用户名: 密码: 验证码:
负载锰氧化物滤料对高锰地下水处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高锰地下水的广泛存在迫切需要除锰技术具有即用性和稳定性。本研究针对地下水生物除锰过程中滤料成熟期长、除锰效果不稳定的问题,在深入探讨生物除锰机理的基础上,制备了与生物锰氧化物同型的化学负载锰氧化物滤料对水中的锰离子进行吸附去除,再采用化学氧化剂代替生物作用对饱和的负载锰氧化物滤层进行氧化再生。以此为基础,构建了“化学负载锰氧化物滤层(SMOF)+二氧化氯氧化再生”的除锰新工艺。
     1.通过柱实验研究了接种对生物除锰滤料成熟期的影响,发现形成具有吸附能力的锰氧化物活性层是滤料成熟的关键,由此揭示了锰氧化物在生物除锰中的重要作用:(1)经过接种的滤料成熟期约为70天,而未接种的滤料在此期间却无法达到成熟。(2)接种情况下,吸附能力较强的锰砂只需要20天左右即可达到阶段成熟,而石英砂则需要30天以上。(3)对不接种滤料,通过投加二氧化氯可加快锰氧化物的形成。当二氧化氯投加量为0.5mg/L时,经过30h滤层的出水锰浓度就可稳定在0.05mg/L以下;当投加量为1mg/L时,达到相同去除率的时间可减少到10h。
     2.将生物除锰滤层(BMRF)灭菌后得到不含微生物的生物负载锰氧化物滤层(BMOF)。二者的对比试验揭示了生物除锰的另一关键过程,即:微生物的催化氧化作用能使锰氧化物的吸附能力得到再生。(1)滤速变化时,BMOF对锰的去除率会下降20%~35%;而BMRF虽然对锰的去除率也会在短时间内下降,但由于生物再生作用的存在,去除率能很快恢复到90%以上。(2)原水锰浓度的提高会使BMOF对锰的去除率快速下降为55.9%。,而BMRF对锰的平均去除率仍可以达到为93.2%;(3)BMOF除锰过程的最佳pH范围在6-7之间,而BMRF则在5-9之间。BMOF除锰过程可以用Yoon-Nelson动态模型进行模拟。
     3.采用化学法人工制备负载锰氧化物,电镜检测显示其与生物形成的负载锰氧化物具有相同的Birnessite型层状结构。XRD检测表明,这种锰氧化物属于无定形态。生物合成与化学合成锰氧化物负载滤料的负载量分别为4.56mgMn/g和4.62mgMn/g滤料,而后者的负载强度在酸性、碱性和中性条件下都明显好于前者。
     4.通过化学合成锰氧化物负载滤料(SMOF)的静态吸附研究,建立了SMOF除锰的吸附等温线和动力学方程,得出饱和吸附量为0.32mgMn/g滤料,表明锰氧化物对锰具有较强的吸附能力。热力学分析结果表明,该吸附是自发过程。吸附过程符合准二级动力学方程。
     5. SMOF对锰吸附的影响因素研究表明,SMOF最佳的除锰pH应大于5,初始锰浓度与出水锰浓度具有一定的线性相关性。水的硬度和Fe2+均对SMOF的除锰效果有干扰:当硬度由100mg/L增加到600mg/L时,锰去除率从83%下降到55%,而当Fe2+由0.5mg/L增加到3mg/L时,锰去除率由82%下降到63%。
     6. SMOF滤层除锰动态试验显示,初始锰浓度和滤速的增大,都会加快滤层除锰效果的下降。对吸附饱和的SMOF滤层可以采用二氧化氯作为氧化剂进行再生。当再生液浓度为2mg/L时,滤层的除锰能力可在10min得到完全恢复。采用每日再生的方式具有更加稳定的除锰效果。SMOF的动态模型也符合Yoon-Nelson模型,但与BMOF相比吸附容量较小。
     7.构建了“化学负载锰氧化物滤层+二氧化氯氧化再生”的除锰新工艺。工艺稳定性试验结果显示,在进水锰浓度为1-4mg/L,滤速从8m/h-15m/h变化的情况下,锰去除率保持了良好的稳定性。但进水锰浓度相对于滤速对出水水质影响更大。
High content of manganese is widely presented in ground water which needs a technique to remove manganese with instant and steady effect. Filter maturation period is quite long during the process of biological removal of manganese and the removal efficiency is not steady. On the basis of exploring the mechanisms of biological removal of manganese from ground water, chemical method was used to coat manganese oxides on filter and the structure of this manganese oxides filter was the same as the biogenic ones. After adsorbing manganese from ground water, chemical oxide agent was used to regenerate saturated manganese oxides. Further more, a new technique named“chemical manganese oxides-coated filter + chlorine dioxide oxides regeneration”was developed.
