三种植物生长调节剂对马铃薯碳代谢生理及产量品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2011-2012年两年时间,以“荷兰212”、“费乌瑞它”(也称为荷兰七)、“早大白”、“克新13”和“大西洋”5个马铃薯品种为试验材料,通过叶面喷施2-N,N-二乙氨基乙基己酸酯(DTA-6)、烯效唑(S3307)和氯化胆碱(Cc)3种植物生长调节剂,比较了马铃薯不同营养器官内碳代谢产物的含量变化以及碳代谢相关酶活性变化,研究了植物生长调节剂对马铃薯碳代谢生理的调控以及对产量和品质的影响。通过本研究,初步探明植物生长调节剂对马铃薯碳代谢机理的调控,并且为马铃薯高产、优质、高效生产中施用植物生长调节剂提供理论依据。主要研究结果如下:
     1.植物生长调节剂能够调控马铃薯的光合性状,其中DTA-6和Cc处理为佳,S3307处理次之。DTA-6和Cc处理能够显著提高取样后期叶绿素a及叶绿素总含量,同时三个处理都可显著提高始花期的水分利用率和盛花期的气孔导度,另外Cc处理可显著提高蒸腾速率。
     2.调节剂处理对马铃薯叶片的葡萄糖含量具有提高的效应,其中Cc处理为佳,DTA-6处理次之。而对果糖含量而言,以DTA-6和S3307处理调控效应明显。
     3.各处理对叶片内蔗糖合成酶活性都有提高的作用,S3307处理主要集中在块茎形成期,而Cc和DTA-6处理主要集中淀粉积累期,其中以Cc处理的效应为佳,DTA-6处理次之。同时Cc和DTA-6处理在淀粉积累期也可提高叶片内蔗糖磷酸合成酶活性,其中Cc处理的效果较好。
     4.始花期喷施调节剂,各处理可提高取样后期叶片内蔗糖的含量,其中以Cc处理的效果最好,DTA-6处理的效果较弱。同时Cc处理也提高了取样后期的中性转化酶以及总转化酶活性。另外,各处理都能降低取样后期叶片内淀粉的含量,同时各处理都能降低荷兰212在取样后期叶片内的淀粉酶活性,其中以Cc处理的效果最好,DTA-6处理次之。Cc和DTA-6处理都提高了早大白叶片内的淀粉酶活性。盛花期喷施调节剂,在取样后期,各处理可降低叶片内的蔗糖含量但也都提高了果糖含量,另外DTA-6处理能够提高荷兰212转化酶及淀粉酶活性,而Cc处理则可升高克新13叶片的转化酶和淀粉酶活性。
     5.各处理对运输器官内的碳代谢同化物具有调控作用。Cc处理可降低叶柄内还原糖含量,但可提高叶柄内蔗糖含量。S3307处理降低了韧皮部内还原糖的含量,同时S3307和DTA-6处理可提高韧皮部内蔗糖含量, DTA-6处理对匍匐茎的影响较大,其可降低可溶性糖含量,但是能够提高蔗糖含量,而Cc对匍匐茎内蔗糖含量的提高也有调控效应。整体来看,Cc和DTA-6处理可提高各运输器官内蔗糖含量,其中以Cc处理的效应为佳,DTA-6处理次之。
     6.各处理对运输器官内的碳代谢相关酶活性具有调控作用。在取样后期,Cc和DTA-6处理可提高荷兰212叶柄内的中性转化酶活性,但也降低了早大白叶柄内的中性转化酶活性。各处理对叶柄淀粉酶活性影响不大,但都可降低取样后期韧皮部内淀粉酶总活性。Cc处理可提高荷兰212匍匐茎内中性转化酶活性,而S3307和DTA-6处理则降低早大白匍匐茎内中性转化酶活性。
     7.各处理对贮藏器官内的碳代谢同化物和酶活性具有调控作用。始花期喷施调节剂,Cc和DTA-6处理能够提高取样后期荷兰212块茎内的淀粉磷酸合成酶活性,其中以Cc处理的效果为好,而各处理对早大白块茎内淀粉磷酸合成酶活性没有影响。Cc和DTA-6处理能够提高取样后期块茎内的转化酶的活性,同时Cc处理还可降低淀粉积累期块茎内淀粉酶的活性。盛花期喷施调节剂,在取样后期,各处理能够降低果糖含量,提高蔗糖和淀粉含量,其中以DTA-6处理效果较好,而S3307处理能够提高转化酶和淀粉酶的活性。
     8.始花期叶面喷施调节剂,DTA-6处理能够提高荷兰212和荷兰七大薯产量,提高块茎淀粉含量,同时DTA-6处理对提高维生素C含量具有较好的作用。Cc处理能够能够提高早大白大薯产量,提高块茎淀粉含量,同时也能够提高还原糖含量。S3307处理能够提高荷兰212大薯产量。盛花期叶面喷施调节剂,DTA-6处理能够提高大西洋、早大白和克新13大薯产量,Cc处理能够提高大西洋大薯产量。
     9.综合来看,DTA-6和Cc处理可提高碳代谢物质的形成,提高运输器官内蔗糖的含量,提高块茎内淀粉磷酸合成酶及转化酶的活性,并且可以降低块茎内淀粉酶的活性,对提高大薯产量及改善品质具有一定的调控效应,其中以Cc处理效果为最佳。另外,特别值得注意的是施用时期,试验结果表明始花期喷施效果较好。
During the two years of2011-2012, some field experiments were conducted with five potato(Solanum tuberosum L.)cultivars such as ‘H-212’,‘Favorita’,‘Atlantic’,‘ZDB’,‘K13’. And weused three regulators,‘Uniconazole(S3307)’,‘Choline chloride(Cc)’and ‘Diethyl aminoethyl hexanoate(DTA-6)’ by foliar application on the leaves. In this study, the aim of this experiment was to comparethe change of PGRs on the activities of some enzyme such as invertase, amylase etc. in the leavespetiole,phloem, stolon and tuber of potato, investigate the differences of physiological characters suchas sucrose,starch etc. in potato plant, research the effects of PGRs on yield and quality structure. Wepreliminary want to proven the influence of PGRs on carbon metabolism by this study, and it canprovide academic theories for usage of PGRs for higher yield, better quality, and more efficiencyproduction of potato. The main results were:
     1. Plant growth regulators can regulate the photosynthetic traits of potato, DTA-6and Cc treatmentare better, effect of treatment with S3307followed. The content of Chla and total chlorophyll wereincreased with DTA-6and S3307at the late sampling. while these three treatments can significantlyimprove the water use efficiency at the beginning of flowering and stomatal conductance at the periodof flowering. In addition, the Cc treatment can significantly increase the transpiration rate.
