芽孢杆菌染色体编辑系统构建及三种抗真菌物质合成的遗传调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土传病原真菌对经济作物构成的危害和造成的损失是限制现代高效农业发展的重要因素之一。为了克服这种连作生物障碍,土壤消毒剂和化学农药的使用量越来越大。然而,农药的过度使用引起了广泛的病原菌耐药性和严重的环境污染。化学农药在土传植物病害防控方面的缺陷和消费者对无公害或绿色及有机食物逐渐扩大的需求,使得基于拮抗微生物的土传病害生物防控技术逐步替代化学农药而成为更有前景的作物安全管理策略。芽孢杆菌是一种重要的、已被广泛应用的促生和生防菌剂,但目前其遗传操作系统还不成熟,对芽孢杆菌抗真菌物质合成的遗传调控的研究还不够深入。
     本论文建立了一种可以快速高效对芽孢杆菌进行多次基因改造的染色体编辑系统,研究了三株生防菌枯草芽孢杆菌ATCC6633、多粘类芽孢杆菌SQR21和产绿链霉菌ATCC29814产生抗真菌物质的分子机理。
     为了配合生防菌基因改良涉及的大量基因重组工作,本论文构建了一种基于Beta重组酶和Cre重组酶的芽孢杆菌染色体编辑系统,通过该系统可以将敲除元件的单链PCR产物直接转化菌体实现基因失活,重组所需的同源臂很短仅70-nt,可以直接由引物提供。初步筛选得到的阳性转化子经过42℃培养激活Cre重组酶删除敲除元件。该系统所用的辅助质粒pWY121为温度敏感质粒,50℃培养抑制质粒复制进而将其消除。
     利用该芽孢杆菌染色体编辑系统对枯草芽孢杆菌ATCC6633脂肽类抗生素mycosubtilin合成基因簇进行删除,使ATCC6633失去了拮抗真菌的能力,而对基因abrB的敲除能显著提高其mycosubtilin的产量。通过构建ATCC6633/Pmyc-lacZ报告系统筛选ATCC6633染色体cosmid文库中能诱导该系统在X-gal平板上显示蓝色的克隆,采用基因敲除和基因表达等手段最终确定了ComX对mycosubtilin的合成具有正调控的作用。
     通过对多粘类芽孢杆菌SQR21进行转座诱变,筛选到一株对病原真菌Fusarium oxysporum完全失去拮抗能力的突变体MUT-8。LC/MS分析确定了MUT-8失去合成拮抗物质fusaricidin的能力。通过比对分析发现转座子插入区域位于菌株SQR21的fusA上。fusA基因编码一个完整的阅读框,该阅读框包含有6个非核糖体合成酶模块。尽管fusaricidin结构上第六位的氨基酸都被报道为D-型丙氨酸,基因分析发现对应的模块并没有使氨基酸发生异构化的组件。推测模块6的氨基酸活化域可以直接识别D-型丙氨酸。通过生物信息学分析,推测fusA上游的fusGFEDCB负责fusaricidin脂肪酸链的合成。利用lacZ报告系统和凝胶阻滞电泳确定了AbrB能结合fusaricidin基因簇的启动子Pfus并抑制其表达。利用芽孢杆菌染色体编辑系统敲除了菌株SQR21的abrB基因,突变体抗真菌能力有明显的提高。
     利用全基因组测序技术可以对产绿链霉菌ATCC29814环脂肽类抗生素laspartomycin的疑似合成基因簇进行定位,然而由于缺乏对该菌进行基因突变的遗传操作工具,对于该疑似合成基因簇的功能确定和突变分析一直难以实现。本论文构建了自杀型载体pATKK,并建立了相应的转化方法,成功敲除了该疑似合成基因簇的lpmC基因。对应的突变体失去了合成laspartomycin的能力,证明疑似合成基因簇参与laspartomycin的合成。将lpmC基因序列与菌株ATCC29814的全基因组序列进行比对与序列分析,发现laspartomycin合成基因簇长约60kb,包含了21个开放阅读框。有趣的是laspartomycin基因簇包含了编码稀有氨基酸二氨基丁酸(Dab)的dabA, dabB和dabC基因,尽管laspartomycin在结构上并不含有二氨基丁酸。
     结论:通过转座子随机诱变技术、定向突变技术以及全基因组测序等技术,发现了mycosubtilin的表达受到转录调控因子AbrB的抑制和胞外信息素ComX的激活;确定了两种抗真菌物质fusaricidins和laspartomycins的编码基因簇,利用生物信息学分析了相关基因的功能;首次报道了产绿链霉菌基因原位改造的载体和基因结合转化的方法,并用它敲除了产绿链霉菌的IpmC基因。这些发现显示了枯草芽孢杆菌ATCC6633、多粘类芽孢杆菌SQR21和产绿链霉菌ATCC29814的生防价值,并为运用基因工程和组合生物合成技术对这些抗生素进行结构扩展研究奠定了基础;同时,本文建立的芽孢杆菌染色体编辑系统,结合全基因组测序技术,将广泛应用于后基因组时代的染色体分析和染色体工程。
So far, agrochemicals are the main approach to control soil borne diseases. However, intensive use of agrochemicals has led to the emergence of pathogen resistance and severe negative environmental impacts. There are also a number of soil-borne plant diseases for which chemical solutions are ineffective or non-existent. On the other hands, consumers need more and more pesticide-free foods. Thus, biological control based on the use of natural antagonistic microorganisms has emerged as a promising alternative to chemical pesticides for more rational and safe crop management.
     In this thesis, we described a genome editing system that allows multiple markerless modification of the Bacillus subtilis genome. We also reported the molecular basis for the antagonistic activity of Bacillus subtilis ATCC6633, Paenibacillus polymyxa SQR21and Streptomyces viridochomogenes ATCC29814.
     To equip the extensive genetic engineering of biocontrol bacteria toward the improved antifungal activities, we developed a simple and efficient Bacillus subtilis genome editing method in which targeted gene(s) could be inactivated by single-stranded PCR product(s) flanked by short homology regions and in-frame deletion could be achieved by incubating the transformants at42℃. In this process, homologous recombination (HR) was promoted by the lambda beta protein synthesized under the control of promoter PRM in the lambda cI857PRM-PR promoter system on a temperature sensitive plasmid pWY121. Promoter PR drove the expression of the recombinase gene cre at42℃for excising the floxed (lox sites flanked) disruption cassette that contained a bleomycin resistance marker and a heat inducible counter-selectable marker (hewl, encoding hen egg white lysozyme). Then, we amplified the single-stranded disruption cassette using the primers that carried70-nt homology extensions corresponding to the regions flanking the target gene. By transforming the respective PCR products into the B. subtilis that harbored pWY121and incubating the resultant mutants at42℃, we knocked out multiple genes in the same genetic background with no marker left. This process is simple and efficient and can be widely applied to large-scale genome analysis of recalcitrant Bacillus species.
     The genome editing system was applied to delete the mycosubtilin gene cluster myc and the gene abrB. Deletion of myc lead to the complete loss of antifungal activity while abrB deletion resulted in enhanced production of mycosubtilin. Pmyc-lacZ reporter system and ATCC6633genome library were constructed for the screening of the cosmid clone that was able to induce the expression of Pmyc-lacZ, which allowed us to conclude that the extracellular pheromone ComX could activate the expression of the myc gene cluster.