     1. The influences of inoculation on filter maturation were studied. Results showed the formation of manganese oxides active layer was the key factor for filter maturation, and the importance of manganese oxides in biological removal of manganese was revealed. (1) Maturation period of filter was 70 days when inoculated but it could not reach maturation when no inoculum was added during this period. (2) Under inoculation circumstances, manganese sands would reach maturation in 20 days because of its higher adsorption ability, but quartz sands need more than 30 days. (3)Adding chlorine dioxide could accelerate the formation of manganese oxides for no inoculation filter. When the dosage of chlorine dioxide was 0.5mg/L, the manganese concentration in outflow was under 0.05mg/L in 30 h; when 1 mg/L chlorine dioxide was added, it would attain the same removal efficiency in 10 h.
     2. Sterilize the biological manganese removal filter(BMRF) to obtain the biological manganese oxidation filter(BMOF)with no bacteria. The comparison experiment revealed another key process in biological removal of manganese, i.e. the catalytic oxidation of microorganisms regenerated the manganese sorption ability. (1)The removal efficiency of manganese decreased 20~35% in BMOF when the velocity of filtration varied, but in BMRF the value recovered up to 90% after a short decrease. (2)The removal efficiency of manganese in BMOF decreased to 55.9% when the concentration of manganese in original water increased, but the average removal efficiency in BMRF attained 93.2%. (3)The optimal pH range for manganese removal in BMOF was between 6-7 while in BMRF the pH value was between 5-9. The manganese removal process in BMOF could be simulated by Yoon-Nelson model.
     3. Manganese oxides were made by chemical method, and electron microscopy analysis indicated they had the same Birnessite structure with biogenic manganese oxides. XRD analysis showed this kind of manganese oxides belonged to amorphous form. The load capacity of biological and chemical synthesized manganese oxides was 4.56 mgMn/g filter and 4.62mgMn/g filter respectively, and the intensity of load in latter oxides was much better when they were used in acid, alkaline and neutral environment.
     4. Adsorption isotherms and kinetic model of SMOF were established by static adsorption study, and the saturation adsorption capacity was 0.32 mgMn/g filter indicated manganese oxides have significant adsorption ability. Thermodynamics results showed the adsorption process was spontaneous. Adsorption process fitted pseudo-second order model.
     5. Influencing factor research of adsorbing manganese with SMOF indicated the optimal pH was higher than 5, and the manganese concentration in outflow was in linear correlation with the concentration in inflow. Hardness and Fe2+ in water disturbed manganese removal. When hardness of water increased from 100mg/L to 600mg/L, removal efficiency of manganese decreased from 83% to 55%; when Fe2+ concentration in water increased from 0.5mg/L to 3mg/L,removal efficiency of manganese decreased from 82% to 63%.