     2. The content of glucose was increased in leaves with spraying plant growth regulators, Cctreatment is better, DTA-6treatment followed. For fructose, DTA-6and S3307treatment are better.
     3. All these three treatments can increase the sucrose synthase activity in leaves, S3307treatment ismainly in the tuber formation stage, Cc and DTA-6treatment are mainly at the starch accumulationperiod, which Cc treatment is better, DTA-6followed. In addition, Cc and DTA-6may also improve thesucrose phosphate synthase activity in leaves at the starch accumulation period, which Cc treatment isbetter.
     4. When spraying PGRs at the beginning of flowering stages, all treatments can increase the contentof sucrose in leaves at late of sampling, whereas Cc treatment is preferably, DTA-6treatment is weak.Further, Cc treatment can also improve the activities of neutral invertase and invertase at the sameperiod. In addition, all treatment can also reduce the starch content and the amylase activity in leavesof “H-212” potato, of which Cc treatment is best, DTA-6treatment is followed. In the other hand, Ccand DTA-6treatment can increase amylase activity in leaves of “ZDB” potato. And spraying PGRs atthe stages of flowering, these three treatments can increase the content of fructose in leaves at late ofsampling, but without sucrose. DTA-6treatment can increase amylase and invertase activity in leavesof “H-212” potato, as well as Cc with “K13” potato.
     5. Each treatment can regulate the carbon metabolism assimilate in transport organs of potato. Thecontent of reduced sugar can be reduced by Cc treatment, but it can increase the sucrose content in thepetiole. S3307treatment has the same effect with Cc in the phloem. In addition, DTA-6treatment canreduce the content of soluble sugar, Further, both DTA-6and Cc can also increase the content of sucrose content in the stolon. As a whole, Cc and DTA-6treatment can increase the content of sucrosein the transport organs of potato, which is better to Cc treatment, DTA-6treatment is followed.
     6. All treatments can regulate some enzyme activities of carbon metabolism in transport organs ofpotato. At late of sampling, Cc and DTA-6can improve the neutral invertase activity in the petiole of“H-212” potato, but also reduce it of “ZDB” potato. Each treatment has little effect on the petioleamylase activity, but can reduce the activity of amylase in the phloem. In the other hand, Cc treatmentcan improve the neutral invertase activity in the stolons of “H-212” potato, S3307and DTA-6treatmentreduce it in the stolons of “ZDB” potato.
     7. All treatments can regulate some enzyme activities of carbon metabolism and the content ofcarbon metabolism assimilate in storage organs of potato. When spraying PGRs at the beginning offlowering stages, Cc and DTA-6can improve the starch phosphate synthase activity in the tubers of“H-212” potato at late of sampling, in which Cc treatment is best. But each treatment has negligiblyeffect with the starch phosphate synthase activity in the tubers of “ZDB” potato. In the other hand, Ccand DTA-6treatment can improve the invertase activity in the tubers, and Cc treatment reduces theactivity of amylase in the tubers at the starch accumulation period. And spraying PGRs at the stages offlowering, these three treatments can increase the content of starch and sucrose in tubers at late ofsampling, but without fructose, which DTA-6treatment is better. S3307can increase amylase andinvertase activity in tubers of “K13” potato.
     8. When spraying PGRs at the beginning of flowering stages, DTA-6can significantly increase theyield of the heavy potato with “H-212” and “H7”, and it also can improve the quality characters suchas starch, vitamin C. Cc can significantly increase the yield of the heavy potato with “ZDB”, and itcan increased the content of starch and reduced sugar in tuber. S3307can significantly increase theyield of the heavy potato with “H-212” potato. And when spraying at the stages of flowering, DTA-6can significantly increase the yield of the heavy potato with “ZDB”,“Atlantic”, and “K13”, and Cccan significantly increase the yield of the heavy potato with “Atlantic”.