     Transposon mutagenesis of strain SQR21resulted in a mutant MUT-8that had completely lost the antifungal activity against Fusarium oxysporum. LC/MS analysis confirmed the incapability of fusaricidin production in the MUT-8strain. Comparison of the transposon disrupted sequence and the genome sequence of strain SQR21revealed a gene fusA, which was responsible for the biosynthesis of fusaricidin. The fusA gene encoded a polypeptide consisting of six modules in a single open-reading frame. Interestingly, the sixth module did not contain an epimerization domain, while all reported fusaricidins contained D-form alanines in their sixth amino acid residues, suggesting the sixth adenylation domain might directly recognize the D-form alanine. Bioinformatic analysis suggested that the genes fusGFEDCB located upstream of fusA were responsible for the biosynthesis of the fatty acid chain of fusaricidin. LacZ reporter system and gel retardation analysis demonstrated that the Pfus promoter was under negative control of AbrB, and inactivation of the gene abrB enhanced the production of fusaricidin.
     Genome sequencing technology also allowed us to identify the putative gene cluster responsible for the biosynthesis of laspartomycin in S. viridochomogenes ATCC29814. However, gene disruption was made difficult by the lack of genetic tools available for use in S. viridochomogenes ATCC29814, we therefore constructed a suicide vector pATKKA and established a transformation protocol, by which we successfully disrupted the lpmC gene and abolished the laspartomycin production in the corresponding mutant strain, demonstrating that the lpmC gene was involved in laspartomycin biosynthesis. Sequence alignment between lpmC gene sequence and the genome sequence of ATCC29814showed that the biosynthetic gene cluster for laspartomycins spanned approximately60kb, and consisted of21open reading frames. Interestingly, the dab A, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) were organized into the lpm cluster even though the Dab residue was not found in the laspartomycins.
     Mycosubtilins, fusaricidins and laspartomycins were non-ribosomally synthesized, and each was constituted with several variants. These findings highlighted that B. subtilis ATCC6633, P. polymyxa SQR21and S. viridochomogenes ATCC29814could be as good candidates for the development of biocontrol agents, and allowed molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of these antibiotics.
     In conclusion, we developed the Bacillus genome editing system, and disrupted multiple genes with this system. By using the genome editing system together with several other techniques, we observed that the production of mycosubtilin was subject to negative control by AbrB, and positive regulation by ComX; we cloned and characterized two gene clusters responsible for the biosynthesis of the antifungal metabolites fusaricidin and laspartomycins, and analyzed the gene functions using bioinformatics prediction; we also created the vector pATKK for gene modification in S. viridochomogenes ATCC29814together with the DNA transformation protocol, and disrupted the lpmC gene of strain ATCC29814using this system. With the fast development of genome sequencing technology, the genome editing system will be widely used for genome analysis and engineering in the post-genome era.
引文
Abdou A. M., Higashigushi S., Aboueleinin A. M., Kim M. and Ibrahim H.R. Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control,2007,18,173-178
    Abremski K., Hoess R. and Sternberg N. Studies on the properties of P1 site-specific recombination:evidence for topologically unlinked products following recombination. Cell.,1983,32,1301-1311
    Ahn I. P., Chung H. S., Lee Y. H. Vegetative compatibility groups and pathogenicity among isolates of Fusarium oxysporum f. sp. cucumerinum. Plant Disease,1997,82: 244-246
    Akiyama K., Matsuzaki K., Hayashi Y. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature,2005,435:824-827
    Alabouvette C., Olivain C., Steinberg C. Biological control of plant diseases:the European situation. Eur. J. Plant Pathol.,2006,114:329-341
    Alarcon B., Lacal J.C., Fernandez-Sousa J.M., Carrasco L. Screening for new compounds with antiherpes activity. Antiviral Res.1984,4,231-244
    Albert H., Dale E. C., Lee E. and Ow D. W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J.,1995,7,649-659
    Allenby N. E., Watts C. A., Pragai G. Z., Wipat A., Ward A. C., and Harwood C. R. Phosphate starvation induces the sporulation killing factor of Bacillus subtilis. J. Bacteriol.,2006,188:5299-5303
    Altschul S. F., Gish W., Miller W., Myers E.W., Lipman D. J. Basic local alignment search tool. J. Mol Biol,1990,215,403-410
    Anderson D. G. and Kowalczykowski S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a χ-regulated manner. Cell., 1997,90,77-86
    Aretz W., Meiwes J., Seibert G., Vobis G., Wink J. Friulimicins:novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. I. Taxonomic studies of the producing microorganism and fermentation. J. Antibiot. (Tokyo),2000,53,807-815
    Arias P., Femandez M. A., Malpartida F., et al. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3 (2) as aDNA-binding protein. J. Bacteriol,1999,181 (22):6958-6968
    Ash C, Priest F. C., Collins M D. Molecular identification of rRNA group 3 bacilli using a PCR probe test. Antonie Van Leeuwenhoek,1994,64:253-260
    Au N., Kuester-Schoeck E., Mandava V., Bothwell L. E., Canny S. P., Chachu, K., Colavito, Fuller, S. A., Groban, E. S., Hensley, L. A. et al. Genetic composition of the Bacillus subtilis SOS system.J.Bacteriol.,2005,187:7655-66
    Babasaki K., Takao T., Shimonishi Y., and Kurahashi K. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168:isolation, structural analysis, and biogenesis. J. Biochem.,1985,98:585-603
    Bae T., Banger A. K., Wallace A., Glass E. M., Aslund F., Schneewind O. and Missiakas D. M. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. U.S.A.,2004,101 (33),12312-12317
    Bais H. P., Fall R., Vivanco J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol.,2004,134:307-319
    Bais H. P., Park S. W., Stermitz F. R., Halligan K. M., Vivanco J. M. Exudation of fluorescent beta-carbolines from Oxalis tuberosa L. roots. Phytochemistry,2003,61: 539-543
    Bais H. P., Vepachedu R., Gilroy S., Callaway R. M., Vivanco J. M. Allelopathy and exotic plant invasion:from molecules and genes to species interactions. Science,2003,301: 1377-1180
    Bais H. P., Walker T. S., Schweizer H. P., Vivanco J. M. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of sweet basil. Plant Physiol. Biochem.,2002,40:983-995
    Banerjee D. K. Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J. Biol. Chem.,1989,264,2024-2028
    Bashkirov V. I., Khasanov F. K., Prozorov A. A. Illegitimate recombination in Bacillus subtilis:nucleotide sequences at recombinant DNA junctions. Mol. Gen. Genet.,1987, 210,578-580
    Beatty P. H., and Jensen S. E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol.,2002,48:159-169
    Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth rhizobacteria. Biocontrol Science and Technology,2001,11:557-574
    Bertin C., Yang X. H., Weston L. A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil,2003,256:67-83
    Besson F. and Michel G. Action of mycosubtilin, an antifungal antibiotic of Bacillus subtilis, on the cell membrane of Saccharomyces cerevisiae. Microbios.,1989,59,113-121
    Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene,1992,116,43-49
    Bobay B. G., Benson L., Naylor S., Feeney B., Clark A. C., Goshe M. B., Strauch M. A., Thompson R., and Cavanagh J. Evaluation of the DNA binding tendencies of the transition state regulator AbrB. Biochemistry,2004,43:16106-16118
    Bolwerk A., Lagopodi A. L., Wijfjes A. H., Lamers G. E. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant-Microbe Interact,2003,16: 983-993
    Bonsall R. F., Weler D. M., Thomashow L. S. Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. In vitro and in the rhizosphere of wheat. Appl Enviton Microbiol.,1997,63:951-955
    Bora T., Ozaktan H., Gore E., Aslan E. Biological Control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two Strains of Pseudomonas putida. Journal of Phytopathology.2004,152:471-475
    Borchert S., Patil S. S., Marahiel M. A. Identification of putative multifunctional peptide synthetase genes using highly conserved oligonucleotide sequences derived from known synthetases. FEMS Microbiol. Lett.1992,71,175-180
    Borders D. B., et al. Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core. J. Nat. Prod.2007,70,443-446
    Borders D.B., Curran W.V., Fantini A.A., Francis N.D., Jarolmen H. and Leese R.A. Derivatives of laspartomycin and preparation and use thereof. U.S. Pat. Pub. No.: WO/2002/005838 (2002)
    Branda S. S., Chu F., Kearns D. B., Losick R., Kolter R.2005. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol.59:1229-1238
    Branda S. S., Gonzalez-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA.,2001,98:11621-11626
    Branda S. S., Gonzalez-Pastor J. E., Dervyn E., Ehrlich S. D., Losick R., Kolter R. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol.,2004,186:3970-3979
    Brans A., Filee P., Chevigne A., Claessens A. and Joris B. New integrative method to generate Bacillus subtilis recombinant strains free of selection markers. Appl. Environ. Microbiol.,2004,70,7241-7250
    Breitling R., Sorokin A. V., and Behnke D. Temperature-inducible gene expression in Bacillus subtilis mediated by the c1857-encoded repressor of bacteriophage lambda. Gene.1990,93,35-40
    Brigidi P., De Rossi E., Bertarini M. L., Riccardi G., Matteuzzi D. Genetic transformation of intact cells of Bacillus subtilis by electroporation. FEMS Microbiol. Lett.,1990,67, 135-138
    Broach J. R., Guarascio V. R. and Jayaram M. Recombination in the Yeast Plasmid,2μ plasmid is site-specific. Cell.,1982,29,227-234
    Bron S., Meima R., van Dijl J. M., Wipat A., and Harwood C. Molecular biology and genetics of Bacillus spp., p.392-416. In A. L. Demain and J. E. Davies (ed.), Manual of industrial microbiology and biotechnology,2nd ed.1999. ASM Press, Washington, DC.