     6. Dynamic experiment of removal manganese by SMOF indicated the removal efficiency decreased with the increase of original manganese concentration and the filter rate. The saturated SMOF could be treated with chlorine dioxide to regenerate its adsorption ability. When chlorine dioxide was added in 2mg/L, the capacity of removal manganese could be fully recovered in 10 min. Regenerating everyday would bring about steady removal efficiency. The dynamic process of SMOF fitted Yoon-Nelson model, but the capacity of adsorption was lower than BMOF.
     7. New technique for removal manganese from ground water was proposed, i.e.“chemical manganese oxides-coated filter + chlorine dioxide oxides regeneration”. Results showed removal efficiency maintained stable when manganese concentration varied from 1-4mg/L and filter rate changed from 8-15m/h, but manganese concentration in inflow had more influence on outflow quality compared to filter rate. This new technique doesn’t need to experience a maturation period.
引文
1.杨宏,李冬,张杰.生物固锰除锰机理与生物除铁除锰技术.中国给水排水,2003,19(6):1—5
    2.李圭白,刘超.地下水除铁除锰.北京:中国律筑工业出版社,1987
    3. McKenzie R M.The sorption of some heavy metals by the lower oxides of manganese. Geoderma,1972,8:29-35
    4. Bradley M.Tebo,John R.Bargar,Brian G.Clement et al.Biogenic Manganese Oxides: Properties and Mechanisms of Formation.Annu.Rev.Earth Planet.Sci,2004,32:287-328
    5.张杰,李冬,杨宏,陈立学,高洁.生物固锰除锰机理与工程技术.北京:中国建筑出版社,2005
    6.盛力.复合改性滤料除锰效能研究[博士后论文].上海:同济大学,2005
    7. Graveland.A,Heertjes P.M.Removal of Manganese From Groundwater by Heterogeneous Autocatalytic Oxidation.Trans lnst Chem Engrs,1975,53(31):154~157
    8.王琳,王宝贞,张维佳等.含铁、锰水源水深度处理工艺的运行实验研究.环境科学学报,2001,21(2):134-139
    9.袁德玉,杨开,杨小俊等.高锰酸钾去除地表水中锰的生产试验.工业用水与废水,2005,36(3):13-15
    10. Wong.J M. Chlorination-Filtration for Iron and manganese Removal. JAWWA,1984,76(1):76-80
    11. Korn C,Andrews R C,Escobar M D.Development of chlorine dioxide related models for drinking water treatment.Water Res,2002,36(2):330-342
    12. Richardson S D.Chlorine dioxide disinfection.First European Symposium on Chlorine Dioxide and Disinfection.Rome,1996,p51-60
    13.邵志良.应用二氧化氯消毒饮用水的评价.环境科学丛刊,1992,13(1):47-50
    14.陈宇辉.地下水除铁除锰研究的问题与发展.工业用水与废水,2003,34(3):23-26
    15.许友芹.二氧化氯预氧化处理含铁含锰地下水的工艺研究[硕士论文].青岛:青岛理工大学,2007
    16.姜义,张吉库.地下水中铁锰的存在形式及去除技术探讨.环境保护科学,2003,29(2):32-34
    17.张杰,戴镇生.地下水除铁除锰现代观.给水排水,1996,22(10):13-16