     9. In one words, DTA-6and Cc treatment can improve the formation of carbon metabolites andimprove the content of sucrose in the transport organs, improve the tuber starch phosphate synthaseand invertase activity, reduce the amylase activity in the tubers, they can also improve the heavypotato production and improve the quality. On the whole, we believe that Cc treatment is the best. Inaddition, the special period, it is worth noting that the application test results showed that thebeginning of flowering spraying effect is better.
引文
[1]范双喜主编.现代蔬菜生产技术全书[M].北京:中国农业出版社,2004.504.
    [2]程智慧主编.园艺学概论[M].北京:中国农业出版社,2003.237.
    [3] Fabeiro, C., Mart′n de Santa Olalla, F., de Juan, J.A.. Yield and size of deficit irrigationpotatoes[J]. Agric. Water Manage.2001,48,255-266.
    [4] Sharma, N., Kaur, N., Gupta, A.K. Effects of gibberellic acid and chlorocholin chloride ontuberisation and growth of potato (Solanum tuberosum L.)[J]. J. Sci.Food Agric.1998,78,466-470.
    [5]项洪涛.植物生长物质对马铃薯茎系统建成及块茎产量品质的影响[D].大庆,黑龙江八一农垦大学硕士学位论文,2009.
    [6]段留生,田晓莉.作物化学控制原理与技术[M].北京:中国农业大学出版社,2005:1-3.
    [7]毛景英,闫振领.植物生长调节剂调控原理与实用技术[M].北京:中国农业出版社,2005:1-118.
    [8] Poling Stephen M,Hsu Wan-Jean,Koehrn Fred J. Chemical Regulation of CarotenoidBiosynthesis.Part10.Chemical Induction of βcarotene Biosynthesis[J]. Phytochemistry,1977,16(5):551-555.
    [9] Stephen M,Poling W J H. Synthetic bioregularors of poly-cis-carotenoid biosynthesis[J].Phytochemistry,1982,21(3):601-604.
    [10] Yokoyama Herry,Keithly James H,Gausman Harold W.Trialkylamine Ether Plant GrowthRegulators[P],1993,597.
    [11]汪惠芳,陈瑞兴.烯效唑对油菜生长和产量的影响[J].植物生理学通讯,1997,33(5):345-346.
    [12]郭绪全.烯效唑在我国农业中的应用研究简述[J].广西农学报,1997,3:31-37.
    [13]朱木兰,何觉民.烯效唑对农作物的生理效应及应用效果[J].作物研究,1999,13(2):40-43.
    [14] Che F S, Chou C, Hyeon S B, Isogai A, Suzuki A. Metabolism of choline chloride and itsanalogs in wheat seedlings. Plant Cell Physiol,1990,31:45-50
    [15] Uemura M, Joseph R A, Steponkus P L. Cold acclimation of Arabidopsis thaliana. PlantPhysiol,1995,109: l5-30.
    [16] Uemura M, Steponkus P L. A contrast of the plasma membrane lipid composition of oat andrye leaves in relation to freezing tolerance. Plant Physiol,1994,104:479-496.
    [17]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004.125.
    [18]宋春艳,冯乃杰,郑殿峰,等.植物生长调节剂对大豆叶片碳代谢相关生理指标的影响[J].干旱地区农业研究,2011,29(3):91-95.
    [19] Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascularplants[J].Plant Sci,2000,154:1-11.
    [20] Smeekens S,Rook F.Suger sensing and sugar mediated signal transduction in plants[J].PlantPhysiol,1997,115:7-13.
    [21] Roitsch T, Tanner W. Cell wall invertase: bridging the gap[J].Bot Acta,1996,109:93-96.
    [22] Sturm A, Tang GQ. The sucrose cleaving enzymes of plants arecrucial for development,growth and carbon partitioning[J].Trends in Plant Sci (Reviews),1999,4:401-407.
    [23] Bachelier C,Granam J,Manoir J du, etal. Integration of an invertase gene to control sucrosemetabolism in strawberry cultivars[J].Ata Horticul,1997,439:161-163.
    [24]陈俊伟,谢鸣,秦巧平.植物糖信号与激素信号之间的联系[J].植物生理与分子生物学学报,2005,41(3):279-285.
    [25] perezFJ,GomezM. Possible role of soluble invertase in the gibbereflic acid berry-sizingeffete in Sultans grape[J].Joumal of Plant Growth Regulation,2000,30:11-115.
    [26]王永章,张大鹏.乙烯对成熟期新红星苹果果实碳水化合物代谢的调控[J].园艺学报,2000,27(6):391-395.
    [27] BrennerML. Hormonal control of assimilate Partitioning: regulation in the sink[J].AetaHort.,1989,239:141-146.
    [28]管仲新.红地球葡萄浆果生长发育和品质形成规律的研究[D].乌鲁木齐,新疆农业大学硕士学位论文,2005.
    [29]夏国海,张大鹏,贾文锁.IAA、GA3和ABA对葡萄果实C14蔗糖输入与代谢的调控[J].园艺学报,2000,27(1):6-10.
