CdTe量子点的制备及其生物应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有体相材料所不具备的新颖的光学、电学以及磁学等性质,引起了人们广泛的研究和关注。在本文中,我们对量子点的制备、表征及生物应用进行了系统的研究,主要的研究内容如下:
     (1)在开放体系的水溶液中,我们合成了发射光谱可调的CdTe量子点,考察了其反应时间,pH值等条件对量子点光学性质的影响,通过检测反应液的吸收光谱和发射光谱提供了粒子成核与生长情况,并用高分辨透射电镜和X-射线衍射仪对量子点进行表征。合成的CdTe量子点进一步考察了其光化学稳定性,结果表明,CdTe量子点随着光照时间的延长,荧光强度大幅度提高。分析其原因,辐射推动CdTe量子点表面巯基乙酸的光化学降解,巯基分子中的硫原子与溶液中的镉离子反应,在CdTe纳米颗粒表面形成CdS的壳层,钝化了CdTe纳米颗粒表面缺陷,从而使荧光效率大大提高。(2)在前一部分工作的基础上,用二氧化硅对CdTe量子点进行包覆,制备了CdTe/SiO2荧光微球,并对比了CdTe量子点和CdTe/SiO2荧光微球发光情况的变化。以多聚赖氨酸为模板,制备了含有CdSe/ZnS纳米粒子的量子点微球,利用激光共聚焦显微镜考察了量子点在微球中的分布情况,结果显示该微球在生理条件下十分稳定。(3)利用量子点的荧光特性合成了荧光探针,用于肿瘤靶向标记和细胞内成像的研究。该荧光探针是将亲水性的CdTe量子点连接叶酸分子。利用叶酸对多数肿瘤细胞膜表面叶酸受体的高度亲和性,将量子点靶向至肿瘤,并通过肿瘤细胞的内吞作用进入细胞内。用荧光显微镜对量子点荧光标记的细胞进行成像,图像显示有叶酸介导的量子点成功进入肿瘤细胞内部,发出明亮的荧光,没有叶酸介导的,荧光很微弱。这些现象说明合成的生物靶向性的量子点荧光探针能准确的识别出肿瘤细胞并且能够长时间对细胞进行标记。
Nanomaterials, which are different from their corresponding bulk materials, have the novel optic, electric and magnetic properties. In this dissertation, the synthesis, characterization and biological labeling of some nanoscale semiconductor materials have been systematically studied. The main research results are shown as follows:
     (1)Emission-tunable CdTe quantum dots were synthesized Under open-air conditions。Various reaction conditions that affected the optical properties of CdTe nanoparticles were studied, including the time of reaction and the pH. Furthermore, these nanoparticles were characterized by High resolution electron microscopy, fluorescence spectra and UV-Vis spectroscopy, the UV-Vis spectroscopy provide information about the progress of nucleation and growth of the particles. The prepared CdTe quantum dots were further observed on their photochemical stability. The result shows that illumination can greatly increase the photoluminescence of CdTe quantum dots. Illumination-assisting photoluminescence enhancement effects were explained by the photochemical degradations of thioglycolic acid on the surface of quantum dots. Sulfide ions may react with cadmium ions on the CdTe particle surface and form a shell structure of CdS. The formation CdS shell on the CdTe will effectively passive the CdTe surface and give rise to a great increment in photoluminescence intensity. (2) Based on the above work, CdTe quantum dots were coated SiO2, CdTe/SiO2 fluorescence microspheres were synthesized,and fluorescence spectra of CdTe and CdTe/SiO2 fluorescence microspheres were studied. Polylysine was used as template and the CdSe/ZnS were incorporated into the microspheres. Under laser confocal microscopy, it’s clearly to see that the luminescent quantum dots was well-proportioned in the microsphere. The stability of the microsphere was also examined and results shows that the microspheres were very stable. (3) Fluorescent Probes based on semiconductor quantum dots (QDs) were successfully synthesized for tumors targeting and imaging in vivo. The structural of fluorescent probes design involves conjugating hydrophilic CdTe QDs to folic acid to target the folate-binding protein, this molecule is the folate receptor that is overexpressed on the surface of many tumoral cells. Folate targeting improved the specificity of QDs for labeling tumor. Intracellular distribution of QD staining was characterized with fluorescence microscopy. Derived images of tissues lableled with QDs-FA probes generally show bright fluorescence, whereas images of tumors only with QDs display little or no fluorescence. These findings suggest the use of QDs via folate as an effective probe for detecting tumors and long-term labeling of cells.
引文
[1] Hadiri M R,Granja J R,Milligan R A,et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366(5): 324-327
    [2] Yoshihiko K. Photoluminescence spectrum and dynamics in oxidized silicon nanocrystals: A nanoscopic disorder system. Phys Rep B,1995,53(20): 13515-13520
    [3] Yoffe A D. Low-dimensional system:quantum size effects and electronic properties of semiconductor microcrystallites(zero-dimensional systems and some quasi two-dimensional systems. Adv Phys,1993,42():173
    [4] Khazanovich N, Granja J R, McRee D E, et al. Nanoscale Tubular Ensembles with Specified Internal Diameters Design of a Self-Assembled Nanotube with a 13-A Pore. J Am Chem Soc, 1994, 116(): 6011-6012
    [5] Zuo J, Xu C Y, Liu X M, et al. Study of the Raman spectrum of nanometer SnO. J App Phys, 1994, 75(): 1835
    [6] Chen W, Wang Z G, Lin Z J, et al. Absorption and luminescence of the surface states in ZnS nanoparticles. J Appl Phys, 1997, 82(6): 3111.
