华北主要森林类型的碳汇功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球碳循环是全球气候变化研究的核心问题之一,森林生态系统碳循环是全球碳循环的重要组成部分,目前在全球碳循环的研究中还存在很大的不确定性,这种不确定性同样存在于森林生态系统碳循环的研究中,尤其表现在对区域森林生态系统碳库大小及其与大气CO_2交换通量的估计上。因此准确估计区域森林生态系统碳库的大小及其相关碳库之间的交换通量一直是森林生态系统碳循环研究中的热点与难点。本文以华北油松、辽东栎、华北落叶松、山杨、桦木5种主要森林类型为研究对象,通过对这些森林类型主要建群种不同组织器官的含碳率、区域森林生态系统碳贮量的估算方法、碳贮量的大小及固碳能力等方面进行了研究,旨在探索精确估算区域森林生态系统的碳库大小及碳汇能力的合适方法,寻找减少目前森林生态系统碳循环研究中的不确定性的途径,经过几年的大量研究,在以下一些方面取得了进展。
     (1)采用高精度的元素分析法,首次取得了华北主要森林类型8个乔木、10个灌木建群种各组分含碳率的精确测定值,并在林木个体及林分两个层次上系统地分析了这些树种不同组分含碳率的变化特征。这些树种各组分平均含碳率分别为辽东栎0.4750、白桦0.5125、山杨0.4880、椴树0.4764、油松0.5105、侧柏0.5010、华北落叶松0.5158、红皮云杉0.5118、10种灌木0.4897;7个乔木树种林分的平均含碳率分别为辽东栎0.4761、白桦0.5008、山杨0.4859、油松0.5030、侧柏0.5053、华北落叶松0.5097、红皮云杉0.5111。针叶树种各组分平均含碳率普遍高于阔叶树种,平均高出1.6%~3.4%,相应的针叶林分的平均含碳率也高于阔叶林。
     (2)研究表明林分生物量与蓄积量的转换因子BEF(Biomass Expansion Factor)同林分总生物量与干生物量比值及树干木材的基本密度密切相关,其关系式为BEF=ρ×(W_t/W_s),并根据W_t/W_s及ρ值的变化范围推算了华北5种主要森林类型林分的BEF值的理论变化范围,这一理论推算结果与实际变化范围基本一致。应用多种模型研究了华北5种森林类型BEF值与林分活立木蓄积之间的关系,结果表明通过建立林分生物量转换因子(BEF)与林分活蓄积量之间的回归模型来估算林分的生物量,对于华北这5种森林类型难以获得满意的结果。
     (3)研究表明华北5种主要森林类型林分各部分生物量与林分活立木蓄积之间存在极显著的线性相关关系,经综合比较分析后认为基于森林资源清查统计数据对华北5
    
     中文摘要
    种森林类型林分各部分生物量估计的最优模型应为W=a+bV的形式,并从理论上证
    明了这种建立在林分水平上的生物量线性估计模型可直接推广应用到区域尺度。
    O)首次提出了以森林资源清查统计数据为基础的区域林分生物量相容性线性估计
    模型,使得在保证总生物量估计精度的前提下,能够对森林各组分生物量进行估计,
    这种方法上的改进具有重要理论意义与实际应用价值。大量的计算、分析表明这种相
    容性线性估计模型对林分各不同部分生物量的估计都达到了较高的精度,以95%可靠
    性估计油松、华北落叶松、白烨、辽东栋林分的总生物量、地上生物量及干(带皮)生
    物量的预估精度在98%以上,根生物量的预估精度在95%以上,枝、叶生物量的预
    估精度在92%以上。山杨林分的总生物量、地上生物量、于(带皮)生物量的的预估精
    度在96%以上,枝、叶生物量的预估精度也在92%以上。
    O)首次提出了基于森林资源清查统计数据的林分生物量估计中幼林蓄积修正系数
    概念 CM(Coefficient ofwlume A山"stment),并建立了山杨、白棋、油松三种森林类
    型的幼林林分蓄积修正系数模型,由于这些幼林蓄积修正系数模型只与森林资源清查
    的单位面积蓄积相关,因而成功地避开了其他因素的干扰,使之能够对森林资源清查
    中各森林类型幼林的蓄积数据进行较准确地修正,较好地解决了材积源生物量估算
    法中对幼林生物量估算的误差较大的问题。计算结果表明,这3种森林类型的幼林蓄
    积经修正后,平均单位面积蓄积量、生物量有了较大的提高。
    ()研究表明华北5种森林类型林分生物量年净增长量、年平均净增长量与林分总生
    物量之间紧密相关,并利用这种相关关系建立了华北5种森林类型林分生物量年净增
    长量、年平均净增长量与林分总生物量之间的线性与非线性模型。
    门利用国家森林资源清查的统计数据及论文中所建立的各种模型对华北5种主要森
    林类型的森林植被碳贮量、枯落物碳贮量及土壤碳贮量进行了估计,并估计了这5
    种森林类型的年净固碳量与年平均固碳量。
Global carbon cycle is a very important issue in the study of global climate change. Forest ecosystem carbon cycle is one of the important part of global carbon cycle, but at the present time there are considerable uncertainties in the research of global carbon cycle, which also exist in forest ecosystems carbon cycle research, especially in the estimation of carbon storage of region forest ecosystems and CO2 fluxes exchanging with other systems. Accurate estimation of the carbon storage and CO2 fluxes and reducing the estimation uncertainties for region forest ecosystems are the hot and difficult problems. As a case study with Quercus liaotungensis, Betulla platyphylla, Poplus davidiana, Pinus tabulaeformis and Larix, principis-rupprechtii in Northern China, several crucial issues have been studied, including the measurement of the tissues' carbon content of the main constructive arbor species and shrub species, the estimation methodologies of carbon storage and carbon sequestration abilities of region forest ecosystems and so on. The main results are as following:
    First, the tissues' carbon content had been measured on eight constructive arbor species and ten shrub species in Northern China by using the combustion method, and the mean tissues' carbon contents of these species were 0.4880, 0.4764. 0.5105, 0.5010, 0.5158, 0.5118, 0.4897 respectively in Quercus liaotungensis, Betulla platyphylla, Poplus davidiana, Tilia mongolica, Pinus tabulaeformis, Platycladus orientalis, Larix principis rupprechtii, Picea Koraiensis and ten shrub species(they are Corylus hrterophylla, Ostryopsis davidiana, Lespedeza bicolor, Spiraea pubescens, Rosa xanthina, Syringa oblata, Eleagnaceae umbellate, Lonicera maackii, Acer ginnala, and Hippophae rhamnoides). Based on the biomass data of stand sample plot, the mean carbon content of seven stands had been calculated, the result was 0.4761 in Quercus liaotungensis, 0.5008 in Betulla platyphylla, 0.4859 in Poplus davidiana, 0.5030 in Pinus tabulaeformis, 0.5053 in Platycladus orientalis, 0.5097 in Larix principis rupprechtii and 0.5111 in Picea Koraiensis. The variance ratio of the tissues' carbon content ranged from 1.49% to 6.32% inner species, and 2.15% to 7.48% between species. The mean tissues' carbon content of conifer species was higher than broadleaf species by 1.6%-3.4%, and the carbon content of conifer stands was also higher than broadleaf stands.