    [30]黄卫东,张平,李文清.6-BA对葡萄果实生长及碳、氮同化物运输的影响[J].园艺学报,2002,29(4):303-306.
    [31]冯亚楠,李璨,冯乃杰,等.不同植物生长调节剂浸种对大豆子叶碳代谢影响[J].大豆科学,2009,28(6):1016-1020.
    [32]赵黎明,冯乃杰,郑殿峰.植物生长调节剂对大豆荚皮同化物代谢及糖分积累的影响[J].武汉植物学研究,2008,26(4):407-411.
    [33]宫占元,项洪涛.植物生长调节剂对马铃薯块茎淀粉含量及品质的影响[J].干旱地区研究,2011,29(1):187-192.
    [34]张立明,王庆美,何钟佩.脱毒和生长调节剂对甘薯内源激素含量及块根产量的影响[J].中国农业科学,2007,40(1):70-77.
    [35]李莹,王呈伟,郑玉红,等.植物生长调节剂浸球对花芽分化期石蒜和换锦花鳞茎生化特性的影响[J].植物资源与环境学报,2011,20(1):31-39.
    [36]党云萍,王延峰,常海飞,等.赤霉素对西农蜜桃果实发育的影响[J].延安大学学报(自然科学版),2003,22(2):65-66.
    [37]范爽,高东升,李忠勇.设施栽培中“春捷”桃糖积累与相关酶活性的变化[J].园艺学报,2006,33(6):1307-1309.
    [38] CarrascoRM,RodriguezJS,Perezp. Changes in chlorophyll fluorescence during the courseof Photoperiod and in response to drought in Casuarina equisetifolia Forst andForst[J].Photosynthetica,2002,40(3):363-368.
    [39]张春娟,冯乃杰,郑殿峰.叶面喷施植物生长调节剂对马铃薯产量及品质的影响[J].中国蔬菜,2009,(14):43-48.
    [40] BassinelloPZ,CordenunsiBR,lajoloFM. Amylolytic activity in fruits: comparison ofdifferent substrates and methods using banana as model[J].J.Agr Food Chem,2002,50(21):5781-5786.
    [41]郑殿峰,赵玖香,赵黎明.植物生长调节剂对大豆光合作用和同化物分配的影响[J].西南农业学报,2008,21(5):1265-1269.
    [42]宫占元,项洪涛,李梅,等.植物生长调节剂对马铃薯还原糖及淀粉含量的影响[J].安徽农业科学,2011,39(1):107-110.
    [43] Daniela Moreno, Federico J. Berli,Patricia N. Piccoli, etal. Gibberellins and abscisic acidpromote carbon allocation in Roots and Berries of Grapevines[J]. J Plant Growth Regul,2011,30:220-228.
    [44] Bouard DJ. Recherches physiologiques sur la vigne et en particulier sur l’aoutement dessarments.PhD thesis, Universite de Bordeaux, France,1966.
    [45] Peter Geigenberger. Regulation of sucrose to starch conversion in growing potatotubers[J].Journal of Experimental Botany,2003,54:457-465.
    [46] Nelson O, Pan D. Starch synthesis in maize endosperms[J].Annual Review of PlantPhysiology and Plant Molecular Biology,1995,46:475-496.
    [47] Fernie AR,Willmitzer L,Trethewey RN.Sucrose to starch:a transition in molecular plantphysiology[J].Trends in Plant Science,2002,7:35-41.
    [48] Oparka KJ, Prior DAM. Movement of Lucifer Yellow CH in potato tuber storage tissues: acomparison of symplastic and apoplastic transport[J].Planta,1988,176:533-540.
    [49] Viola R,Roberts AG, Haupt S, etal. Tuberization in potato involves a switch from apoplaticto symplastic phloem unloading[J]. The Plant Cell13,2001,385-398.
    [50] Morell S, Rees T.Sucrose metabolism in developing tubers of Solanum tuberosum[J].Phytochemistry,1986,25:1579-1585.
    [51] Zrenner R, Salanoubat M, Willmitzer L, etal. Evidence of the crucial role of sucrosesynthase for sink strength using transgenic potato plants[J].The Plant Journal,1995,7:97-107.
    [52] Kruger NJ. Carbohydrate synthesis and degradation. In:Dennis DT, Turpin DH, LefebvreDD, Layzell DB, eds[M].Plant metabolism. Harlow, UK: Longman,1997,83-104.
    [53] Mu è ller-Ro èber BT, Sonnewald U, Willmitzer L. Inhibition of ADP-glucosepyrophosphorylase leads to sugar storing tubers and influences tuber formation and expression oftuber storage protein genes[J].EMBO Journal,1992,11:1229-1238.
    [54] Fernie AR, Roessner U, Trethewey RN, etal. The contribution of plastidial phosphorglucomutase to the control of starch synthesis within the potato tuber[J].Planta,2001,213:418-426.
    [55] Zrenner R, Willlmitzer L, Sonnewald U. Analysis of the expression of potatouridinediphosphoglucose of pyrophospharylase and its inhibition by antisenseRNA[J].Planta,1993,190:247-252.