    18. Mouchet P.From Conventional to Biological Removal of Iron and Manganese in France.J.AWWA,1992,84(4):158-166
    19.李冬,杨宏,张杰.生物滤层同时去除地下水中铁、锰离子研究.中国给水排水,2001,17(8):1~5
    20. Di-Ruggiero J,Gounot A.M.Microbial Manganese Reduction Mediated by Bacterial Strains Isolated from Aquifer Sediments.Microb. Ecol,1990,20:53-63
    21. Vandenabele J D,Debeer.Manganese Oxidation by Microbial Consortia from Sand Filters.Microb. Ecol,1992,24:91-108
    22.安娜,傅金祥,张丹丹.除铁锰菌的分离及其氧化性能的实验.沈阳建筑大学学报(自然科学版),2006,22(6):989
    23. Hanne Rasmussen,Per Halkjaer Nielsen. Iron reduetion in aetivated sludge measured with different extraction techniques. Wat. res.,1996,30(3):551~558
    24.杨玉楠,王宝贞,余敏,杨敏.BAC上高效除铁锰菌的分离和筛选实验研究.哈尔滨建筑大学学报,2002,35 (2):54-56
    25.朴真三,鲍志戎,李惟等.自来水厂除锰滤池Mn2+氧化细菌的分离及其活性的研究.吉林大学自然科学学报,1997,35(4):87-90
    26.周鑫辉.饮用水生物氧化除锰特性、机理[博士论文].长沙:湖南大学,2006:9-12
    27.朴真三,李惟,刘德明等.鞘铁菌(Siderocapsa)固锰的生化分析.吉林大学自然科学学报,1991,29(3):107-110
    28. loannis A. Katsoyiannis,Anastasios I. Zouboulisbiological. Treatment of Mn(Ⅱ) and Fe(Ⅱ) containing groundwater:kinetic considerations and product characterization. Water Research,2004 (38):1922-1932
    29.李冬,张杰,张艳萍,王洪涛等.除铁除锰生物滤层最优化厚度的研究.中国给水排水,2007,23(13):94-97
    30.陈宇辉,陶涛,余健.pH值对地下水除铁除锰影响机理的研究.工业用水与废水,2005,36(5):17-19
    31.薛罡,赵洪宾.地下水中生物除锰的最佳运行条件及动力学.中国给水排水,2003,19(13):85-87
    32.张吉库,刘明秀.溶解氧和温度对地下水除铁、锰效果的影响.安全与环境工程,2006,3(1):53-55
    33. A.Gouzinis,N.Kosmidis,D.V.Vayenas et al. Removal of Mn and simultaneous removal of NH3,Fe and Mn from portable water using atricking filter. Wat.Res. ,1998,32(8):2442~2450
    34.张杰,杨宏,李冬等.生物滤层中Fe2+作用及对除锰的影响.中国给水排水[J],2001,17(9):37-40
    35. Hong Yang,Dong Li,Jie Zhang et al. Design of Biological Filter for Iron and Manganese Removal from Water. Journal of Environmental Science and Health, 2004(39):1447-1454
    36. Virginia Alejandra Pacini,Ana Maria Ingallinella,Graciela Sanguinetti. Removal of iron and manganese using biological roughing up flow filtration technology. Water Research,2005 (39):4463-4475
    37.余健.生物过滤去除饮用水中有机物、铁和锰的特性与机理研究:[博士学位论文].湖南:湖南大学,2004
    38.姬保江.生物除锰技术在生活饮用水中应用.工业用水与废水,2002,33(6):22-24
    39.高洁,李碧清,杨宏等.生物滤层中锰去除反应动力学研究.哈尔滨工业大学学报,2005,37(10):1339~1343
    40.薛罡,何圣兵,王欣泽.生物法去除地下水中铁锰的影响因素.环境科学,2006,27(1):95-100
    41.霍洛得尼著,王祖农译.铁细菌.科学出版社.北京:1957
    42.朴真三,李晓鄂,陈亚光等.自来水厂细菌固定化除锰及其水质条件的研究.环境科学,1998,19(5):37-40
    43.朴真三,鲍志戎,刘牧龙等.鞘铁菌(Siderocapsa)除锰和固定化.吉林大学自然科学学报[J],1996,34(2):79-82
    44.张杰,杨宏,徐爱军等. Mn2+氧化细菌的微生物学研究.给水排水,1997,23(1):19~23