    Second, the study results show that the biomass expansion factors (BEF) for main forest types in Northern China were closely related with the ratio of stand total biomass to stem biomass (Wt/Ws] and also were closely related with the timber basic density(p). The
    formula of BEF is BEF=p×(Wt/Ws). According to the changing values of Wt/Ws and p,
    
    
    
    the theory BEF for 5 main forest types have been calculated, and the theoretic value of BEF is rather consistent with the actual BEF value. Various models have been applied to study the relationship between BEF of the 5 forest types in Northern China and stand growing stock, and the results showed that by developing the regressive models concerning BEF and stand growing stock to estimate the stand biomass it was hard to achieve satisfying results.
    Third, there are close Correlations between stand each biomass component and growing stock volume in 5 main forest types in Northern China, the optimal correlation model is the form of W = a + bV for main forest types in Northern China.
    Fourth, based on the data of national forest survey, the compatible biomass estimation models on 5 main forest types in Northern China have been brought forward, and their parameters also have been estimated and examined. A great deal calculation and analysis results showed that using this kind of model to estimate the each biomass component of stand can get more precise estimation.
    Fifth, in the stand biomass estimation based on the data of national forest survey, the concept of coefficient of volume adjustment (CVA) for young stand growing stock has been firstly put forward, and the CVA models
引文
1.《河北森林》编辑委员会主编.河北森林.北京:中国林业出版社,1988.
    2.《吉林森林》编辑委员会.吉林森林.北京:中国林业出版社,1988
    3.《辽宁森林》编辑委员会主编.辽宁森林.北京:中国林业出版社,1990.
    4.《内蒙古森林》编辑委员会主编.内蒙古森林.北京:中国林业出版社,1989.
    5.《山东森林》编辑委员会.山东森林.北京:中国林业出版社,1986
    6.《山西森林》编辑委员会.山西森林.北京:中国林业出版社,1992
    7.《陕西森林》编辑委员会主编.陕西森林.北京:中国林业出版社.西安:陕西科学技术出版社.1989.
    8.《四川森林》编辑委员会.四川森林.北京:中国林业出版社,1992
    9.《中国森林》编辑委员会编著.中国森林(第2卷针叶林).北京:中国林业出版社,1999a.
    10.《中国森林》编辑委员会编著.中国森林(第3卷阔叶林).北京:中国林业出版社,1999b.
    11.Arrhenius G.早期地球二氧化碳的增暖效应.AMBIO,1997,26(1):12~16
    12.Houghton J T.全球变暖.戴晓苏,石广玉,董敏等译.北京:气象出版社,1998
    13.白中科,姚延梼.油松侧柏人工林下枯落物对森林土壤的影响.山西林业科技,1992,2:40~44
    14.陈炳浩,陈楚莹.沙地红皮云杉森林群落生物量和生产力的初步研究.林业科学,1980,16(4):269~277
    15.陈传国,朱俊凤.东北主要林木生物量手册.北京:中国林业出版社,1989
    16.陈传国.阔叶红松林生物量的回归方程.延边林业科技,1983,(1):2~19
    17.陈大珂等.天然次生林四个类型的结机构、功能及演替.东北林业大学学报,1982,2:1~21
    18.陈尔学.合成孔径雷达森林生物量估测研究进展.世界林业研究,1999,12(6):18~23
    19.陈琳娜,肖扬,盖强,冀文孝.庞泉沟自然保护区华北落叶松森林群落生物量的初步研究.山西农业大学学报,1991,11(3):240~247
    20.陈灵芝,陈清朗,鲍显诚等.北京山区侧柏林及其生物量研究.植物学与地植物学学报.1986,10(1):17~24
    21.陈灵芝等.北京西山(卧佛寺附近)人工油松林群落学特征及生物量研究.植物生态学与地植物学丛刊,1984,8(3):173~181
    22.陈隆勋,朱文琴等.中国近45年来气候变化的研究.气象学报,1998,56(3):257~271
    23.陈宜瑜.中国全球变化的研究方向.地球科学进展.1999,14(4).
    24.陈之端.桦木科植物的系统发育和地理分布.植物分类学报,1994,32(1):1~31
    25.成俊卿主编.木材学.北京:中国林业出版社,1985
    26.董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1997.152~153
    27.董世仁等.油松林生态系统的研究(Ⅰ)山西太岳油松林的生产力初报.北京林学院学报,1980,2(1):1~20
    28.方精云,刘国华,徐嵩龄.中国陆地生态系统碳库.见:王如松,方精云,高林,冯宗炜编.现代生态学热点问题研究.北京:中国科技出版社,1996.251~277.
    29.方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594~602
    30.方精云,位梦华.北极陆地生态系统的碳循环与全球温暖化.环境科学学报,1998,18(2):113~121.