    [56] Geigenberger P, Reimholz R, Deiting U, etal.Decreased expression of sucrose phosphatesynthase strongly inhibits the water stress-induced synthesis of sucrose in growing potatotubers[J].The Plant Journal,1999,19:119-129.
    [57] Veramendi J, Roessner U, Renz A, Willmitzer L, etal. Antisense repression of hexokinase1leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significantchanges in tuber carbohydrate metabolism[J]. Plant Physiology,1999,121:1-11.
    [58] Veramendi J, Fernie AR, Leisse A, etal. Potato hexokinase2complements transgenicArabidopsis plants deficient in hexokinase1but does not play a key role in tuber carbohydratemetabolism[J].Plant Molecular Biology,2002,49:491-501.
    [59] Marshall J, Sidebottom C, Debet M, etal. Identification of the major starch synthase in thesoluble fraction of potato tubers[J].The Plant Cell8,1996:1121-1135.
    [60] Fulton DC, Edwards A, Pilling E, etal. Role of granule-bound starch synthase indetermination of amylopectin structure and starch granule morphology in potato[J].Journal ofBiological Chemistry,2002,277:10834-10841.
    [61] Safford R, Jobling SA, Sidebottom CM, etal. Consequences of antisense RNA inhibition ofstarch branching enzyme activity on properties of potato starch[J].Carbohydrate Polymer,1998,35:155-168.
    [62] Geigenberger P, Stitt M. Sucrose synthase catalyses a readily reversible reaction indeveloping potato tubers and other plant tissues[J].Planta,1993,189:329-339.
    [63] Salanoubat M,Belliard G.The steady-state level of potato sucrose synthase mRNA isdependent on wounding, anaerobiosis and sucrose[J].Gene,1989,84:181-185.
    [64] Geigenberger P, Stamme C, Tjaden J, etal. Tuber physiology and properties of starch fromtubers of transgenic potato plants with altered plastidic adenylate transporter activity.PlantPhysiology,2001,125:1667-1678.
    [65] Mu è ller-Ro èber BT, Kossmann J, Hannah LC, etal. One of two different ADP-glucosepyrophosphorylase genes from potato responds strongly to elevated levels of sucrose[J].Molecularand General Genetics,1990,224:136-146.
    [66] Sokolov LN, Dejardin A, Kleczkowski LA. Sugars and light/dark exposure triggerdifferential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsisthaliana[J].Biochemical Journal,1998,336:681-687.
    [67] Nielsen TH, Krapp A, Ro èper-Schwarz U, etal. The sugar-mediated regulation of genesencoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylaseis modi ed by nitrogen and phosphate[J].Plant, Cell and Environment,1998,21:443-455.
    [68] Scheible WR, Gonza lez-Fontes A, Lauerer M, etal. Nitrate acts as a signal to induceorganic acid metabolism and repress starch metabolism in tobacco[J].The Plant Cell9,1997,783-798.
    [69] Ross HA, Davies HV. Sucrose metabolism in tubers of potato(Solanum tuberosum L.)[J].Plant Physiology,1992,98:297-293.
    [70] Tiessen A, Hendriks JHM, Stitt M, etal.. Starch synthesis in potato tubers is regulated bypost-translational redox-modification of ADP-glucose pyrophosphorylase:a novel regulatorymechanism linking starch synthesis to the sucrose supply[J].The Plant Cell14,2002,2191-2213.
    [71] Geigenberger P, Stitt M. Diurnal changes in sucrose, nucleotides, starch synthesis, andAGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrosephosphate synthase[J].The Plant Journal,2000,23:795-806.
    [72] Geigenberger P, Merlo L, Reimholz R, etal. When growing potato tubers are detached fromtheir mother plant there is a rapid inhibition of starch synthesis, involving inhibition of ADP-glucosepyrophosphorylase[J].Planta,1994,193:486-493.
    [73] Stitt M, Huber S, Kerr P. Control of photosynthetic sucrose synthesis. In: Hatch MD,Boardman NK, eds. The biochemistry of plants[M]. Academic Press,1987,10:327-409.
    [74] Preiss J. Biosynthesis of starch and its regulation. In: Preiss J, ed. The biochemistry ofplants[M] San Diego, California: Academic Press,1988,14:181-254.
    [75] Sowokinos JR, Preiss J. Phosphorylases in Solanum tuberosum. III. Puri cation, physicaland catalytical properties of ADP-glucose pyrophosphorylase in potatoes[J].PlantPhysiology,1982,69:1459-1466.
    [76] Merlo L, Geigenberger P, Hajirezaei M, etal. Changes of carbohydrates, metabolites andenzyme activities in potato tubers during development, and within a single tuber along a stolon±apexgradient[J].Journal of Plant Physiology,1993,142:392-402.
    [77] Hatzfeld WD, Stitt M. A study of the rate of recycling of triose phosphates in heterotrophicChenopodium rubrum cells, potato tubers and maize endosperm[J].Planta,1990,180:198-201.
    [78] Fernie AR, Roscher A, Ratcliffe RG, etal. Fructose2,6-bisphosphate activatespyrophosphate: fructose-6-phosphate:1-phosphotransferase and increases triose-phosphate tohexose-phosphate cycling in heterotrophic cells[J].Planta,2001,212:250-263.