    Butcher B. G., and Helmann J. D. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by bacilli. Mol. Microbiol.,2006,60:765-782
    Cai T., Cai W., Zhang J., Zheng H., Tsou A. M., Xiao L., Zhong Z., Zhu J. Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol. Microbiol., 2009.68:1365-2958.
    Cao S. Y., Yang Y. Z. and Joyce N. L. Macrolactonization catalyzed by the terminal thioesterase domain of the nonribosomal peptide synthetase responsible for lichenysin biosynthesis. Bioorganic & Medicinal Chemistry Letters,2005,15:2595-2599.
    Cao G. Q., Zhang X. H., Zhong L., Lu Z. X. A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotechnol. Lett.,2011,33:1047-1051
    Cardenas P. P., Carrasco B., Sanchez H., Deikus G., Bechhofer D. H. and Alonso J. C. Bacillus subtilis polynucleotide phosphorylase 3'-to-5'DNase activity is involved in DNA repair. Nucleic Acids Res.,2009,37,4157-4169
    Chai Y., Chu F., Kolter R., Losick R. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol.,2008,67:254-263
    Challis G. L., Ravel J., Townsend C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 2000,7,211-224
    Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet.,1979,168,111-115
    Chanway C. P., Nelson L. M. and Holl F. B. Cultivar-specific growth promotion of spring wheat (Triticum aestivum L.) by coexistent Bacillus species. Can. J. Microbiol.,1988, 34:925-929
    Charon C., Johansson C., Kondorosi E., Kondorosi A., Crespi M. enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc. Natl. Acad. Sci. USA.,1997,94:8901-8906
    Chedin F., Ehrlich S. D and Kowalczykowski S. C. The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro. J. Mol. Biol.,2000, 298,7-20
    Chedin F., Noirot P., Biaudet V. and Ehrlich S. D. A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis, Mol. Microbiol.,1988,29,1369-1377
    Chen Z., Zhang J., Huang D. Research progress on antimicrobial mechanism and genetic engineering of Bacillus for plant diseases biocontrol. Acta Phytopathol Sin,2003,33 (2):97-103
    Cheng A., Tang W., Wang Y. Transformation and expression of chitinase gene in Bacillus subtilis B-908. Acta Phytopathological Sinica,1996,26 (3):204-206
    Chin-A-Woeng T. F., Bloemberg G. V, Van der Bij A. J., et al. Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant-Microbe. Interact.,1998,10:79-86
    Choi S. K., Park S. Y., Kim R., Lee C. H., Kim J. F. and Park S. H. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem. Biophys. Res. Commun.,2008,365 (1):89-95
    Chooi Y. H., Tang Y. Adding the lipo to lipopeptides:do more with less. Chem. Biol.2010, 17,791-793
    Choong-Min Ryu, Jinwoo Kim, Okhee Choi, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control,2006,39 (3):282-289
    Chu F., Kearns D. B, Branda S. S, Kolter R., Losick R. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol.,2006,59:1216-1228
    Chumsakul O., Takahashi H., Oshima T., Hishimoto T., Kanaya S., Ogasawara N., et al. Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic acids research.,2011; 39 (2):414-428
    Connelly M. B, Young G. M, Sloma A. Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J. Bacteriol,2004,186:4159-4167
    Cook R. J., Thomashow L. S., Weller D. M. et al. Molecular mechanisms for biological control of plant pathogens. Phytopathology.1995,31:53-80
    Cotxarrera L., Trillas-gay M. I., Steinberg C., Alabouvette C. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry,2002,34:467-476
    Cronk G. A., Neumann D. E. The topical use of amphomycin and amphomycin-neomycin ointments. Antibiotic Med. Clin. Ther.1956,3,142-145
    Curran W. V., Leese R. A., Jarolmen H., Borders D. B., Dugourd D., Chen Y., Cameron D. R. Semisynthetic approaches to laspartomycin analogues. J. Nat. Prod.,2007,70, 447-450
    Daniel R. Zeigler. The genome sequence of Bacillus subtilis subsp. spizizenii W23:insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. Microbiology,2011,157,2033-2041
    Datsenko K. A. and Wanner B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA,2000,97, 6640-6645
    Datta S., Costantino N., Zhou X., Court D. L. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc. Natl Acad. Sci. USA,2008,105,1626-1631
    de Weert S., Vermeiren H., Mulders I. H., Kuiper I., Hendrickx N., Bloemberg G. V. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant-Microbe Interact., 2002,15:1173-1180
    Defoor E., Kryger M. B., Martinussen J. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology,2007,153:3645-3659
    Depardieu F., Bonora M. G., Reynolds P. E., Courvalin P. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol.,2003,50, 931-948
    Dijksterhuis J., Sanders M., Gorris L. G. M. and Smid E. J. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol,1999, (86):13-21
    Dilfuza Egamberdiyeva. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology,2007,36 (2-3): 184-189
    Dini C. MraY inhibitors as novel antibacterial agents. Curr. Top. Med. Chem.,2005,5, 1221-1236
    Doekel S. and Marahiel M. A. Biosynthesis of natural products on modular peptide synthetases. Metab. Eng.,2001,3 (1):64-77
    Dorenbos R., Stein T. and Kabel J. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem.,2002,277 (19): 16682-16688
    Dubnau D. Genetic competence in Bacillus subtilis. Microbiological reviews.1991; 55 (3): 395-424
    Dubnau D., Lovett Jr. C. M. Transformation and recombination. In Bacillus subtilis and Its Closest Relatives:from Genes to Cells, Sonenshein AL, Hoch JA, Losick R (eds), pp 453-471. Washington, DC:American Society for Microbiology.1993
    Dubnau D. Genetic exchange and homologous recombination, p.555-584. In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria:biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, DC.1993
    Duerfahrt T., Doekel S., Sonke T., Quaedflieg P. J., Marahiel M. A. Construction of hybrid peptide synthetases by module and domain fusions. Proc. Natl. Acad. Sci. USA.,2000, 97 (11):5843-5848
    Duff R. B., Webley D. M., Scott R. P. Solubilization of minerals and related materials by 2-ketogluconic acid producing bacteria, Soil Science,1963 (95):105-114
    Duffy B. K., Defago G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocotrol strains. Appl. Environ. Microbiol., 1999,58:2429-2438
    Dughri M. H. and Bottomley P. J. Soil acidity and the composition of an indigenous population of Rhzobium trifolii in nodules of different cultivars of Trifolium subterraneum L. Soil Biol Biochem,1984,16:405-411.