    31.方精云.中国森林生产力及其对全球气候变化的响应.植物生态学报,2000,24(5):513~517
    32.冯林,杨玉琪.内蒙古林区油松、白桦、山杨生物量研究.内蒙古林学院学报,1981,3:1~15
    33.冯宗炜,王效科,吴刚著.中国森林生态系统的生物量和生产力.北京:科学出版社.1999
    
    
    34.高甲荣.秦岭火地塘林区人工林营养元素生物循环的研究.西北林学院学报,1987,2(1):23~24
    35.高鹏,李金,刘建民.天然次生林水源涵养效益的研究.山西水土保持科技,1998,3:10~12
    36.顾亚东.华北落叶松人工林生物量和生产力的研究.[硕士学位论文].北京林业大学:北京林业大学图书馆,2000
    37.关文彬.中国东北地区白桦林植被生态学的研究-桦属植物与中国白桦林的地理分布.京林业大学学报,1998,20(4):104~109
    38.关玉秀等.油松林生态系统的研究(Ⅱ)河北承德与山西太岳油松林生产力的比较.北京林业大学学报,1986,(1):1~10
    39.郭景唐,王文新.太岳山森林土壤类型的调查研究.北京林业大学学报,1992,14(增刊1):134~142
    40.国家环保局情报所.关于全球气候变化的论争.1991.(内部资料,编号:9101)
    41.国家林业局森林资源管理司.全国森林资源统计(1994-1998).2000
    42.韩信国,李凌浩,黄建辉主编.生物地球化学概论.北京:高等教育出版社,1999.177~185
    43.韩有志,李玉娥,梁胜发,李怀云.华北落叶松人工林林木生物量的研究.山西农业大学学报,1997,17(3):278~283
    44.杭州大学化学系分析化学教研室编.分析化学手册第二分册(化学分析).北京:化学工业出版社.1982.935~941
    45.郝向春.灵空山主要森林类型枯落物生物量及持水性能.山西林业科技,2000,4:1~3
    46.郝占庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究.应用生态学报,1998,9(3):237~241
    47.贺东北,骆期邦,曾伟生.立木生物量线性联立模型研究.浙江林学院学报,1998,15(3):298~303
    48.贺庆棠.森林对地气系统碳素循环的影响.北京林业大学学报,1993,15(3):132~136
    49.黄水生.山西太岳林区阔叶林生物量和生产力的研究.[硕士学位论文].北京林业大学:北京林业大学图书馆,1999
    50.贾天会,刘士民,张国臣.辽西半干旱地区水土保持林生态效益的研究.辽宁林业科技,1994,1:26~29
    51.江洪.东灵山典型落叶阔叶林生物量的研究.暖温带森林生态系统结构与功能的研究.北京:科学出版社,1997.104~115
    52.江洪.植被生态专题研究.博士后论文.中国科学院植物研究所.1992
    53.江泽慧,彭重华著.世界主要树种木材科学特性.北京:科学出版社,2001
    54.姜景民.中国桦木属植物地理分布的研究.林业科学研究,1990,3(1):55~62
    55.蒋高明.陆地生态系统净第一性生产力对全球变化的响应.植物资源与环境,1995,4(4):53~49
    56.蒋有绪,郭泉水,马娟等著.中国森林群落分类及其群落学特征.北京:科学出版社、中国林业出版社,1998.
    57.蒋有绪.世界森林生态系统结构与功能的研究综述.林业科学研究,1995,8(3):314~321
    58.金明红.太岳山森林土壤有机碳贮量及营养元素的研究.[硕士学位论文].北京林业大学图书馆.1998
    59.金雁海,伊敏,郑明军等.大青山南坡人工油松林水土保持效益研究.水土保持研究,1998,5(3):129~134
    60.李飞.红松阔叶林及次生杨桦林生物生产力研究.生态学杂志,1984,(2):8~12
    61.李铭红,于明坚,陈启常等.青冈常绿阔叶林的碳素动态.生态学报,1996,16(6):645~651
    62.李文华,邓坤玫,李飞.长白山主要森林生态系统生物量、生产量的研究.中国科学院长白森林生态系统定位研究.1981.34~50
    63.李文华,罗天祥.中国云冷杉林生物生产力格局及其数学模型.生态学报.1997,17(5):511~518
    64.李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究.
    
    植物生态学报,1998,22(2):127~13
    65.廖军,王新根.森林凋落量研究概述.江西林业科技,2000,1:31~34
    66.林海.中国全球变化研究的战略思考.地学前缘,1997,4(1-2):9~15
    67.林业部调查规划院主编.中国山地森林.北京:中国林业出版社,1981.
    68.林业部林业研究所造林系.油松华北落叶松生物学特性的研究.林业科学,1955,1(1):1~36
    69.刘春江.北京西山地区人工油松栓皮栎混交林生物量和营养元素循环的研究.北京林业大学学报,1987,9(1):1~9
    70.刘广全,土小宁,赵士洞,孙升辉.秦岭松栎林带生物量及营养元素分布特征.林业科学,2001,37(1):28~36
    71.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报.2000,20(5):733~740
    72.刘红辉.资源遥感-从区域调查到全球变化研究.资源科学,2000,22(3):34~38
    73.刘耀宗,张经元主编.山西土壤.北京:科学出版社,1992
    74.刘志刚,马钦彦.华北落叶松人工林生物量估测方法的探讨.北京林业大学学报,1992,14(增刊1):105~113
    75.刘志刚,马钦彦.华北落叶松人工林生物量及生产力的研究.北京林业大学学报,1992,14(增刊1):114~123
    76.刘志刚.华北落叶松人工木林冠结构与光能利用的研究.[博士学位论文].北京林业大学:北京林业大学图书馆,1993
    77.罗天祥,李文华,赵士洞.中国油松林生产力格局与模拟.应用生态学报,1999,10(3):257~261
    78.罗天祥,赵士洞.中国杉木林生物生产力格局及其数学模型.植物生态学报,1997,21(5):403~415
    79.骆土寿,陈步峰,陈永富等.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量.林业科学研究,2000,13(2):123~128
    80.马钦彦,谢征鸣.中国油松林储碳量基本估计.北京林业大学学报.1996,18(3):31~34
    81.马钦彦.内蒙黑里河油松生物量的研究.内蒙古林学院学报,1987,(2):13~21
    82.马钦彦.油松分布区气候区划.北京林业大学学报,1989,11(2):1~9
    83.马钦彦.油松生物量及第一性生产力的研究.[博士学位论文].北京林业大学:北京林业大学图书馆,1988
    84.马钦彦.中国油松生物量的研究.北京林业大学学报.1989,11(4):1~10
    85.木村允(姜恕等译).陆地植物群落生产量测定法.北京:科学出版社.1981
    86.穆丽蔷,张捷,刘祥君等.红皮云杉人工林乔木层生物量的研究.植物研究,1995,15(4):551~557
    87.聂道平,王兵,沈国舫,董世仁.油松-白桦混交林种间关系研究.林业科学,1997,33(5):394~402
    88.潘愉德,Melillo J M,Kicklighter D W等.大气CO_2升高及气候变化对中国陆地生态系统的结构与功能的影响.植物生态学报,2001,25(2):175~189
    89.齐鑫山,周长瑞.侧柏油松林的群落学特征和生物量研究.山东林业科技,1991,2:1~5
    90.任振球.当代气候变化若干问题的商榷.地球科学进展,1996,11(5):504~507.