    45. S.Mettler,M.Abdelmoula. Characterization of Iron and Manganese Precipitates from an in Situ Ground Water Treatment Plant. Ground Water,2001, 39 (6):921-930
    46.鲍志戎,孙书菊,王国彦等.自来水厂除锰滤砂的催化活性分析.环境科学,1997,18(1):38~41
    47.邓慧萍.改性滤料在给水处理中的应用研究.同济大学学报[J].1995,23(4):427~431
    48. Knocke W.R.,Hamon J.R.,ThompsonC.P.. Soluble manganese removal on oxide-coated filter media. J AWWA,1988,80(12):65~70
    49. William R.Knocke et a1.Removal of Soluble Manganese by Oxide-Coated Filter Media,Sorption Rate and Removal Mechanism Issues .Jour.AWWA,1991,83(8):64~69
    50. William R.Knocke et a1.Soluble Manganese Removal on Oxide-Coated Filter Media. J AWWA,1988.80(12):65-70
    51. Andrea C Hargette and William R Knocke. Assessment of Fate of Manganese in Oxide-Coated Filtraton Systems. J Environ.Eng,2001,127(12):1132—1138
    52. Merkle P B,Knocke W R,Gallagher DL et a1.Dynamic Model for Soluble Mn2+ Removal by Oxide-Coated Filter Media. J Environ Eng.1997,123(7):650-658
    53. Merkle P B,Knocke W R,Gallagher D L. Method for Coating Filter Media with Synthetic Manganese Oxide.J.Environ Eng.,1997,123(7):642 -649
    54.高乃云等.氧化铝涂层改性石英砂过滤性能研究.中国给水排水, 1999,15(3):1-4
    55. Carlson K H,Knocke W R .Modeling Manganese Oxidation with KMn04 for Drinking Water Treatment.J.Environ Eng.1999,125(10):892-896
    56. W.斯塔姆,J.J.摩尔根.水化学.北京:科学出版社,1987
    57.冯雄汉.几种常见氧化锰矿物的合成、转化及表面化学性质[博士论文].武汉:华中农业大学.2003
    58. Shen Y F,Zerger R P,Suib S L et al. Manganese oxide octahedral molecular sieves: preparation,characterization and application. Science,1993,260:511-515
    59. McKenzie R M. The surface charge on Manganese dioxide. Aust J Soil. Scl. Res.,1981,19:41—59
    60. B1ock S L,Duan N,Tian Z R,et a1.A review of porous manganese oxide materials.Chem Mater,1998,10:2619-2628
    61.吴忠帅,张向东,臧健等.Birnessite型锰氧化物的合成研究进展.化学通报,2006,69:1-5
    62. Qi F,Hirofumi K,Kenta O.Manganese oxide porous crystals.J Mater.Chem, 1999,9:319-33
    63. McKenzie R M.The synthesis of birnessite,eryptomelane and some other oxides and hydroxides of manganese.Mineral Mag,1 971,38(296):493 503
    64. Mckenzie R M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res,1980,18(1):61-73
    65. Nelson Y M,Lion L.W,Shuler M L. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides,iron(hydr)oxides,and their mixtures. Environ Sci Technol,2002,36(3):421-425
    66. Golden D C,Dixon J B,Cheng C C.Ion exchange,thermal transformations and oxidizing properties of birnessite.Clays Clay Min.,1986,33:5l1—920.