    Duitman E. H., Hamoen L. W., Rembold M., Venema G., Seitz H., Saenger W., Bernhardt F., Reinhardt R., Schmidt M., Ullrich C., et al. The mycosubtilin synthetase of Bacillus subtilis ATCC 6633:a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA,1999,96, 13294-13299
    Dunny G. M., and Leonard B. A. B. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol.1997,51,527-564
    Elbein A. D. The effect of tsushimycin on the synthesis of lipid-linked saccharides in aorta. Biochem. J.,1981,193,477-484
    El-Hassan S. A., Gowen S. R. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Journal of Phytopathology.2006,154:148-155
    Elliott L. M., Des Jardin E. A., Batson W. E. Jr., et al. Viability and stability of biological control agents on cotton and snap bean seeds. Plant Management Science,2001,57 (8): 695-706
    Fabret C., Ehrlich S. D. and Noirot P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol. Microbiol.,2002,46,25-36
    Filutowicz M., Davis G., Greener A., Helinski D. R. Autorepressor properties of the pi-initiation protein encoded by plasmid R6K. Nucleic Acids Res.,1985,13,103-114
    Fujita M., Gonzalez-Pastor J. E., Losick R. High and low-threshold genes in the SpoOA regulon of Bacillus subtilis. J. Bacteriol.2005,187:1357-1368
    Fujita M, Losick R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator SpoOA. Genes Dev. 2005,19:2236-2244
    Gaffney T. D., Lam S. T., Ligon J. M., et al. Global regulation of expression of antifungal factors by Pseudomonas fluorescens biological control strain. Mol. Plant-Microbe Interact,1994,7:455-463
    Galm U., et al. In vivo manipulation of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC15003 revealing new insights into its biosynthetic pathway. J. Biol. Chem.,2008,283,28236-28245
    Gonzalez-Pastor J. E., Hobbs E. C., and Losick R. Cannibalism by sporulating bacteria. Science,2003,301:510-513
    Grunewald J. and Marahiel M. A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol. Mol. Biol. Rev.,2006,70 (2):121-1461
    Gutterson N., Howie W. and Suslow T. Enhancing effects of biocontrol agents by use of biotechnology. In:Baker RR and Dunn PE eds. New Directions in Biological Control: Alternatives for Suprressing Agricultural Pests and Diseases. New York:Alan R. Liss, Inc.1990,749-765
    Haijema B. J., Venema G. and Kooistra J. The C terminus of the AddA subunit of the Bacillus subtilis ATP-dependent DNase is required for the ATP-dependent exonuclease activity but not for the helicase activity. J. Bacteriol.,1996,178,5086-5091
    Hamon L. W., Venema G., Kuiperso P. Controling competence in Bacillus subtilis:shared use of regulators. Micorbiol,2003,149 (1):9-17
    Hamon M. A., Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol. Microbiol.2004,52:847-860
    Hansen M. L., Kregelund L., Nybroe O., Sφrensen J. Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiology Ecology,1997,23:353-360
    Hansen-Wester I., Hensel M. Genome-based identification of chromosomal regions specific for Salmonella spp. Infect. Immun.,2002,70,2351-2360
    Harman G. E., Petzoldt R., Comis A., Chen J. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo 17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathol. 2004,94:147-153
    Heemstra J. R. Jr., Walsh C. T., Sattely E. S. Enzymatic tailoring of ornithine in the biosynthesis of the Rhizobium cyclic trihydroxamate siderophore vicibactin.J. Am. Chem. Soc.,2009,131,15317-15329
    Heinemann B., Kaplan M. A., Muir R. D., Hooper I. R. Amphomycin-a new antibiotic. Antib. Chemother.,1953,3,239
    Heinzelmann E., Berger S., Muller C., Hartner T., Poralla K., Wohlleben W., Schwartz D. An acyl-CoA dehydrogenase is involved in the formation of the Delta cis3 double bond in the acyl residue of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Microbiology,2005,151,1963-1974
    Heinzmann S., Entian K. D., Stein T. Engineering Bacillus subtilis ATCC6633 for improved production of the lantibiotic subtilin. Appl Microbio Biotechnol,2005,68 (1): 1-5
    Hinsa S. M., Espinosa-Urgel M., Ramos J. L., O'Toole G. A. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens requires an ABC transporter and a large secreted protein. Mol. Microbiol.,2003,49:905-918
    Hinuma Y. Zaomycin, a new antibiotic from a Streptomyces sp. J. Antibiot. (Tokyo),1954, 7,134-136
    Hirsch C. F., Ensign J. C. Heat activation of Streptomyces viridochromogenes spores. J. Bacteriol.,1976,126,24-30
    Hofemeister J., Israeli-Reches M., Dubnau D. Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome. Mol. Gen. Genet,1983,189,58-68
    Horinouchi S. and Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J. Bacteriol.,1982,150,804-814
    Hou X., Boyetchko S. M., Brick M., Olson D., Ross A., Hegedus D. Characterization of the antifungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl Microbiol Biotechnol.2006,72 (4):644-653
    Hu J., Lin X., Wang J., Shen W., Wu S., Peng S., Mao T. Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium Wilt in greenhouse soils. Pedosphere,2010,20:586-593
    Hughes J. A., Bennett C. F., Cook P. D., Guinosso C. J., Mirabelli C. K. and Juliano R. L. Lipid membrane permeability of 2'-modified derivatives of phosphorothioate oligonucleotides. J. Pharm. Sci.,1994,83 (4):597-600
    Ibrahim H. R., Thomas U. and Pellegrini A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J. Biol. Chem.,2001b,276,43767-43774
    Ibrahim H. R., Higashiguchi S., Juneja L. R., Kim M. and Yamamoto T. A structural phase of heat-denaturated lysozyme with novel antimicrobial action. J. Agric. Food Chem., 1996,44,1416-1423
    Ibrahim H. R., Matsuzaki T. and Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett.,2001a,506,27-32
    Imker H. J., Krahn D., Clerc J., Kaiser M., Walsh C. T. N-acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module G1bF. Chem. Biol.,2010,17,1077-1083
    Inaoka T., Takahashi K., Ohnishi-Kameyama M., Yoshida M. and Ochi K. Guanine nucleotides guanosine 5-diphosphate 3-diphosphate and GTP cooperatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem.,2003,278: 2169-2176
    Inoue M. On glumamycin, a new antibiotic. II*. Isolation and identification of amino acids constituting glumamycin. J. Am. Chem. Soc.,1962,35,1249-1254
    Ireton K., Rudner D. Z., Siranosian K. J., and Grossman A. D. Integration of multiple developmental signals in Bacillus subtilis through the SpoOA transcription factor. Genes Dev.1993,7:283-294
    Jayne T. MacLean. Bt (Bacillus thuringiensis) for biocontrol. January 1986-May 1990, Published 1990 by National Agricultural Library in Beltsville, Md.