    91.阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究-含量与分布规律.生态学杂志,1997,16(6):17~21
    92.沈国舫,董世仁,聂道平.油松人工林养分循环的研究Ⅰ.营养元素的含量及分布.北京林学院学报,1985,4:1~14
    93.孙成权,陈晔.中国的全球变化研究项目评述.地球科学进展,1995,10(1):70~74
    94.孙鸿烈,封志明.资源科学研究的现在与未来.资源科学,1998,20(1):3~12
    95.唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究.林业科学,2000,36(专刊1):19~27
    
    
    96.王伯荪,余世孝,彭少麟,李鸣光编著.植物群落学实验手册.广州:广东等高教育出版社.1996.66~81
    97.王凤友.森林凋落量研究综述.生态学进展,1989,6(2):82~89
    98.王贺新.辽宁山地樟子松、油松生物产量的研究.辽宁林业科技,1989,(1):26~30
    99.王弘义,李俊清,王政权.森林生态学实验实习方法.哈尔滨:东北林业大学出版社.1987
    100.王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究.西北林学院学报,2000,15(1):9~14
    101.王孟本.晋西北油松人工林的生物量与营林前景的研究.山西大学学报(自然科学版),1988,4:98~102
    102.王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349~256
    103.王绍武,叶瑾琳.近百年全球气候变暖的分析.大气科学,1995,19(5):545~553.
    104.王万常.油松地上部分生物量的研究.山西林业科技,1985,2:10~15
    105.王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究.应用生态学报,2001,12(1):13~16
    106.王效科.中国森林生态系统的生物量、碳贮量和生物质燃烧释放的含碳气体.中国科学院生态环境研究中心.[博士论文].1997
    107.王战主编.中国落叶松.北京:中国林业出版社,1992.
    108.魏天兴,余新晓,朱金兆.山西西南部黄土区林地枯落物截持降水的研究.北京林业大学学报,1998,20(6):1~6
    109.吴刚,冯宗炜.中国油松林群落特征及生物量的研究.生态学报,1994,14(4):415~422
    110.吴征镒主编.中国植被.北京:科学出版社,1980.
    111.吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究.应用生态学报,1998,9(4)341~344
    112.向师庆,孙向阳.山西省关帝山地区棕壤的研究.北京林业大学学报,1989,11(4):11~18
    113.萧瑜.白桦天然次生林生产力研究.高原生物学集刊,1988,(8):147~157
    114.肖扬等.油松林地上部分生物量研究初报.山西林业科技,1983,(2):5~12
    115.肖瑜.陕西省不同气候区域油松人工林生物量和生产力的比较研究.植物生态学与地植物学学报,1990,14(3):237~246
    116.肖瑜.陕西省油松人工林的生产力与生态因素的相关分析.植物学报,1987,29(5):549~555.
    117.谢树成,姚檀栋,殷鸿福.冰心中的气候环境记录与全球变化研究.海洋地质与第四纪地质.1997,17(4):109~113
    118.熊毅,李庆逵主编.中国土壤(第二版).北京:科学出版社,1987
    119.胥辉.一种与材积相容的生物量模型.北京林业大学学报,1999,21(5):32~36
    120.徐德应,刘世荣.温室效应、全球变温暖与林业.世界林业研究.1992,5(1):25~32
    121.徐德应,郭泉水,阎洪等.气候变化对中国森林影响研究.北京:中国科学技术出版社.1997
    122.徐德应.大气CO_2增长和气候变化对森林影响研究进展.世界林业研究,1994(2):27~32
    123.徐德应.人类经营活动对森林土壤碳的影响.世界林业研究,1994,5:26~32
    124.徐化成等.油松天然林的地理分布和种源区划分.林业科学,1981,17(3):258~270
    125.徐化成主编.油松.北京:中国林业出版社,1993.
    126.徐振邦,戴洪才.大兴安岭主要森林类型的生物生产量.生态学杂志,1988,7(增刊):49~51
    127.严国安,刘永定.水生生态系统的碳循环及对大气CO_2的汇.生态学报,2001,21(5):827~833
    128.杨澄,刘建军,杨武.桥山森林土壤水分物理性质的分析.陕西林业科技,1998,1:24~27
    129.杨澄.刘建军.桥山油松天然林水文效应的研究.西北林学院学报,1997,12(1):29~33
    130.杨立文,石清峰.太行山主要植被枯枝落时层的水文作用.林业科学研究,1997,10(1):283~288
    131.姚延寿.京西山区油松侧柏人工混交林生物量及营养元素循环的研究.北京林业大学学报.1989,
    
    11(2):38~46
    132.叶笃正主编.中国的全球变化预研究.北京:气象出版社.1992.1~3
    133.俞德浚.山西省北部落叶松天然更新之观察.林业科学,1955,1(2):145~163
    134.云南林学院林业系.北京西山地区油松人工混交林的研究.中国林业科学.1978,3:12~20
    135.曾伟生,骆期邦,贺东北.兼容性立术生物量非线性模型研究.生态学杂志,1999,18(4):19~24
    136.翟保国,宋从和,张达,王文新.山西太岳林区森林生态定位站油松人工林生物量和生产力研究初报.北京林业大学学报,1992,14(增刊1):156~163
    137.翟保国,宋从和等.太岳林区油松人工林生物量和生产力研究.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994.508~516
    138.翟明普.北京西山地区油松元宝枫混交林生物量和营养元素循环的研究.北京林学院学报,1982,4:67~79
    139.张柏林.渭北油松人工林生产力初报.西北林学院学报,1992,7(1):64~67
    140.张柏林.子午岭地区辽东栎林生物量生产量的研究.西北林学院学报,1990,5(1):1~7
    141.张成林,周晓峰.天然次生白桦林生物量的研究.森林生态系统定位研究(1).哈尔滨:东北林业大学出版社.1991.428~435
    142.张福珠,梁辉,章慧麟,金秀兰.怀柔山地油松林氮、磷、硫生物地球化学循环的研究.环境科学学报,1991,11(2):131~141
    143.张功毅,郭泉水,陈国栋.油松天然林与人工林森林凋落物和土壤养分的比较研究.见徐化成主编
    144.张光灿,刘霞,赵玫.泰山几种林分枯落物和土壤水文效应研究.林业科技通讯,1999,6:28~29
    145.张会儒,唐守正,王奉瑜.与材积兼容的生物量模型的建立及其估计方法研究.林业科学研究,1999,12(1):25~31
    146.张万儒主编.中国森林土壤.北京:科学出版社,1986
    147.张新时,周广胜,高琼等.中国全球变化与陆地生态系统关系研究.地学前沿.1997,4(1-2):137~144.