    [79] Subrahmanyam D,Rathore VS. Plant growth regulators influence14CO2assimilation andtranslocation of assimilates in Indian mustard[J].J Agron Crop Sci,1992,168:145-152.
    [80] Hajirezaei MR, Stitt M. Contrasting roles for pyrophosphate: fructose-6-phosphatephosphotransferase during aging of tissues from potato tubers and carrot storage tissues[J].PlantScience,1991,77:177-183.
    [81] Geigenberger P, Reimholz R, Geiger M, etal. Regulation of sucrose and starch metabolismin potato tubers in response to shortterm water deficit[J].Planta,1997,201:502-518.
    [82] Geiger M, Stitt M, Geigenberger P. Metabolism in potato tuber slices responds differentlyafter addition of sucrose and glucose[J].Planta,1998,206:245-252.
    [83] Geigenberger P, Geiger M, Stitt M. High-temperature inhibition of starch synthesis is due toinhibition of ADPGlc pyrophosphorylase by decreased levels of3PGA in growing potatotubers[J].Plant Physiology,1998,117:1307-1317.
    [84] Dixon WL, ap Rees T. Identification of the regulatory steps in glycolysis in potatotubers[J].Phytochemistry,1980,19:1297-1301.
    [85]刘凌霄,沈法富,卢合全,等.蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展[J].分子植物育种,2005,3(2):275-281.
    [86]张明方,李志凌.高等植物中与蔗糖代谢相关的酶[J].植物生理学通讯,2002,38(3):289-295.
    [87] Doehlert D C, Huber S C. Regulation of spinach leaf sucrose phosphate synthase byglucose-6-phosphate, inorganic phosphate,and pH[J].Plant Physiol,1983,73(4):989-994.
    [88]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [89] Seneweera SP,Basra AS,Barlow EW, etal. Diurnal regulation of leaf blade elongation in riceby CO2(Is it related to sucrose-phosphate synthase activity?)[J].Plant Physiol,1995,108(4):1471-1477.
    [90] Candace H, Haigler, Bir Singh, etal. Transgenic cotton over-producing spinach sucrosephosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality undercontrolled environmental conditions [J].Plant Mol. Biol.,2007,(6):815-832.
    [91] Tobias DJ,Hirose T,Ishimaru K, etal. Elevates sucrose-phosphate synthase activity in sourceleaves of potato plants transformed with the maize SPS geng [J].Plant Prod. Sci.,1999,(2):92-99.
    [92] Charles J., Baxter, Christine H, etal. Elevated sucrose-phosphate synthase activity intransgenic tobacco sustains photosynthsis in older leaves and alters development [J]. J.Exp.Bot.,2003,(54):1813-1820.
    [93] Miswar,Bambang S., Joedoro S., etal.Transformasi gen sucrose phosphate synthase (soSPS1) menggunakan Agrobacterium tumefaciens untuk meningkatkan sintesis sukrosa pada tanamantebu [J]. Berk.Penel.Ha.,2007,(12):137-143.
    [94]王宁宁,朱建新,王淑芳,等.苦参碱对小麦旗叶中蔗糖磷酸合成酶活性的调节[J].南开大学学报(自然科学版),2000,33(1):19-22.
    [95]卢合全,沈法富,刘凌霄,等.植物蔗糖合成酶功能与分子生物学研究进展[J].中国农学通报,2005,21(7):34-37.
    [96] Tang G Q, Lscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase intransgenic carrot alters early plant development and sucrose partitioning[J].Plant Cell,1999,11:177-189.
    [97] Sturm A. Invertases primary structures, functions, and roles in plant development andsucrose partitioning [J].Plant Physiol,1999,121:1-7.
    [98] D.B. Fisher, N. Wang.Sucrose concentration gradients along the post-phloem transportpathway in the maternal tissuses of developing wheat grains[J]. Plant Physiology,1995,109(2):587-592.
    [99]刘永忠,李道高.柑橘果实糖积累与蔗糖代谢酶活性的研究[J].园艺学报,2003,30(4):457-459.
    [100] A. komatsu, T. Moriguchi, K. Koyama, etal. Analysis of sucrose synthase genes in citrussuggests different roles and phylogenetic relationships[J]. J.Exp.Bot.,2002,(53):61-71.
    [101] K Tanase, S Yamaki.Purification and characterization of two sucrose synthase isoformsfrom Japanese pear fruit [J].Plant and Cell Phy.,2000,(41):408-414.
    [102] AB Jha,R.S DUdey.Carbohydrate metabolism in growing rice seedlings under arsenictoxicity[J].J. Plant Physiol,2004,19:867-872.
    [103] Xu DP, Sung SJ, Black CC. Sucrose metabolism in lima bean seeds. PlantPhysiol,1989,89:1106-1116.
    [104] Krishnan HB, Pueppke SG. Cherry fruit invertase: partial purification, characterization andacvitity during fruit development. J Plant Physiol,1990,135:662-666.
    [105] Schmalstig JG, Hitz WZ. Contributions of sucrose aynthase and invertase to the metabolism of sucrose in developing leaves. Plant Physiol,1987,85:407-412.
    [106]吕英明,张大鹏.果实发育过程中糖的积累[J].植物生理学通讯,2000,36(3):259-265.