    Johannes A., van Veen S., van Overbeek and Jan Dirk van Elsas. Fate and activity of microorganisms introduced into soil. Microbiol Molecular Biol. Rev.,1997,61: 121-135
    Raaijmakers J. M., Vlami M. and de Souza J. T. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek,2002,81:537-547
    Kajimura Y., Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity, J. Antibiot. (Tokyo) 1996, (49):129-135
    Kajimura Y. and Kaneda M. Fusaricidin B, C, and D:new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity. Journal of Antibiotics,1997,50:220-228
    Karatacs A. Y., Cetin S. and Ozcengiz G. The effects of insertional mutations in comQ, comP, srfA, spoOH, spoOA and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim. Biophys. Acta,2003,1626:51-56
    Katz E., Demain A. L. The peptide antibiotics of Bacillus:chemistry, biogenesis, and possible functions. Bacteriol. Rev.,1977,41 (2):449-474
    Kearns D. B., Chu F., Branda S. S., Kolter R., Losick R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol,2005,55:739-749
    Keel C., Schnider U., Maurhofer M., et al. Suppresion of root disease by Pseudomonas fluorescens CHAO:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-microbe Interac,1992,5:4-13
    Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England.2000
    King S. R., Richardson J. P. Role of homology and pathway specificity for recombination between plasmids and bacteriophage. Mol. Gen. Genet.,1986,204:141-147
    Kleerebezem M. Quorum sensing control of lantibiotic production:nisin and subtilin autoregulated theirs own biosynthesis. Peptides,2004,25 (11):1405-1414
    Kneer R., Poulev A. A., Olesinski A., Raskin I. Characterization of the elicitor-induced biosynthesis and secretion of genistin from roots of Lupinus luteus. J. Exp. Bot.1999, 50:1553-1559
    Kobayashi K. Gradual activation of the response regulator DegS/DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol.,2007,66:395-409
    Kobayashi K. S1rR/S1rA controls the initiation of biofilm formation in Bacillus subtilis. Mol. Microbiol.,2008,69:1399-1410
    Kong F., Carter G. T. Structure determination of glycinocins A to D, further evidence for the cyclic structure of the amphomycin antibiotics. J. Antibiot. (Tokyo),2003,56, 557-564
    Kooistra, J., Haijema B. J. and Venema G. The Bacillus subtilis addAB genes are fully functional in Escherichia coli. Mol. Microbiol.,1993,7,915-923
    Kraas F. I., Helmetag V., Wittmann M., Strieker M., Marahiel M. A. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem. Biol,2010,17,872-880
    Kunst F., Ogasawara N., Moszer I., et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature,1997,390:249-256
    Kuroda J., Fukai T., Konishi M., Uno J., Kurusu K. and Nomura T. LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles,2000,53 (7):1533-1549
    Kurusu K., Ohba K., Arai T. and Fukushima K. New peptide antibiotics LI-FO3, FO4, FO5, FO7, and FO8, produced by Bacillus polymyxa I. Isolation and characterization. Journal of Antibiotics,1987,40,1506-1514
    Lambert J. M., Bongers R. S. and Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl. Environ. Microbiol.,2007,73,1126-1135
    Lawrence J. R., Delaquis P. J., Korber D. R., et al. Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microbial Ecology,1987,14:1-14
    Leclere V., Bechet M., Adam A., Guez J. S., Wathelet B., Ongena M., et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Applied and environmental microbiology.,2005,71 (8): 4577-4584
    Lemanceau P., Bakker P. A., de Kogel W. J., Alabouvette C., Schippers B. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnation by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol.,1992,58:2978-2982
    Li J. and Jensen S. E., Nonribosomal Biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 Involves Direct Activation of a D-Amino Acid. Chemistry & Biology, 2008,15,118-127
    Li J., Beatty P. K., Shah S., and Jensen S. E. Use of PCR-Targeted Mutagenesis To Disrupt Production of fusaricidin-Type Antifungal Antibiotics in Paenibacillus polymyxa. Applied and Environmental Microbiology,2007,73 (11),3480-3489
    Liang R., Liu J. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions. BMC Microbiol.,2010,10:209
    Liljeroth E., Burgers S. and van Veen J. A. Changes in bacterial populations along roots of wheat (Triticum aestivum L.) seedlings. BiolFertil Soils,1991,10:276-280
    Lindberg T., Granhall U., Tomenius K. Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions, Biology and Fertility of Soils,1985 (1):123-129
    Ling N., Xue C., Huang Q., Yang X., Xu Y., Shen Q. Development of a mode of application of bio-organic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl.,2010,55:673-683
    Liu W., Hansen J. N. Conversion of Bacillus subtilis 168 to a subtilin producer by competence transformation. Journal of Bacteriology,1991,173 (22):7387-7390
    Liu Y., Chen Z., Ng T. B., et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides,2007,28 (3): 553-559
    Liu X. P. and Liu J. H. The terminal 5'phosphate and proximate phosphorothioate promote ligation-independent cloning. Protein Sci.,2010,19,967-973
    Lomakina N. N., Brazhnikova M. G. Chemical composition of crystallomycin. Biokhimiia., 1959,24,425-431
    Loper J. E., Haack C., Schroth M. N. Population dynamics of soil Pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Applied and Environmental Microbiology,1985,49:416-422
    Lopez D., Fischbach M. A., Chu F., Losick R., Kolter R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl. Acad. Sci. USA.,2009,106:280-285
    Lopez D., Vlamakis H., Losick R. and Kolter R. Paracrine signaling in a bacterium. Genes Dev.2009,23:1631-1638
    Lugtenberg B. J., Dekkers L., Bloemberg G. V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology,2001,39:461-490
    Lugtenberg B. J., Kamilova F. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology,2009,63:541-556
    Lugtenberg B. J., Kravchenko L. V., Simons M. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol.1999,1:439-446
    Lugtenberg B. J., Chin-A-Woeng T. F., Bloemberg G. V. Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek.2002,81:373-383
    Luo J., Ran W., Hu J., Yang X., Xu Y., Shen Q. Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Science Society of America Journal, 2009,74:2039-2048
    Lutenberg B. J., Dekkers L. C. What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol. 1999,1:9-13
    Lynch J. The rhizosphere. Wiley, London, UK,1990, p458
    Magnuson R., Solomon J., and Grossman A. D. Biochemical angenetic characterization of a competence pheromone from B. subtilis. Cell.1994,77:207-216
    Marahiel M. A., Nakano M. M., Zuber P. Regulation of peptide antibiotic production in Bacillus. Mol Microbiol.1993,7 (5):631-636
    Marahiel M. A., Stachelhaus T. and Mootz H. D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev.,1997,97 (7):2651-2674
    Maresca M., Erler A., Fu J., Friedrich A., Zhang Y., Stewart A. F. Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol. Biol., 2010,11,54