    67. Brandy Toner,Alain Manceau,Samuel M. Webb et al. Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta, 2006 (70) :27–43
    68. Loganathan P,Burau R G,Fuerstenau. Influence of pH on the sorption of Co2+,Zn2+and Ca2+ by a hydrous mangamese oxide. J Am Soil Sci Soc,1977,41:57-62
    69. Nelson Y M,Lion L W,Shuler M L et al. Lead binding to metal oxide and organic phases of natural aquatic biofilms. Limnol Oceanogr,1999,44(7):1715-1729
    70. Zasoski R J,Burau R G. Sorption and sorptive interaction of cadmium and zinc on hydrous manganese oxides. Soil Sci Soc Am J,1988,52:81-87
    71.涂仕华,G J Rac.水钠锰矿对Mn2+持留机理的研究.植物营养与肥料学报,1994,1:91~97
    72. Fu G,Allen H E,Cowan C E. Adsorption of cadmium and copper by manganese dioxide. Soil Sci,1991,152(2):72-81
    73. Loganathan P,Burau R G. Sorption of heavy metals by a hydrous manganese oxide. Geochim Cosmochim Acta,1973,37:1277-1293
    74. Foster A L,Brown G E,Parks G A. X-ray adsorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochim Cosmochim Acta,2003,67(11):1937-1953
    75. Gadde R R,Laitinen H A. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal Chem,1974, 46:2022-2026
    76. Murray J W. The interaction of metal ions at the manganese dioxide-solution interface. Geochim Cosmochim Acta,1975,39:505-519
    77. Al-Degs Y,Khraisheh M A M,Tutunji M F. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res,2001,35(15):3724-3728
    78. Jardine P M,Taylor D L. Kinetics and mechanisms of Co(II) EDTA oxidation by pyrolusite. Cosmochim Acta,1995,59(20):4193-4203
    79. Baijpi S,Chaudhuri M. Removal of arsenic from ground water by manganese dioxide coated sand. J Environ Eng,1999,125(8):782-784
    80. George AParks.The isoelectric points solid oxides.solid hydroxide and aqueous hydroxo complex systems.Chem.Rev.,1965:177-198
    81.王征.锰氧化物对次甲基蓝染料的吸附和氧化脱色研究[硕士论文].青岛:中国海洋大学, 2007, 5
    82. Wolfgang Driehaus et a1. Oxidation of arsenate(3+) with manganese oxide in water treatment. Wat.Res,1995,29(1):297-305
    83. Feng X H,Zu Y Q,Tan W F,et a1.Arsenire oxidation by three types of manganese oxides.Jour Environmental Sciences,2006,18(2):292—298
    84.崔玉民,范少华,张颖.稀L掺杂TiO2纳米微粒的合成、表征及光催化活性.北京科技大学学报,2006,28(10):956—958
    85. Drew M著,吴大成,朱谱新等译.表面界面和胶体原理及应用.北京:化学工业出版社,2005,141-147
    86.许保玖,龙腾锐.当代给水与废水处理原理.北京:高等教育出版社,2000,126-129
    87.汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理.北京:中国环境科学出版社,2000,105-109
    88. Hohl H,Stumm W. Interaction of Pb2+ with hydrous-Al2O3.Journal of Colloid interface science,1976,55(2):281-288
    89. Stumm W,Huang C P,Jenkins S R.Specific chemical interaction affecting the stabilityof dispersed systems.Coat chemical Acta,1970,42(3):223-244
    90. Dzombak D A,Morel F M.Surface complexation modeling-hydrous ferric oxide.New York:John Wiley Inc,1990,48-59
    91. Davis J A,James R O,Leckie J O.Surface ionization and complexation at the oxide/water interface I computation of electrical double layer properties in simple electrolytes.Journal of Colloid interface science,1978,63(2):480-499
    92. Hayes K F,Leckie J O.Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface I.Journal of Colloid interface science,1987,115(3):564-572
    93. Hayes K F,Leckie J O.Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface II.Journal of Colloid interface science,1988,125(2):717-726
    94.陈宇辉,陶涛.洞庭湖区地下水除铁除锰工艺研究.河南科学,2005,23(3):422-425
    95. C.K.Hope,T.R.Bott. Laboratory modeling of manganese biofiltration using biofilms of Leptothrix discophora.Water research[J],2004,38:1853-1861
