    [280] ?esták Z. Photosynthesis during leaf development.In: Pessarkli M.(ed.) Handbook of Photosynthesis. New York–Basel–Hong Kong: Marcel Dekker. 1997. 633-660.
    [281] Matile P. Chloroplast senescence. In: Baker N&Thomas H.(eds.)Crop Photosynthesis: Spatial and Temporal Determinants.Amsterdam: Elsevier.1992.P.413-440.
    [282] Ginsburg S, Schellenberg M, Matile P. Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin[J]. Plant Physiol, 1994, 105: 545-554.
    [283] Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12): 3317-3325.
    [284] Quarrie S A, Jones H G. Effects of abscistic acid and water stress on development and morphology of wheat[J]. Journal of Experimental Botany, 1977, 28: 192-203.
    [285] Franks P J, Farquhar G D. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana[J]. Plant Physiology, 2001, 2(125): 935-942.
    [286] Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 199-222.
    [287] Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants[J]. Journal of Experimental Botany, 2004, 55: 225-236.
    [288]段宝利.遮阴与外源脱落酸喷施对对粗枝云杉不同种群抗旱性的影响[D].中国科学院成都生物研究所博士学位论文,2006.
    [289] Li C, Yin C, Liu S. Different responses of two contrasting Populus davidiana populations to exogenous abscisic acid application[J]. Environmental and Experimental Botany, 2004, 51: 237-246.
    [290] Jiang F, Hartung W. Long distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal[J]. Journal of Experimental Botany, 2008, 59: 37-43.
    [291] Hamerlynck E P, Huxman T E, McAuliffe J R, et al. Carbon isotope discrimination and foliar nutrient status of Larrea tridentata(creosote bush) in contrasting Mojave Desert soils[J]. Oecologia, 2004, 138: 210-215.
    [292] Watling J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J]. Plant Physiology, 2000, 123(3): 1143-1152.
    [293]赵立新,荆家海.旱地冬小麦施肥效应研究[J].干旱地区农业研究,1991,4:46-52.
    [294] Camp C R, Sadler E J. Irrigation, deep tillage, and nitrogen management for a corn-soybean rotation[J]. Trans.ASAE, 2002, 45(3): 601-608.
    [295] Halvorson A D, Reule, C A. Nitrogen fertilizer requirements in an annual dryland cropping system[J]. Agron J. 1994, 86: 315-318.
    [296] Fife D N, Nambiar E K S. Changes in the canopy and growth of Pinus radiata in response to nitrogen supply[J]. For. Ecol. Manage. 1997, 93: 137-152.
    [297] Saneoka H, Moghaieb R E A, Premachandra G S, et al. Nitrogen nutrition and water stress effects oncell membrane stability and leaf water relations in Agrostis palustris Huds[J]. Environ. Exp. Bot, 2004, 52: 131-138.
    [298] Van Schaik A H, Struik P C, Damian T G. Effects of irrigation and N on the vegetative growth of Aloe barbadensis Mill, Aruba[J]. Tropic. Agric, 1997, 74: 104-109.
    [299] Ewers B E, Oren R, Phillips N, et al. Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda[J]. Tree physiology, 2001, 21: 841-850.
    [300]王翔.青海杨不同种群对不同水分和施肥反应的差异[D].中国科学院成都生物研究所硕士学位论文,2005.
    [301] JoséL B, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6: 280-287.
    [302] Dorlodot S, Forster B, Pagés L, et al. Root system architecture:opportunities and constraints forgenetic improvement of crops[J]. Trends in Plant Science, 2007, 12: 474-482.
    [303] Donovan L A, Ehleringer J R. Water stress and use of summer precipitation in a Great Basin shrub community[J]. Funct. Ecol, 1994, 8: 289-297.
    [304] Peek M S, Forseth I N. Microhabitat responses to resource pulses in the aridland perennial, Cryptantha ?ava[J]. J. Ecol, 2003, 91: 457-466.
    [305] Singh B, Singh G. Biomass partitioning and gas exchange in Dalbergia sissoo seedlings under water stress[J]. Photosynthetica, 2003, 41 (3): 407-414.
    [306] Tilman D. Mechanisms of plant competition[M]. In: Crawley MMJ(Eds.), Plant Ecology, 2nd ed.Vic., Australia:Blackwell Scientific Publications. 1997, 239-261
    [307] Chapin F S. Integrated responses of plants to stress[J]. Bioscience, 1991, 41(1): 29-36.
    [308]史作民,程瑞梅,刘世荣.高山植物叶片δ13C的海拔响应及其机理[J].生态学报,2004,24:2901-2906.
    [309] Brück H, Payne W A. Sattelmacher B.Effects of Phosphorus and Water Supply on Yield, transpirational water-use efficiency, and carbon isotope siscrimination of Pearl Millet[J]. Crop Science, 2000, 40: 120-125.
    [310] Cooper R B, Blaser R E, Brow R H. Potassium nutrition effects on net photosynthesis and morphology of Alfalfa[J]. Soil Sciences, 1967, 31: 231-235.
    [311] Bednarz C W, Oosterhuis D W, Evans R D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency[J]. Environmental and Experimental Botany, 1998, 39: 131-139.
    [312] Lone P M, Khan N A. The effects of rate and timing of N fertilizer on growth, photosynthesis, N accumulation and yield of mustard (Brassica juncea) subjected to defoliation[J]. Environmental and Experimental Botany, 2007, 60: 318-323.
    [313]赵成义,宋郁东,王玉潮,等.几种荒漠植物地上生物量估算的初步研究[D].应用生态学报,2004,15(1):49-52.
    [314]张守仁.叶绿素荧光动力学参数的意义及讨论[D].植物学通报,1999,16(4):444-448.
    [315] Dietz K J, Schreiber U, Heber U. The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes[J]. Planta, 1985, 166(2): 219-226.
    [316]张绪成,上官周平.施氮对旱地不同抗旱性小麦叶片光合色素含量与荧光特性的影响[D].核农学报,2007,21 (3):299-304.
    [317] Catsk? J. Photosynthesis during leaf development.In: Pessarkli M.(ed.) Handbook of Photosynthesis. New York–Basel–Hong Kong: Marcel Dekker.1997, P.633-660.
    [318] Pinto M E, Casati P, Hsu T P, et al. Effects of UV-B radiation on growth, photosynthesis, UV-B}absorbing compounds and NADP}malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions[J]. Journal of Photochemistry and potobiology B: Biology, 1999, 48(2): 200-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700