    Matthysse A. G., McMahan S. The effect of the Agrobacterium tumefaciens attR mutation on attachment and root colonization differs between legumes and other dicots. Appl. Environ. Microbiol.,2001,67:1070-1075
    Gustafsson M. C., von Wachenfeldt C. A novel diffusible substance can overcome the apparent AbrB repression of the Bacillus subtilis fatR promoter. FEMS Microbiol. Lett., 2001,199(2):197-202
    Maurhofer M., Keel C., Hass D., et al. Influence of plant species on disease suppression by Pseudomonos with enhanced antibiotic production. Plant Pathol.,1995,44:44-50
    Mazodier P., Petter R., Thompson C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol.,1989,171,3583-3585
    McAuliffe O., Ross R. P, Hill C. Lantibiotics:structure, biosynthesis and mode of action. FEMS Microbiology Reviews,2001,25 (3):285-308
    Melnikov A. and Youngman P. J. Random mutagenesis by recombinational capture of PCR products in Bacillus subtilis and Acinetobacter calcoaceticus. Nucleic Acids Res.,1999, 27,1056-1062
    Meng L., Li S., Guo Q., Ma P., Liu D. Primary analysis on the antifungal activity of the protein produced by Bacillus subtilis NCD-2 against Verticillium dahliae. Acta Agriculturae Boreali-Sinica,2008,23 (1):189-193
    Mertens K., Lantsheer L., Ennis D. G. and Samuel J. E. Constitutive SOS expression and damage-inducible AddAB-mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages, Mol Microbiol., 2008,69,1411-1426
    Milner J. L., Silo-Suh L., Lee J. C., et al. Production of Kanosamine by Bacillus cereus UW85. Appl Environ Microbiol,1996,62:3061-3065
    Miao V., Brost R., Chappie J., She K., Gal M. F., Baltz R. H. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J. Ind. Microbiol. Biotechnol.,2006,33,129-140
    Miao V., et al. Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology,2005,151, 1507-1523
    Molnar I., et al. Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus:analysis of genes flanking the polyketide synthase. Gene, 1996,169,1-7
    Mosberg J. A., Lajoie M. J. and Church G. M. Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics.,2010,186,791-799
    Msadek T., Kunst F., Klier A., Rapoport G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. Journal of Bacteriology.1991,173 (7):2366-2377
    Muller C., et al. Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob. Agents Chemother.,2007, 51,1028-1037
    Munoz A., Lopez-Garcia B., Marcos J. F. Studies on the mode of action of the antifungal hexapeptide PAF26. Antimicrob Agents Chemother,2006,50 (9):3847-3855
    Murphy K. C. and Marinus M. G. RecA-independent single-stranded DNA oligonucleotide-mediated mutagenesis. F1000 Biol Rep.,2010,2,56
    Murphy K. C., Campellone K. G. and Poteete A. R. PCR-mediated gene replacement in Escherichia coli. Gene.,2000,246,321-330
    Muth G., NuBbaumer B., Wohlleben W., Puhler A. A vector system with temperature-sensitive replication for gene disruption and mutational cloning in Streptomycetes.Mol. Gen. Genet.,1989,219,341-348
    Naganawa H., Hamada M., Maeda K., Okami Y., Takeushi T. Laspartomycin, a new anti-staphylococcal peptide. J. Antibiot. (Tokyo),1968,21,55-62
    Naganawa H., Takita T., Maeda K., Umezawa H. A novel fatty acid from laspartomycin. J. Antibiot. (Tokyo),1970,23,423-424
    Nakajima N., Chihara S. and Koyama Z. A new antibiotic, gatavalin I. Isolation and characterization. Journal of Antibiotics,1972,25,243-247
    Nakano M. M., Corbell N., Beson J., et al. Isolation and characterization of sfp:a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. Gen. Genet.,1992,232 (3):313-321
    Nijhuis E. H., Maat M. J., Zeegers L. W., et al. Selection of bacteria suitable for introduction into the rhizosphere of grass. Soil Biol Biolchem,1993,25:885-895
    Nijland R., Burgess J. G., Errington J., Veening J. W. Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PlosONE.,2010, 5, e9724.
    Niran Roongsawang, Kenji Washio and Masaaki Morikawa, Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants. Int. J. Mol. Sci. 2011,12,141-172
    Nolden S., Wagner N., Biener R., Schwartz D. Analysis of RegA, a pathway-specific regulator of the friulimicin biosynthesis in Actinoplanes friuliensis.J.Biotechnol., 2009,140,99-106
    Oussenko I. A., Sanchez R. and Bechhofer D. H. Bacillus subtilis YhaM, a member of a new family of 3' to 5'exonucleases in Gram-positive bacteria. J. Bacteriol.,2002,184, 6250-6259
    Paik S. H., Chakicherla A., and Hansen J. N. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168.J. Biol. Chem. 1998,273:23134-23142
    Parsek M. R., Fuqua C. Emerging themes and challenges in studies of surface-associated microbial life. J. Bacteriol.,2004,186:4427-4440
    Pavlou G. C, Vakalounakis D. J. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Protection.2005,24:135-140
    Pellegrini A., Thomas U., von Fellenberg R. and Wild P. Bactericidal activity of lysozyme and aprotinin against Gram-negative and Gram-positive bacteria related to their basic character.J. Appl. Bacteriol.,1992,72,180-187
    Perego M., Spiegelman G. B., Hoch J. A. Structure of the gene for the transition state regulator, abrB:regulator synthesis is controlled by the spoOA sporulation gene in Bacillus subtilis. Mol. Microbiol.,1988,2:689-699
    Phillips D. A., Streit W. Legume signals to rhizobial symbionts:A new approach for defining rhizosphere colonization. Stacey. G, Keen NT, eds. Plant-Microbe Interactions. New York:Chapman & Hall:1995,236-271
    Phillips Z. E. and Strauch M. A. Bacillus subtilis sporulation and stationary phase gene expression. Cell. Mol. Life Sci.,2002,59:392-402
    Pichard B., Larue J. P., Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett.,1995,133 (3):215-218
    Raaijmakers J. M., Leeman M. van Oorschot M. M. P., et al. Dose-response relationships of biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology. 1995,85:1075-1081
    Rausch C., Weber T., Kohlbacher O., Wohlleben W., Huson D. H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res.,2005,33,5799-5808
    Reyrat J. M., Pelicic V., Gicquel B., et al. Counter-selectable markers:untapped tools for bacterial genetics and pathogenesis. Infect. Immun.,1998,66:4011-4017
    Rodriguez, C. I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A. F. and Dymecki, S. M. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet.,2000,25,139-140
    Ryu C M, Kim J, Choi O, Kim S H, Park C S. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control,2006, 39 (3):282-289
    Sabrina Pfennig, Milton T. Stubbs. Flexing and Stretching in Nonribosomal Peptide Synthetases. Chemistry and Biology,2012,19 (2):167-169
    Saile E. and Theresa Koehler M. T. Control of Anthrax Toxin Gene Expression by the Transition State Regulator AbrB. Journal of Bacteriology,2002,184 (2),370-380
    Sambrook, J., and D. Russell. Molecular cloning:a laboratory manual,3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.2001.
    Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning:A Laboratory Manual,2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.1989
    Saniguet A, Kraus J, Henkels M D, et al. The sigma factor sigma (s) affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc. Natl. Acad. Sci. USA.,1995,92:12255-12259
    Saravanan T, Muthusamy M, Marimuthu T. Development of integrated approach to manage the fusarial wilt of banana. Crop Protection,2003,22:1117-1123
    Sarniguet A, Lucas P, Lucas M. et al. Relationship between take-all, soil conduciveness to the disease, populations of fluorescent Pseudomonas and nitrogen fertilizer. Plant Soil. 1992,145:17-27
    Sauer K, Camper A K, Ehrlich G D, Costerton J W, Davies D G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol.,2002,184: 1140-1154
    Sbrana C M, Giovannetti M. Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza.2005,15:539-545
    Schallmey M, Singh A, Ward O P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol.,2004,50:1-17
    Schippers B, Baker A W, Bakker H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol. 1987,25:339-358
    Schneider, T., Gries, K., Josten, M., Wiedemann, I., Pelzer, S., Labischinski, H., Sahl, H.G. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob. Agents Chemother.,2009, 53,1610-1618
    Schultz D., Wolynes P. G., Jacob E. B., Onuchic J. N. Deciding fate in adverse times: Sporulation and competence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA.,2009, 106 (50):21027-21034
    Schwartz, D., Alijah, R., Nussbaumer, B., Pelzer, S., Wohlleben, W. The peptide synthetase gene phsA from Streptomyces viridochromogenes is not juxtaposed with other genes involved in nonribosomal biosynthesis of peptides. Appl. Environ. Microbiol.,1996,62, 570-577
    Shay, A.J., Adam, J., Martin, J.H., Hausmann, W. K., Shu, P., Bohonos, N. Aspartocin. I. Production, isolation, and characteristics. Antibiot. Annu.,1959,7,194-198
    Shelburne, C. E., F. Y. An, V. Dholpe, A. Ramamoorthy, D. E. Lopatin, and M. S. Lantz. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother.,2007,59:297-300
    Shibata, M., et al. On glumamycin, a new antibiotic. J Antibiot (Tokyo),1962,15,1-6
    Shoji, J.I., Kozuki, S., Okamoto, S., Sakazaki, R., Otsuka, H. Studies on tsushimycin I. Isolation and characterization of an acidic acylpeptide containing a new fatty acid. J. Antibiot. (Tokyo),1968,21,439-443
    Short, J.M., Fernande, J.M., Sorge, J.A., Suse, W.D. Lambda ZAP:a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids. Res.,1988,16, 7583-7600
    Sieber S. A., Marahiel M. A. Learning from nature's drug factories:nonribosomal synthesis of macrocyclic peptides.J.Bacteriol.,2003,185 (36):7036-7043
    Simon, R., Priefer, U., Puhler, A. A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in gram negative bacteria. Nature Biotechnology,1983,1,784-791
    Simons M, Permentier H P, de Weger L A, et al. Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Molecular plant-microbe Interactions,1997,10:102-106
    Sogn J. A. Structure of the peptide antibiotic polypeptin.J. Med. Chem.,1976,19 (10): 1228-1231
    Solomon J M, Magnuson R, Srivastava A, Grossman A D. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev.1995,9:547-558
    Solomon J. M., Lazazzera B. A., and Grossman A. D. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev.1996,10:2014-2024
    Solomon, J. M., R. Magnuson, A. Srivastava, and A. D. Grossman. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev.1995,9:547-558
    Somers E, Vanderleyden J, Srinivasan M. Rhizosphere bacterial signaling:a love parade beneath our feet. Crit. Rev. Microbiol.2004,30:205-235
    Souza J T. Distribution, diversity, and activity of antibiotic-producing Pseudomonas spp. PhD thesis.2002, Wageningen University. The Netherlands.
    Stachelhaus, T., Mootz, H. D., Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol.,1999,6, 493-505
    Stachhelhaus T., Schneider A., Marahiel M. A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science,1995,269 (5220):63-68
    Stalker, D. M., Kolter, R., Helinski, D.R. Nucleotide sequence of the region of an origin of replication of the antibiotic resistance plasmid R6K. Proc. Natl. Acad. Sci. U.S.A., 1979,76,1150-1154
    Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Molecular Microbiology,2005,56 (4):845-857
    Stephen C. Winans and Bonnie L. Bassler. Chemical Communication Among Bacteria. ASM Press, Washington, D.C. March 30,2008.
    Stephenson, M. & Jarrett, P. Transformation of Bacillus subtilis by electroporatin. Biotechnol Tech.,1991,5,9-12
    Sto □ver, A. G., and A. Driks. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J. Bacteriol.,1999,181: 5476-5481
    Stoodley P, Sauer K, Davies D G, Costerton J W. Biofilms as complex differentiated communities. Annu Rev Microbiol.2002,56:187-209
    Strauch, M. A. Delineation of AbrB-binding sites on the Bacillus subtilis spoOH, kinB, ftsAZ, and pbpE promoters and use of a derived homology to identify a previously unsuspected binding site in the bsuB1 methylase promote. J. Bacteriol.,1995,177: 6999-7002
    Strauch, M. A. In vitro binding affinity of the Bacillus subtilis AbrB protein to six different DNA target regions. J. Bacteriol,1995,177:4532-4536
    Strauch, M. A., G. B. Spiegelman, M. Perego, W. C. Johnson, D. Burbulys, and J. A. Hoch. The transition state transcription regulator AbrB of Bacillus subtilis is a DNA binding protein. EMBO J.,1989,8:1615-1621
    Streit W. R., Phillips D. A. A biotin regulated locus, bioS, in a possible survival operon of Rhizobium meliloti. Molecular Plant-Microbe Interactions,1997,10:933-937
    Strieker, M., Marahiel, M. A. The structural diversity of acidic lipopeptide antibiotics. Chembiochem.,2009,10,607-616
    Suzuki, N., Nonaka, H., Tsuge, Y., Inui, M. and Yukawa, H. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl. Environ. Microbiol.,2005,71,8472-8480
    Tamehiro, N., Y. Okamoto-Hosoya, S. Okamoto, M. Ubukata, M. Hamada, H. Naganawa, and K. Ochi. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168.Antimicrob. Agents Chemother.2002,46:315-320
    Tanaka, H., Iwai, Y., Oiwa, R., Shinohara, S., Shimizu, S., Oka, T., Omura, S. Studies on bacterial cell wall inhibitors II. Inhibition of peptidoglycan synthesis in vivo and in vitro by amphomycin. Biochim. Biophys. Acta.,1977,497,633-640
    Tanaka, H., Oiwa, R., Matsukura, S., Inokoshi, J., Omura, S. Studies on bacterial cell wall inhibitors X. Properties of phospho-N-acetylmuramoyl-pentapeptide-transferase in peptidoglycan synthesis of Bacillus megaterium and its inhibition by amphomycin. J Antibiot (Tokyo),1982,35,1216-1221
    Tanaka, H., Oiwa, R., Matsukura, S., Omura, S. Amphomycin inhibits phospho-N-acetylmuramyl-pentapeptide translocase in peptidoglycan synthesis of Bacillus. Biochem. Biophys. Res. Commun.,1979,86,902-908
    Tang X., Morris S. L., Langone J. J. and Bockstahler L. E. Simple and effective method for generating single-stranded DNA targets and probes. BioTechniques.,2006,40,759-763
    Tang, GL., Cheng, YQ., and Shen, B. Chain initiation in the leinamycin-producing hybrid non-ribosomal peptide/polyketide synthetase from Streptomyces atroolivaceus S-140: discrete, monofunctional adenylation enzyme and peptidyl carrier protein that directly load (D)-alanine. J. Biol. Chem.,2007,282,20273-20282
    Thimon L, Peypoux F, Maget Danar, et al. Interacitons of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis. Biotechnol. Appl. Biochem.,1992,16 (2):144-151
    Thomas, M.G., Chan, Y.A., Ozanick, S.G. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster. Antimicrob. Agents Chemother.,2003,47,2823-2830
    Trejo-Estrada S R, Paszcaynski A, Crawford D L. Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J. Indust. Microb. Biotech., 1998,21:81-90
    Trillas M. I., Casanova E., Cotxarrera L., Ordovas J., Borrero C., Aviles M. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biological Control,2006,39:32-38
    Tsuge K, Akiyama T, Shoda M. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol.,2001,183 (21):6265-6273
    Tsuge K, Ano T, Hirai M, et al. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis to plipastatin production. Antimicrob Agents Chemother, 1999,43 (3):2183-2192
    Tsuge K, Inoue S, Ano T, et al. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother, 2005,49 (11):4461-4468
    Tsuge K., Ano T., Hirai M., Nakamura Y. and Shoda M. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production, Antimicrob Agents Chemother,1999,43 (9):2183-2192
    Tsuge T, Yano K, Imazu S, Numata K, Kikkawa Y, Abe H, et al. Biosynthesis of Polyhydroxyalkanoate (PHA) Copolymer from Fructose Using Wild-Type and Laboratory-Evolved PHA Synthases. Macromolecular bioscience.2005,5 (2): 112-117
    Uren N. C. Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In The Rhizosphere:Biochemistry and Organic Substances at the Soil Interface, ed. R Pinton, Z Varanini, P Nannipieri.2000, Pp. 19-40. New York:Marcel Dekker
    van Elsas J D, van Overbeek L S, Feldmann A M, et al. Survival of genetically engineered Pseudomonas fluorescens in soil competition with the parent strain. FEMS Microbiology Ecology,1991,85:53-64
    Verhamme D T, Kiley T B, Stanley-Wall N R. DegU coordinates multicellular behaviour exhibited by Bacillus subtilis, Mol. Microbiol.,2007,65:554-568
    Verhamme D T, Murray E J, Stanley-Wall N R. DegU and SpoOA jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol.,2009,191:100-108
    Vertesy, L., et al. Friulimicins:novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. II. Isolation and structural characterization. J. Antibiot. (Tokyo),2000,53,816-827
    Wakamatsu, T., Kim, K., Uemura, Y., Nakagawa, N., Kuramitsu, S., Masui, R. Role of RecJ-like protein with 5'-3'exonuclease activity in oligo (deoxy) nucleotide degradation. J. Biol. Chem.,2011,286 (4):2807-2816
    Wakamatsu, T., Kitamura, Y., Kotera, Y., Nakagawa, N., Kuramitsu, S., and Masui, R. Structure of RecJ Exonuclease Defines Its Specificity for Single-stranded DNA. J. Biol. Chem.,2010,285 (13):9762-9769.