    148.张远辉,王伟强,陈立奇.海洋二氧化碳的研究进展.地球科学进展,2000,15(5):559~564
    149.赵士洞,汪业勖,于振良等.中国森林生态系统碳循环研究.见:中国生态学会编.中国生态学会通讯2000年特刊.50~52.
    150.郑克贤.油松人工林的生产结构和生物量初探.甘肃林业科技,16~20
    151.中华人民共和国林业部.森林资源调查主要技术规定.北京:中国林业出版社,1992
    152.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518~522
    153.朱兴武,石青梅,李永良等.青海大通宝库林区乔灌木生物量的研究.青海农林科技,1993,26(1):15~20
    154.朱兴武.山杨天然次生林生物量的初步研究.青海农林科技,1988,(1):35~38
    155. Adams J M,et al.Increases in terrestrial carbon storage from the last glacial maximum to the present.Nature, 1990,348:711~714.
    156. Ajtay G L,Ketner P and Duvigneaud P.Terrestrial primary production and phytomass.In: Bolin B, et al.(ed.) The global carbon cycle.New York:John Wiley & Sons.1979.129~181
    157. Alexeyev V,Birdsey R,Stakanov V, Korotkov I.Carbon in vegetation of Russian forests:Methods to estimate storage and geographical distribution.Water,Air and Soil Pollution,1995,82:271~282
    158. Arrhenius S.On the influence of carbonic acid in air upon the temperature of the ground.The London,Edinburgh and Dublin Philosophical Magazine and Journal of Science,1896,41:237~276
    159. Arrouays H and Pelissier P.Modeling carbon storage profiles in temperate forest Humic Loamy
    
    soils of France.Soil Science,1994,157(3):185~192
    160. Barnola J M, Anklin M,Porcheron J,Raynaud D, Schwander J and Stauffer B.CO_2 evolution during the last millennium as recorded by Antarctic and Greenland ice.Tellus,1995,47B, 264-272.
    161. Batjes N H.Total carbon and nitrogen in the soil of the world. European Journal of Soils Science,1996,47:151~163
    162. Birdsey R A.Carbon storage and accumulation in United States forest ecosystems.United States Department of Agriculture Forest Service,General Technical Report W0-59 August 1992.
    163. Black T A and Harden J W.Effect of timber harvest on soil carbon storage at blodget experimental forest,California.Canadian Journal of Forest Research,1995,25:1385~1396.
    164. Biunier T,Chappellaz J,Schwander J,et al.Variations in atmospheric methane concentration during the Holocene epoch.Nature, 1995,374:46~49.
    165. Boden G,Broecker W,Johnsen S,et al.Correlations between climate records for North Atlantic sediments and Greenland ice.Nature,1993,365:143~147
    166. Boden T A,et al.TRENDS'91:A compendium of data on global change high lights.ORNL-CDLAC-49,Oak Ridge National Laboratory,Tennessee.1992.
    167. Bohn H L.Estimates of organic carbon in world soils.Soil Soi.Soc.Am.J.1976,40:468~470
    168. Bohn H L.Estimates of organic carbon in world soils.Ⅱ.Soil Soc.Am. J.1982,46:1118~1119
    169. Bolin B, Degens E T,Duvigneaud P and Kempe S.The global carbon cycle.In: Bolin B,et al.(eds.) The global carbon cycle.New York,John Wiley & Sons.1979.1~56
    170. Bolin B. Changes of land biota and their importance to the carbon cycle.Science, 1977,196:613~615
    171. Bolin B. How much CO_2 will remain in the atmosphere?In:Bolin Bet al.(eds.)The Greenhouse Effect,Climate Change and Ecosystems,SCOPE 29.Chichester:John Wiley & Sons.1986.93~155
    172. Bouwman A F and Leemans R. The Role of Forest Soil in the Global Carbon Cycle.In: McFee W W and Kelly J M.(eds.)Carbon Forms and Function in Forest Soils.Soll.Science society of America,Inc. Madison,Wisconsin, USA.1995.503~525
    173. Bouwman A F. Exchange of greenhouse gasses between terrestrial ecosystems and the atmosphere in:Bouwman A F.(ed.) Soils and the greenhouse effect. Chichester, England: John Wiley & Sons. 1990.61~127
    174. Bouwman A F.Modeling soil organic matter decomposition and rainfall erosion in two tropical soils after forest clearing for permanent agriculture.Land Degrad. Rehabil.,1989,1:125~140
    175. Braswell B H, Schimel D S,Linder B and Moore B.The Response of global terrestrial ecosystems to interannual temperature variability.Science, 1997,278:870~872
    176. Brown S,Gillespie A J R, Lugo A E. Biomass estimation methods for tropical forests with application to forest inventory data.Forest Science,1989,35(4):881~902
    177. Brown S, Gillespie A J R, Lugo A E.Biomass of south and southeast Asia.Can. J. For.Res.,1991, 21:111~117
    178. Brown S,Lugo A E, Iverson L R.Process and land for sequestering carbon in the tropical forest landscape. Water,Air and Soil Pollution,1992,64:139~155
    179. Brown S,Lugo A E.Biomass of tropical forests:A New Estimate Based on forest Volumes. Science,1984,223:1290~1293
    180. Brown S,Lugo A E.The storage and production of organic matter in tropical forests and their role in the global carbon cycle.Biotropica,1982,14:161~187
    
    
    181. Brown S, Schroeder P E.Spatial patterns of aboveground production and mortality of woody biomass for eastern U.S.forests. Ecological Applications,9:986~980
    182. Brown S.Management of forests for mitigation of green-house gas emission.In:Intergovernmental Panel on Climate Change (IPCC) ed. Climate Change 1995-Impacts, Adaptations and Mitigation of Climate Change.Cambridge University Press,Cambridge,1996.774~797.
    183. Buringh P.Organic carbon in soil of the world.In: Woodweil G W.(ed.)The role of terrestrial vegetation in the global carbon cycle.Measurement by remote sensing.New York: John Wiley & Sons.1984.9~43
    184. Cao M K, Woodward F I.Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature,1998,393:249~252
    185. Cooper C E Carbon storage in managed forests.Canadian Journal of Forest Research, 1983,13:155~166.
    186. Covington W W. Changes in forest floor organic matter and nutrient content following clear cutting in Northern Hardwood. Ecology,1981,43:173~182
    187.Crawford E.Arrhenius 1896年温室效应模型的历史回顾.AMBIO,1997,26(1):6~11
    188. Crutzen P J and Andreae M O. Biomass burning in the tropics: impact in atmospheric chemistry and biogeochemical cycles.Science, 1990,250:1669~1678
    189. Davidson E A and Ackermann I L.Changes in soil carbon inventories following cultivation of previously untilled soils.Biogeochemistry,1993,20:161~193.