    [7] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev, 1989, 89():1861-1873
    [8] Nirmal M, Murray C B, Bawendi M G. Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton. Phys Rev B, 1994, 50(4): 2293-2300
    [9] Vogel R, Hoyer P, Weller H. Quantum-sized PbS,CdS,Ag2S,Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous widebandgap semiconductors. J Phys Chem, 1994, 98(12): 3183-3188
    [10] Peng X G, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc, 1997, 119():7019-7029
    [11] Batlle X, Labarta A. Finite - size effects in fine particles: magnetic and transport properties. J Phys D: Appl Phys, 2002, 3():15-42
    [12] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highlyluminescent nanocrystallites. J Phys Chem B, 1997,101():9463-9475
    [13] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE semiconductor nanocrystallites. J Am Chem Soc, 1993, 115():8706-8709.
    [14] Hines M A, Guyot-Sionnest P.Synthesis and characterization of strong luminescing ZnS-capped CdSe nanocrystals. J Phys Chem, 1996, 100( ): 468
    [15] Peng X G. Green chemical approaches toward high-quality semiconductor nanocrystals. Chem Eur J, 2002, 8():334-339
    [16] Yu W W, Peng X. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: T unable reactivity of monomers. Angew. Chem Int Edit, 2002,41():2368
    [17] Spanhel L, Haase M, Weller H, et al. Photochemistry of colloidal semiconductors Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc, 1987, 109():5649-5655
    [18] Rogach A L, Kotov N A, Koktysh D S, et al. Colloidally Synthesized II-VI Semiconductor Nanocrystals in Thin Films and Colloidal Crystals. Colloids Surf ,2002, 202(4):135.
    [19] Rogach A L, Kornowski A, Weller H, et al. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals. J Phys Chem B, 1999,103(16): 3065-3069
    [20] Mahtab R, Rogers J P, Murphy C J. Protein-Sized Quantum Dot Luminescence Can Distinguish between "Straight", "Bent", and "Kinked" Oligonucleotides J Am Chem Soc,1995,117(35): 9099-9100
    [21] Mathab R, Rogers J P, Singleton C P, et al. Preferential Adsorption of a "Kinked" DNA to a Neutral Curved Surface: Comparisons to and Implications for Nonspecific DNA-Protein Interactions.J Am Chem Soc,1996,118(30): 7028-7032
    [22] Gao M Y, Kirstein S, Rogach A L, et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B, 1998, 102(): 8360-8363
    [23] Bao H B, Gong Y J, Li Z, et al. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater, 2004, 16():3853-3859.
    [24] Petit C, Pileni M P. Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels. J Phys Chem, 1988,92(8):2282-2286
    [25] Quinlan F T, Kuther J, Stroeve P, et al. Reverse Micelle Synthesis andCharacterization of ZnSe Nanoparticles. Langmuir, 2000,16(8): 4049-4051
    [26] Li G L, Wang G H. Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostructured Materials, 1999, 11(5): 663-668
    [27] Qiu S P, Dong J X, Chen G X. Synthesis of CeF3 nanoparticles from water-in-oil microemulsions. Powder Technology, 2000, 113(1): 9-13
    [28] Meyer F, Dierstein A, Beck Ch, et al. Size-controlled synthesis of nanoscaled aluminium spinels using heterobimetallic alkoxide precursors via water/oil microemulsions. Natostructured Materials,1999, 12(1):71-74.
    [29] Wang C C, Chen D H, Huang T C. Synthesis of palladium nanoparticles in water-in-oil microemulsions. Colloids and Surfaces A, 2001,189(2): 145-154
    [30] Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc, 1990,112(4):1327-1332
    [31] Hoener C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J Phys Chem,1992,96(9):3812-3817
    [32] Cao L X, Huang S H, Shulin E. ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles. J Colloi Inter Sci, 2004,273(2):478-482
    [33] Curri M L, Agostiano A, Manna L, et al. Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion:the role of the cosurfactant. J Phy Chem B,2000,104():8391-8397.