    Walker, J. E., and E. P. Abraham. The structure of bacilysin and other products of Bacillus subtilis. Biochem. J.,1970,118:563-570
    Wang CC. Complete Genome Sequence of Paenibacillus polymyxa SC2. PhD thesis.2011, Shandong Agricultural University. China.
    Wang Y., Chen Y., Shen Q., Yin X. Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces. viridochromogenes. Gene, 2011,483(1-2):11-21
    Wang Y., Weng J., Waseem R., Yin X., Zhang R., Shen Q. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Research,2012. doi: 10.1093/nar/gks248.
    Wang Yimin. Cloning of Chitinase Gene and β-1.3-Glucanase Gene and Expression in Bacillus subtilis B-908. PhD thesis.1997, Chinese Agricultural University. China.
    Waseem R., Wang Y. and Shen Q. Paenibacillus polymyxa:antibiotics, hydrolytic enzymes and hazard assessment.J. Plant Pathology,2008,90:403-414
    Waseem Raza, Xingming Yang, Hongsheng Wu, Yang Wang, Yangchun Xu, Qirong Shen, Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium, Eur. J. Plant. Pathol.,2009,125 (3):471-481
    Watt. V. M., Ingles. C. J., Urdea. M. S., Rutter. W. J. Homology requirements for recombination in Escherichia coll. Proc. Natl. Acad. Sci. USA.,1985,82:4768-4772
    Webb J S, Givskov M, Kjelleberg S. Bacterial biofilms:prokaryotic adventures in multicellularity. Curr. Opin. Microbiol. 2003,6:578-585
    Wecke, T., et al. Daptomycin versus Friulimicin B:in-depth profiling of Bacillus subtilis cell envelope stress responses. Antimicrob. Agents Chemother.,2009,53,1619-1623
    Weist S., Sussmuth R. D. Mutational biosynthesis-a tool for the generation of structural diversity in the biosynthesis of antibiotics. Appl. Micorbio. Biotechnol.,2005,68 (2): 141-150
    Weller D. M., Thomashow L. S. Current challenges in introducing beneficial microorganisms into the rhizosphere. In F O'Gara, DN Dowling, B Boesten, eds, Molecular Ecology of Rhizosphere Microorganisms. VCH, New York,1994, pp 1-18
    Whiteley M, Bangera M G, Bumgarner R E, Parsek M R, Teitzel G M, Lory S, Greenberg E P. Gene expression in Pseudomonas aeruginosa biofilms. Nature,2001,413: 860-864
    Wu H, Yang X, Fan J, Miao W, Ling N, Xu Y, Huang Q, Shen Q. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl,2009,54:287-300
    Xu, K., and M. A. Strauch. In vitro selection of optimal AbrB-binding sites:comparison to known in vivo sites indicates flexibility in AbrB binding and recognition of three-dimensional DNA structures. Mol. Microbiol.,1996,19:145-158
    Xu, K., D. Clark, and M. A. Strauch. Analysis of abrB mutations, mutant proteins, and why abrB does not utilize a perfect consensus in the-35 region of its sigma A promoter. J. Biol. Chem.,1996a,271:2621-2626
    Xue, G. P., Johnson, J. S., Dalrymple, B. P. High osmolarity improves the electro-transformation efficiency of the Gram-positive bacteria Bacillus subtilis and Bacillus licheniformis.J. Microbiol. Methods.,1999,34,183-191
    Yan X., Yu H., Hong Q. and Li S. Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl. Environ. Microbiol.,2008,74,5556-5562
    Yasbin R. E., Young F. E. Transduction in Bacillus subtilis by bacteriophage SPP1.J. Virol. 1974,14,1343-1348
    Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant and Soil, 2004,263:143-150
    Yin, X., Chen, Y., Zhang, L., Wang, Y., Zabriskie, T.M. Enduracidin analogues with altered halogenation patterns produced by genetically engineered strains of Streptomyces fungicidicus. J. Nat. Prod.,2010,73,583-589
    Yin, X., O'Hare, T., Gould, S. J., Zabriskie, T. M. Identification and cloning of genes encoding viomycin biosynthesis from Streptomyces vinaceus and evidence for involvement of a rare oxygenase. Gene,2003,312,215-224
    Yin, X., Zabriskie, T. M. The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology,2006,152,2969-2983
    Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta,2007,227:125-132
    Yoshimura K., Toibana A., Kikuchi K., Kobayashi M., Hayakawa T., Nakahama K., Kikuchi M. and Ikehara M. Differences between Saccharomyces cerevisiae and Bacillus subtilis in secretion of human lysozyme. Biochem. Biophys. Res. Commun., 1987,145,712-718
    Yu JQ. Autotoxic potential of cucurbit crops:phenomenon, chemicals, mechanisms and means to overcome. Journal of Crop Production,2001,4:335-348
    Zeilinger S., Galhaup C., Payer K., Woo S. L., Mach R. L., Fekete C., Lorito M., Kubicek C. P. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet. Biol.,1999,26:131-140
    Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W, Shen Q. Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer. Biology and Fertility of Soils,2008,44:1073-1080
    Zhang XZ, Yan X, Cui Z L, et al. mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res.,2006,34:e71
    Zhang, G., Bao, P., Zhang, Y., Deng, A., Chen, N., and Wen, T. Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal. Biochem., 2011,409:130-137
    Zheng, G., L. Z. Yan, J. C. Vederas, and P. Zuber. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin.J. Bacteriol.,1999,181:7346-7355
    Zhong Jin, Liu Gang and Huang Lian-dong. Genetic analysis of lantibiotic biosynthetic gene cluster. Chinese Journal of Antibiotics.2006,31(1):513-517
    Zuber P. Specificity through flexibility. Nat. Struct. Biol.,2000,7:1079-1081

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700