    96. W. C. Ghiorse.Biology of Iron and Manganese Depositing Bacteria. Ann Rev Microbiol,1984,38:515-550
    97.王文明.深海锰氧化细菌Brachybacterium sp.Mn32对Mn(Ⅱ)的氧化及生物锰氧化物对Zn(Ⅱ)、Ni(Ⅱ)的吸附研究[硕士论文].武汉:华中农业大学,2008:23
    98. Naoyuki Miyata,Daisuke Sugiyama,Yukinori Tani et al.Production of Biogenic Manganese Oxides by Repeated-Batch Cultures of Laboratory Microcosms. Journal of Bioscience and Bioengineering,2007,103(5):432-439
    99. F.H.Brown ,A.Pabst.Birnessite on Colemanite at Boron California. The American Mineralogist,1971,56:1057-1064
    100. Bray R,Olanczuk- Neyman K. The Influence of Changes in Groundwater Composition on the Efficiency of Manganese and Ammonia Nitrogen Removal on Mature Quartz and Filtering Beds [J] . Water Science and Technology,2001,1(2):91– 98
    101. Olanczuk- Neyman K,Bray R. Evaluation of the Affectivity of Selected Filter Beds for Iron and Manganese Removal [J] . Water Science and Technology,2001,1(2):159– 165
    102. Catherine V Tremblay,Andre Beaubien,Philippe Charles et a1.Control of Biological Iron Removal from Drinking Water Using oxidation—reduction potential[J].Water Sciencnand Technology 1998,38(6):121—128
    103. Raghavan N S,Ruthven D M. Numerical Simulation of a Fixed Bed Adsorption Column by the Method of Orthogonal Collocation. J AIChE,1983, 29(6):922-925
    104. Bohart G S,Adams E Q. Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc,1920,42:523-544
    105. Wolborska A. Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Res,1989,23(1):85-91
    106. Thomas H G. Chromatography:a problem in kinetics. Ann N Y Acad Sci,1948, 49:161-182
    107. Yoon Y H,Nelson J H. Aplication of gas adsorption kinetics.I. A theoretical model for respirator cartridge service time. Am Ind Hyg Assoc J,1984,45:509-516
    108. Douglas M R.Principles of adsorption and adsorption processes.New York:John Wiley Inc,1984,30-38
    109. Marc A A,Alan JR. Adsorption of inorganics at solid-liquid interfaces.Michigan:Ann arbor science publisher,1981,1-51
    110. Aksu Z. Determination of the equilibrium,kinetic and thermodynamic parameters of the batch biosorption of lead(II) ions onto Chlorella vulgaris. Process Biochem,2002,38(1):89-99
    111.武玫玲.土壤矿质胶体的可变电荷表面对重金属离子的专性吸附.土壤通报,1985,16(2):138-143
    112. Ingallinella A,Stecca L,Wegellin M. Up-flow roughing filtration:rehabilitation of a water treatment plant in Tarata. Water Sci. Technol,1998,37 (9):105–112
    113. Wahlberg T,Hedberg T. Upgrading of waterworks with a new biooxidation process for removal of Mn and Fe. Proceedings of the Upgrading of Water and Waste Systems Conference,1997,Kalmar, Sweden.
    114. Davies SHR,Morgan J J. Manganese(II) oxidation kinetics on metal oxide surfaces. J Colloid Interface Sci,1989,129(1):63–77.
    115. Hastings D,Emerson S. Oxidation of manganese by spores of a marine bacillus:kinetic and thermodynamic considerations. Geochim Cosmochim Acta 1986,50:1819-1824.
    116. G. McKay,Y S. Ho.Pseudo-second-order model for sorption processes. Process Biochem,1999,34:451–465
    117. Sushree Swarupa Tripathy,Ashok M. Raichur.Abatement of fluoride from water using manganese dioxide-coated activated alumina. Journal of Hazardous Materials,2008,153:1043–1051
    118. Jürgensen, A., Widmeyer, J. R., Gordon, R. A., Bendell-Young, L. I., Moore, M.M., and Crozier, E. D.: The structure of the manganese oxide on the sheath of the bacterium Leptothrix discophora: an XAFS study. Am. Mineral., 2004,89:1110–1118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700