    190. Detwiler R P,Hall C A S,Bogdonoff P.Land use change and carbon exchange in the tropics: Ⅱ.Estimates for the entire region.Environ. Manage,1985,9:335~344
    191. Detwiler R P.Land use change and the global carbon cycle:The role of tropical soils. Biogeochemistry, 1986,2:67~93
    192. Dixon R K, Brown S,Houghton R A,et al.Carbon pools and flux of global forest ecosystems. Science, 1994, 263:185~190
    193. Dray J R et al. Litter production in forests of the world. Adv.Eco.Res.1964, 2:101~157
    194. Edwards P J, Grubb P J.Studies of mineral cycling'in a montane rain forest in New Guinea.Ⅰ.The distribution of organic matter in the vegetation and soil.J. Ecol.1977,65:943~969
    195. Esser G.Modeling global terrestrial sources and sinks of CO2 with special reference to soil organic matter.In: Bouwman A E(ed.) Soil and the greenhouse effect.John Wiley & Sons, Chichester, England.1990.247~262
    196. Eswaran H E,Van Den Berg and Reich P.Organic carbon in soil of the world.Soil Soi.Sco.Am. J.1993,57:192~194
    197. Etheridge D M,Steele L P,Langenfelds R L,Francey R J,Barnola J M and Morgan V I.Natural and anthropogenic changes in atmospheric CO_2 over the last 1000 years from air in Antarctic ice and firn.Journal of Geophysical Research,1996,101,4115~4128
    198. Fan S,Gloor M,Mahiman J et al.A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models.Science,1998,282:442~446
    199. Fan S, Gloor M, Mahlman J et al.North American carbon sink.Science,1999,283:1815a
    200. Fang J Y, Chen A P, Peng C H, et al.Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science,2001,292:2320~2322
    201. Fang J Y, Wang G G, Liu G H, Xu S L.Forest biomass of China:an estimation based on the biomass-volume relationship.Ecological Applications,1998,8:1084~1091
    
    
    202. Fankhauser S.Valuing Climate Change. London:Earthscan Publications Ltd.1995
    203. FAO (Food and Agriculture Organization of the United Nations) Tropical Forest Assessment Project:Forest Resources of Tropical Asia.Rome. 1981
    204. FAO(Food and Agriculture Organization of the United Nations).Forest Resources Assessment 1990:Tropical Countries.FAO Forestry Paper.Rome:FAO,112.1993
    205. Feanside P M.Amazonian deforestation and global warming:Carbon stocks in vegetation replacing Brazil's Amazon forest.Forest Ecology and Management,1996,80:21~34.
    206. Ferguson E.(ed.) Climate Monitoring and Diagnostics Laboratory/Summary Report 1991,No 20,ERL, NOAA,Colorado. 1992.
    207. Foley J A.An equilibrium model of the terrestrial carbon budget.Tellus, 1995,47(B):310~319
    208. Friedli H, Lotscher H, Oeschger H,et al. Ice core record of the 13C/12C ratio of atmospheric CO_2 in the past two centuries.Nature, 1986,324:237~238
    209. Fung I.The global carbon cycle and the atmospheric record "The problem definition".In:Apps M J, Price D T.eds.Forest Ecosystems,Forest Management and the Global Carbon Cycle.Berlin Heidelberg:Springer-verlag,1996.25~34
    210. Goudrian J and Ketner P.A simulation study for the Global carbon cycle,including man's impact on the biosphere.Climate Change,1984,6:167~192
    211. Goulden M L,Munger J W,Fan S, Daube B C,Wofsy S C. Exchange of carbon dioxide by a deciduous forest:response to inerannual climate variability.Science,1996,271:1576~1578
    212. Hall F G, Shimabukuro Y E,Huemmrich K F.Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance mode.Ecol.Applic.,1995,5:993~1013
    213. Harmon M E,Ferrell W K and Franklin J F.Effects on carbon storage of conversion of old-growth forests to young forests.Science,1990,247:699~702.
    214. Harrison K, Broecker W.A strategy for estimating the impact of CO2 fertilization on soil carbon storage.Global Biogeochemical Cycles,1993,7(1):69~80
    215. Heath L S et al.Contribution of temperate forests to the worlds'carbon budget,Water,Air & Soil Pollution,1993,70:55~69
    216.Heimann M.当代全球碳循环和100年前Arrhenius与Hgbom的预见的回顾.AMBIO,1997.26(1):17~24
    217. Henderson S A and McGuffie K.Land surface characterisation in greenhouse climate simulations. International Journal of Climatology,1994,14:1065~1094
    218. Holland E, Brown S.North American carbon sink.Science,1999,283:1815a
    219. Houghton R A,Hackler J L at al.The US carbon budget:contributions from land-use change. Science,1999,285:574~578
    220. Houghton R A,Hobble J E,Melillo J M, et al.Changes in carbon content of terrestrial biota and soil between 1860 and 1980: A net release of CO_2 to the atmosphere.Ecological Monogragh,1983,53: 235~262.
    221. Houghton R A,Skole D L,Nobre C A, et al.Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon.Nature,2000,403:301~304.
    222. Houghton R A,Skole K L,Lefkowitz D S.Changes in the landscape of Latin America between 1850 and 1980:A net release of CO_2 to the atmosphere.Forest Ecology and Management, 1991,38:173~199
    223. Houghton R A.Changes in storage of terrestrial carbon since 1859.In: Lal R,Kimbkle J,Levine E, et al.(eds.) Soils and Global Change.Boca Raton:CRC Press.1995.45~65.
    
    
    224. Houghton R A.Land-use change and carbon cycle.Global Change Biology,1995,1:275~287
    225. Houghton R A.Land-use change and terrestrial carbon:the temporal record.In: Apps M J, Price D T. (eds.) Forest Ecosystems,Forest Management and the Global Carbon Cycle.Berlin Heidelberg: Springer-verlag,1996.117~134
    226. Houghton R A. The annual net flux of carbon to the atmosphere from changes in land use 1850~1990.Tellus,1999,50B:298~313
    227. Houghton R A.陆地生态系统从碳源到碳汇的转变.AMBIO,1996,25(4):267~272
    228. Indermǖhle A,Stocker T F,Joos F et al.Holocene carbon cycle dynamics based on CO_2 trapped in ice at Taylor Dome,Antarctica. Nature,1999,398,121~126.
    229. IPCC. Climate Change.In:The Science of Climate Change.Houghton J T,et al. (eds.) Cambridge: Cambridge University Press. 1996.