    [107] Davies C,Robinson SP. Sugar accurnulation in grape berries: cloning of two putativevacuolar invertase c DNAs and their expression in grape vine tissues[J].Plant Physiol,1996,111:275-283.
    [108]潘秋红,张大鹏.植物酸性转化酶基因及其表达调控[J].植物学通报,2005,22(2):129-137.
    [109]陈俊伟,张上隆,张良成.果实中唐的运输、代谢与积累及调控[J].植物生理与分子生物学学报,2004,30(1):1-10.
    [110]王永章,张大鹏.苹果果实转化酶种类和特性研究[J].中国农业大学学报,2001,5:9-19.
    [111] Scheidig A.,Frlich A.,Schulze S.,etal. Down-regulation of a chloroplast-targeted b-amylaseleads to a starch-excess phenotype in leaves[J]. Plant J.,2002,30:581-591.
    [112] Smith A.M., Zeeman S.C., Thorneycroft D., etal. Starch mobilization in leaves[J].J.Exp.Bot.,2003,54(382):577-583.
    [113]王鸣华,王绍华,王建.苦参碱对水稻干物质积累与转运的影响[J].江苏农业科学,2005(3):33-35.
    [114]刘海英,郭天财,朱云集,等.开花期喷施表油菜素内酯对豫麦49蔗糖代谢和产量的影响[J].麦类作物学报,2006,26(1):77-81.
    [115]李玲,潘瑞炽.BA对花生叶片蔗糖和淀粉代谢有关酶活性的影响[J].热带亚热带植物学报,1994,2(2):52-57.
    [116]项洪涛,冯乃杰,杜吉到,等.植物生长调节剂对马铃薯根系理化特性的影响[J].植物营养与肥料学报,2009,15(6):1481-1485.
    [117]李成军.新型植物生长调节剂HHPS-1、HHPS-2对马铃薯产量及品质影响的研究[J].中国马铃薯,2007(21):160-162.
    [118]王畅,徐威生,吴凤兰,等."多效好”对玉米增产效果及促早熟作用的研究[J].广西农学院学报,1992,11(2):79-82.
    [119]唐湘如,官春云.作物产量和品质的碳氮及脂肪代谢调控的研究进展[J].湖南农业大学学报(自然科学版),1997,23(1):93-102.
    [120]柴永山.植物生长调节剂对玉米生长及产量的影响[J].玉米科学,1994,(1):43-45.
    [121]张春娟,冯乃杰,李建英,等.植物生长物质对马铃薯叶片同化物及产量品质的影响[J].中国马铃薯,2009,6(23):325-328.
    [122]杨伟力,刘涛,胡涛,等.烯效唑对马铃薯品质的影响[J].黑龙江农业科学,2006,(3):49-50.
    [123]史云鹏,朱蕾,华树东,等.植物生长调节剂对马铃薯块茎品质的影响[J].黑龙江八一农垦大学学报,2009,21(3):42-45.
    [124]来改英,赵晋蓉,姚满生.四种植物生长调节剂对马铃薯产量和品质的影响[J].山西农业大学学报,2003,23(3):295-297.
    [125]赵昶,白凤霞.多效唑对春暑5号马铃薯产量及品质的影响[J].吉林蔬菜,2010,06:72-73.
    [126]宫占元,郑殿峰,马光恕,等.3种植物生长调节剂对马铃薯产量及品质的影响[J].中国马铃薯,2008,2(22):73-76.
    [127]吴文荣,黄谦,王晓,等.马铃薯叶面喷施膨大素对其品质的影响[J].贵州农业科学,2010,38(3):64-65.
    [128] Neerja Sharma, Narinder Kaur and Anil K. Gupta. Effect of chlorocholine chloride sprayson the carbohydrate composition and activities of sucrose metabolising enzymes in potato (Solanumtuberosum L.)[J].Plant Growth Regulation,1998,26(2):97-103.
    [129] Vreugdenhil D, andSergeeva L I. Gibberellins and tuberization in potato[J]. PotatoResearch,1999,(42):471-481.
    [130] Vreugdenhil D, and Struik P. An intergrated view of the hormonal regulation of tuberformation in potato (Solanum tuberosumL.)[J]. Physiologia Plantarum,1989,(75):525-531
    [131] Krauss, A. Interaction of nitrogen nutrition, phytohormones,and tuberization. In PotatoPhysiology, Li. Academic Press.1985,209-230.
    [132] Stallknecht, G.F. Tuber initiation in Solanum tubersosum: Effect of phytohormones andinduced changes in nucleic acid and protein metabolism. In Potato Physiology, Li. AcademicPress.1985,231-260.
    [133]柳俊,谢从华,黄大恩,等.马铃薯试管块茎形成机制的研究BA对试管块茎形成与膨大的影响[J].马铃薯杂志,1995,9(1):7-11.
    [134] Koda,Y., and Y. Okazawa. Characteristic changes in the levels of endogenous planthormones in relation to the onset of potato tuberization[J]. Japanese Journal of Crop Science1983,52:592-597.
    [135] Dragicevic, I., R. Konjevic, et al.The effect of IAA and tetcyclacis on tuberization in potato(Solanum tuberosum L.) shoot culture in vitro.Plant Growth Regulation2008,54:189-193.