    [34] Hao E, Sun H P, Shen J C, et al. Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles. Chem Mater,1999,11(11):3096-3102
    [35] Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(): 2016-2018
    [36] Goldman E R, Anderson G P, Tran P T, et al.Conjugation of luminescent quantum dots with antibodies using an engineered adapter protein to provide new reagents for fluoroimmunoassays. Analytical Chemistry, 2002, 74(4): 841-847
    [37] Goldman E R, Balighian E D, Mattoussi H, et al. Avidin:a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc, 2002,124(22):6378-6382
    [38] Bruchez M Jr, Moronne M, Alivisatos A P,et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998,281 (5385):2013-2016
    [39] Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385):2016-2018
    [40] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dotsencapsulated in phospholipid micelles. Science, 2002, 298(5599):1759-1762
    [41] Wu X, Liu H, Liu J, et al.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol, 2003, 21(1): 41-46
    [42] Jaiswal J K, Mattoussi H , Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol, 2003,21(1):47-51
    [43] 孟磊,宋增璇.量子点在生物医学中的应用. 生物化学与生物物理进展, 2004,31(2):185-187
    [44] Han M, Gao X, Su J Z, et al.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotech, 2001,19():631-635
    [45] Rosenthal S J. Bar-coding biomolecules with fluorescent nanocrystals. Nature Biotechnology, 2001,19(1):621-622
    [46] Ingert D, Feltin N, Levy L, et al. CdTe Quantum Dots Obtained by Using Colloidal Self-Assemblies as Templates. Adv Mater, 1999, 11(3):220-223
    [47] Kapitonov A M, Stupak A P, Gaponenko S V, et al. Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals. J Phys Chem B, 1999, 103():10109-10113
    [48] Bruchez M, Moronne M, Gin P, et al. Alivisatos Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(): 2013-2016
    [49] Wang D Y, Rogach A L, Caruso F. Semiconductor Quantum Dot—labeled Microsphere Bioconjugates Prepared by Stepwise Self-assembly. Nano Lett, 2002, 2(): 857-861
    [50] Larson D R, Zipfel W R, Williams R M, et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 2003, 300(5624): 1434-1436
    [51] Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotech, 2001,19():631-635
    [52] Trau M, Battersby B J. Novel Colloidal Materials for High-Throughput Screening Applications in Drug Discovery and Genomics. Adv Mater, 2001, 13(12):975-979
    [53] Gaponik N, Radtchenko I L, Sukhorukov G B, et al. Toward Encoding Combinatorial Libraries:Charge-Driven Microencapsulation of Semiconductor Nanocrystals Luminescing in the Visible and Near IR. Adv Mater, 2002, 14(12): 879-882
    [54] Chen Y, Rosenzweig Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett, 2002, 2(11): 1299-1302
    [55] Zhang H, Zhang Z, Yang B,et al.The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. J Phys Chem B, 2003, 107():8-13
    [56] Borchert H, Talapin D V, Gaponk N, et al. Relations between the Photoluminescence Efficiency of CdTe Nanocrystals and Their Surface Properties Revealed by Synchrotron XPS. J Phys Chem B, 2003,107():9662.
    [57] Gaponik N, Talapin D V, Rogach A L, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J Phys Chem B, 2002, 106(): 7177-7185
    [58] Talapin D V, Rogach A L, Shevchenko E V, et al. Dynamic distribution of growth rates within the ensembles of colloidal II?VI and III?V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J Am Chem Soc,2002, 124():5782
    [59] Cordero S R, Carson P J, Estabrook R A, et al. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers. J Phys Chem B, 2000, 104():12137
    [60] Asami H, Abe Y, Ohtsu T, et al. Surface State Analysis of Photobrightening in CdSe Nanocrystal Thin Films. J Phys Chem B, 2003,107():12566.
    [61] Shavel A, Gaponik N, Eychmueller A. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals.J Phys Chem B, 2004, 108(): 5905.
    [62] Martinez-Rubio M I, Ireland T G, Fern G R, et al. A New Application for Microgels: Novel Method for the Synthesis of Spherical Particles of the Y2O3:Eu Phosphor Using a Copolymer Microgel of NIPAM and Acrylic Acid. Langmuir, 2001, 17(22): 7145-7149
    [63] Rogach A L, Nagesha D, Ostrander J W, et al. "Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals. Chem Mater, 2000, 12(9): 2676-2685
    [64] Wang D, Rogach A L, Caruso F. Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. Nanolett, 2002, 2(8):857-861
    [65] Rogach A L, Nagesha D, Ostrander J W, et al. Synthesis of “Raisin Bun”-type composite spheres of silica and semiconductor nanocrystals. Chem Mater,2000, 12(9):2676-2685
    [66] Chan Y, Zimmer J P, Stroh M, et al. Incorporation of luminescent nanocrystals into monodiperse core-shell silica microspheres. Adv Mater,2004, 16(24-24):2092
    [67] Mokari T, Sertchook H, Aharoni A, et al. Nano@micro: General Method for Entrapment of Nanocrystals in Sol-Gel-Derived Composite Hydrophobic Silica Spheres. Chem Mater, 2005, 17(2):258-263
    [68] Derfus A M,. Chan W C W, Bhatia S N.Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking. Adv Mater, 2004, 16():961.
    [69] Dabboussi B O. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystal- lites. J Phys Chem,1997, 101():9463-9575
    [70] Hines M A, Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J Phys Chem,1996, 100(): 468-471
    [71] Jennifer S, Robert J Lee. Targeted drug delivery via the folate receptor. Advan drug delivery, 2000, 41():147-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700