    230. Johnson C E,Johnson A H, Huntington T G et al.Whole-tree clear-cutting effects on the soil horizons and organic matter pools.Journal of American Society of Soil Science,1991,55:497~502
    231. Johnson D W. Effects of forest management on soil carbon soil storage.Water, Air and Soil Pollution,1992,64:83~120
    232. Johnson W C,Sharpe D M.The ratio of total to merchantable forest biomass and its application to the global carbon budget.Can.J. For. Res.,1983,13:372~382
    233. Jones H,Thompson L J,Lawton J H,et al.Impacts of Rising Atmospherc Carbon Dioxide on Model Terrestrial Ecosystems.Science,280:441~443
    234. Keeling C D and Whorf T P.Atmospheric CO_2 records from sites in the SIO air sampling network.In: Trends: A Compendium of Data on Global Change.Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA. 1999
    235. Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature,1996,382:146~149
    236. Keeling C D, Whorf T P, Wahlen M, Van der Plicht J. Interannual extremes in the rate of atmospheric carbon dioxide since 1980.Nature,1995,375:666~670.
    237. Keeling R F, Piper S C, Heimarm M. Global and hemispheric CO_2 sinks deduced from changes in atmospheric CO_2 concentration.Nature,1996,381:218~221
    238. Kheshgi H S, Jain A K and Wuebbles D J.Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records.Journal of Geophysical Research, 1999,104:31127~31144
    239. King A W,Emanuel W R,Wullschleger S D,et al. A search of the missing carbon sink: a model of terrestrial biospheric response to land-use change and atmospheric CO2.Tellus,1995,47(B):501~519
    240. Kittredge J.Estimation of the amount of foliage of tree and stand.J. For.,1944,42:905~912
    241. Kramer P J.Carbon dioxide concentration,photosynthesis and dry matter production.BioScience, 1981,31:29~33
    242. Kurz W A, Apps M J, Webb T M,Mcnamee P J.Informative report.The carbon budget of the Canadian forest sector: Phase I.Forestry Canada, Edmonton, Alberta, Canada. 1992
    243. Larcher W. Physiological plant ecology.Berlin Herdelberg:Springer-Verlag,1980. 252
    244. Lee K, Wanninkhof R,Takahashi T,Doney S C, Feely D.Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide.Nature,1998,396:155~159
    245. Leith H and Whittaker R H (eds.) Primary productivity of biosphere.Berlin,Springer-Verlag.1975
    246. Lugo A E, Sanchez A J, Brown S.Land use and organic carbon content of some subtropical soils.
    
    Plant and Soil,1986,96:185~196
    247. Lugo A E, Sanchez A J, Brown S.Land use and organic carbon content of some subtropical soils. Plant and Soil, 1986,96:185~196
    248. Mann L K. Change in Soil Carbon Storage after Cultivation. Soil Science,1986,142:279~288
    249. McGuire A D, et al.Carbon balance of the terrestrial biosphere in the twentieth century:Analyses of CO_2, climate and land-use effects with four process-based ecosystems models.Glob. Biogeochem.Cycles,2001,15:183~206
    250. Meentemeyer V,Box E O,Folkoff M,Gardner J.Climatic estimation of soil properties;soil pH, litter accumulation and soil organic content. Bull.Ecol.Soc.Am. 1981,62:104
    251. Melilio J M, McGuire A D, Kicklighter D W, et al.Global climate change and terrestrial net primary production.Nature,1993,363:234~240
    252. Mitchell J F B.The Greenhouse effect and climate change.Reviews of Geophysics, 1989,27(1):115~139
    253. Myneni R B, Keeling C D,Tucker C J,Asrar G,Nemani R R.Increased plant growth in the northern high latitudes from 1981-1991. Nature,1997,386:698~702
    254. Nabuurs C J.Significance of wood products in forest sector carbon.In: Apps M J, Price D T. eds. Forest Ecosystems, Forest Management and the Global Carbon Cycle.Berlin Heidelberg: Springer-verlag, 1996.245~256
    255. Norby R J, O'Nell E G,and Wullschleger S D.Belowground Responses to Atmospheric Carbon Dioxide in Forests.In:McFee W W and Kelly J M.(eds.)Carbon Forms and Function in Forest Soils.Soil Science society of America,Inc. Madison,Wisconsin,USA. 1995.397~418
    256. Oades J M. The retention of organic matter in soil.Biogeochemistry,1988,5:35~70
    257. Olson J S,Watts J A, Allison L J.Carbon in live vegetation of major world ecosystems. Department of Energy.Washington, DC. Rep. No. TR004.
    258. Orr J C. Accord between ocean mfodels predicting uptake of anthropogenic CO2.Water Air and Soil Pollut,1993,70:465~481
    259. Post W M,Emanuel W R, Zinke P J and Staugenberger A G.Soil carbon pool and world life zones.Nature,1982,298:156~159
    260. Post W M, Mann L K.Changes in soil organic carbon and nitrogen as a result of cultivation.In: Bouwman (ed.)Soils and the greenhouse effect.Chichester,England,John Wiley & Sons.1990.410~416
    261. Post W M, Pastor J, Zinke P J and Staugenberger A G.Global patterns of soil nitrogen storage. Nature,1985,317:613~616
    262. Post W M, Peng T H,Emanuel W R,et al.The Global Carbon Cycle.American Scientist,1990,78:310~326
    263. Potter C S,Klooster S A.North American carbon sink.Science,1999,283:1815a
    264. Prentice K C, Fung I Y.The sensitivity of terrestrial carbon storage to climate change.Nature, 1990, 346:48~51
    265. Proctor J,Anderson J M, Chai P,Valack H.Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park,Sarawak.I.Forest environment,structure and floristics.J. Ecol.1983,71:237~260
    266. Raynaud D,Jouzel J,Barnola M,et al.The ice record of greenhouse gases.Science,1993,259:926~934
    267. Robert K and Dixon.Carbon pools and flux of global forest ecosystems.In: Proceedings of the
    
    Tsukuba global carbon cycle workshop-global environment.Tsukuba,95.1995.117~119.
    268. Rodhe H,Charlson R,Crawford E.Svante Arrhenius和温室效应.AMBIO,1997,26(1):2~5
    269. Ruard G A,Martin G L,Boekheim J G.Comparison of constant and variable allometric ratios for estimating Populus tremuloides biomass.For. Sci.,1987,33 (2):294~300
    270. Schimel D S, et al.Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature,2001,414:169~172.
    271. Schimel D,et al. Radiative forcing of climate change.In:Climate Change 1995.The Science of Climate Change. Contribution of Working Group Ⅰ to the Second Assessment Report of the Intergovernmental Panel on Climate Change.Houghton J T,et al.(eds.) Cambridge University Press.1996.65~131
    272. Schindler D W.The mysterious missing sink.Nature,1999,398:105~106
    273. Schlesinger W H.Biogeochemistry:An Analysis of Global Change.San Diego,California: Academic Press, 1997
    274. Schlesinger W H.Carbon balance in terrestrial detritus. Ann.Rev. Ecol. System. 1977,8:51~81
    275. Schlesinger W H. Carbon storage in the caliche of arid soils.A case study from Arizona. Soil Sci. 1982, 133:247~255
    276. Schlesinger W H. Changes in soil carbon storage and associated properties with disturbance and recovery.In: Trabaklka J R and Reichle D E (eds.)The changing Carbon Cycle:A Global Analysis. Spring-Verlag, New York,1986.194~220.
    277. Schlesinger W H. Changes in soil carbon storage and associated properties with disturbance and recovery. In:Trabaklka J R and Reichle D E (eds.)The changing Carbon Cycle:A Global Analysis. New York,Spring-Verlag.1986:194~220
    278. Schlesinger W H.Soil organic matter:a source of atmospheric CO2.In:Woodwell G W.(ed.)The role of terrestrial vegetation in the global carbon cycle.New York,John Wiley & Sons.1984.111~127
    279. Schroeder P, Brown S,Mo J M, Birdsey R,Cieszewski C.Biomass estimation for temperate broadleaf forests of the united states using inventory data.Forest Science,1997,43(3):424~434
    280. Sedjo R A.Temperate Forest Ecosystems in the Global Carbon Cycle.AMBIO,1992,21:274~277
    281. Shimel D,et al.Contribution of increasing CO_2 and climate to carbon storage by ecosystems in the United States.Scienee,2000,287:2004~2006
    282. Shvidenko A Z, Nilsson S, Rojikov V A and Strakhov V V. Carbon budget of the Russian boreal forests:a systems analysis approach to uncertainty.In:Apps M J,Price D T.eds. Forest Ecosystems,Forest Management and the Global Carbon Cycle.Berlin Heidelberg: Springer-verlag, 1996.145~162
    283. Siegenthaler U,Sarmiento J L.Atmospheric carbon dioxide and the ocean.Nature,1993,365:119~125
    284. Smith T M,Gramaer W P,et al.The global terrestrial Carbon Cycle.Water, Air and Soil Pollution,1993,70:79~37
    285. Smith T M. et al.Sensitivity of terrestrial carbon storage to CO_2 induced climate change: Comparison of four scenarios based on general circulation models.Climatic Change,1992,21:367~384
    286. Steffen W, Noble I,Canadell J et al.The terrestrial carbon cycle:Implications for the Kyoto protocol.Science,1998,280,1393~1394
    287. Suman D O.The flux of charcoal to the troposphere during the period of agricultural burning in
    
    Panama.J. Atmos. Chem.1988,6:21~34
    288. Sundquist E T.The global carbon dioxide budget.Science, 1993,259:934~941
    289. Sykes M and Prentice C.Carbon storage and climate change in Swedish forest:a comparison of static and dynamic modeling approaches. In: Apps M J,Price D T.eds.Forest Ecosystems, Forest Management and the Global Carbon Cycle.Berlin Heidelberg:Springer-verlag,1996.69~77
    290. Tans P P, Fung I Y,Takahashi T.Observational constraints on the global atmospheric CO_2 budget.Science, 1990,247:1431~1438
    291. Taylor J A, Lloyd J.Sources and sinks of atmospheric CO2. Austral.J. Bot,1992,40:407~418
    292. Trexler M C and Haugen C.Keeping It Green:Evaluating Tropical Forestry Strategies to Mitigate Global wanning.World Resource Institute, Washington DC. 1993
    293. Tunner D P, Koepper G J, Harmon M E, Lee J J.A carbon budget for forests of the conterminous United States.Ecological Application,1995,5:421~436
    294. Vogt K A, et al.Production, turnover,and nutrient dynamics of above and belowground detritus of world forests. Adv.Eco. Res. 1986,15:303~37
    295. Vonory R P, van Veen J A,Paul E A.Organic C dynamics in grassland soils.2.Model validation and simulation of the long-term effects of cultivation and rainfall erosion.Can.J. Soil Sci., 1981,61:211~224
    296. Vukicevic T,Braswell B H & Schimel D. A diagnostic study of temperature controls on global terrestrial carbon exchange.Tellus,2001,B53:150~170
    297. Watson R T, Noble I R, Bolin B, Ravindranath N H,Verardo D J, Dokken D J.eds. IPCC Special Report on Land Use, Land-Use Change and Forestry.2000.
    298. Watson R T,Rodhe H, et al.Greenhouse gases and aerosols In:Houghton J T,et al. (eds.)The IPCC Scientific Assessment.Cambridge University Press,Cambridge. 1990.1~40.
    299. WBGU. WBGU Special Report:The Accounting of Biological Sinks and Sources Under the Kyoto Protocol.1998
    300. Whittaker R H and Likens G E.The biosphere and man.In:Lieth H and Whittaker R H(ed.) Primary production of the biosphere.Heidelberg:Springer Verlag. 1975.305~328
    301. Winjum J K, Dixon R K and Schroeder P.Forest Management and Carbon Storage:an Analysis of 12 Key Forest Nations.Water,Air and Soil Pollution,1993,70:239~257.
    302. Woodwell G M,Hobbie J E, Hought R A,Millilo J M, Moor B,Peterson B J,Shaver J R.Global deforestation:contribution to atmosphere carbon dioxide.Science,1983,222:1081~1086
    303. Woodwell G M,Whittaker R H,Reiners W A, et al.The biota and the world carbon budget. Science,1978,199:141~146.
    304. Wu Y,Strahler A H.Remote estimation of crown size,stand density,and biomass on the Oregon transect. Ecol. Applic.,1994,4:299~312
    305. Zinke P J,Staugenberger A G,Post W M,Emanuel W R,Olson J S.Worldwide organic soil carbon and nitrogen data.ORNL/TM-8857,Oak Ridge Natl.Lab. Oak Ridge,TN. 1984
    306. Zoltai S C,Martikainen P J.Estimated extend of forested peatlands and their role in the global carbon cycle.In: Apps M J, Price D T.(eds.) Forest Ecosystems, Forest Management and the Global Carbon Cycle.Berlin Heidelberg:Springer-verlag,1996.47~58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700