    [136] Aksenova, N.P., T.N. Konstantinova, et al.. Interaction between day length andphytohormones in the control of potato tuberization in the in vitro culture. Russian Journal PlantPhysiology,2009,56:454-461.
    [137] Kefi,S.,A.D.Pavlista,P.E.Read, et al.. Comparison of thidiazuron and two nitroguanidinesto kinetin on potato microtuberization in vitro under short and long days. Journal of Plant GrowthRegulation,2000,19:429-436.
    [138] Hooley R. Gibberellins: perception, transduction and responses[J]. Plant MolecularBiology,1994,(26):1529-1555.
    [139] Xu X, van Lammeren A A M, Vermeer E, et al. The role of gibberellin, abscisic acid, andsucrose in the regulation of potato tuber formationin vitro[J]. Plant Physiology,1998,117(2):575-584.
    [140]刘梦芸,蒙美莲,门福义,等.GA3、IAA、CTK和ABA对马铃薯块茎形成调控作用的研究[J].内蒙古农牧学院学报,1997,18(2):16-20.
    [141] Hussey G and Stacey N J. Factors affecting the formation of in vitroof potato (SolanumtuberosumL). Annals of botany,1984,(53):565-578.
    [142] Koda Y, and Okazawa Y. Influences of environmental, hormonal and nutritional factors onpotato tuberizationin vitro[J]. Japanese Journal of Crop Science,1983,(52):582-591.
    [143] Menzel BM, Ann Bot1983,(52):65.
    [144] Ewing EE. In Davies PJ (ed), plant hormones and their role in plant growth anddevelopment. Martinus Nijhoff Publisbers,Netherlands,1987,515.
    [145] Kumar D and Wareing PF. Studies on tuberization of solanumandigen. New phytol,1974,(73):833-840.
    [146] Pont Lezica RF. Evolution des substances de type gibberellins chezla pomme deterrependant la tuberisation, en relation avec lalongueur du jouret la temperature[J]. Potato Research.1970,(13):323-331.
    [147] Swith OE and Rappaport L. Gibberellins, inhibitors, and tuber formation in the potato,solanum tuberosum. American Potato Journal.1969,(46):185-191.
    [148] Woolley D J and Wareing PF. The role of roots, cytokinins and apical dominance in thecontrol of lateral shoot formation in Solanum andigena. Planta.1972,10(5):33-42.
    [149] Kumar D and Wareing P F. Factors controlling stolon development in the potato plant.New Phytol,1972,(71):639-641.
    [150]郭得平.植物激素与马铃薯块茎形成[J].植物生理学通讯,1991,27(2):130-133.
    [151]白宝璋.马铃薯块茎形成与光周期和植物激素关系的研究进展[J].吉林农业大学学报,1986,8(2):4-9.
    [152] Qarrie SA. Droopy,a wilty mutant of potato deficient in abscisic acid. Plant and CellEnviron,1982,(5):23-26.
    [153]田长恩.植物生长调节剂在马铃薯生产中的应用[J].马铃薯杂志,1993,7(4):223-224.
    [154]宋占平.细胞分裂素对块茎形成的影响[J].西北师范大学学报(自然科学版),1992,28(1):55-60.
    [155]徐欣,连勇.马铃薯块茎发育机理的研究[J].马铃薯杂志,1997,11(2):115-119.
    [156] Hossain MJ and Sultana N. Effect of Benzyl Amino Purine (BAP) and Chloro CholineChloride (CCC) on in vitro tuberization of potato[J]. Bangladesh J Ag Res,1998,23(4):685-690.
    [157] Chandra, R., J. H. Dodds and P. Tovar. In vitro tuberization in potato[J]. Plant TissueCult.,1988,55:10-12.
    [158] Wang, P. J. and C. Y. Hu. Potato tissue culture and its application[J]. PotatoPhysiology,1985,503-577.
    [159] Palmer, C. E. and O. E. Smith. Cytokinins and tuber initiation in the potato Solanurntuberosum L.[J].Nature,1969,221:279-280.
    [160] Pelacho, A. M. and A. M. Mingo-Castel. Jasmonic acid induces tuberization of potatostolons cultured in vitro[J].Plant Physiol,1991,97:1253-1255.
    [161] Wang,P.J.and C.Y.Hu. In vitro mass tuberisation and virus-free seed potato production inTaiwan[J].Am. Potato J.,1982,59:33-37.
    [162] Lentini, Z and E.D. Earle. In vitro tuberization of potato clones from different maturitygroups[J].Plant Cell Rep.,1991,9:691-695.
    [163] Tovar PR, Estrada L,Schilde-Rentschler, et al.. Induction and use of in vitro potato tubers.CIP Circular, International Potato Center,1985,13:1-4.
    [164] Dodds JH, Tovar P, Chandra R, et al.Improved methods for in vitro tuber induction and useof in vitro tubers in seedprograms. Proc. of the Symp. on Improve potatoPlanting Material,Kunming,China,1988,49-64.
    [165] Zakaria,M.,M. Hossain and M.A. Khaleque Mian, et al.In vitro tuberization of potatoinfluenced by benzyl adenine and chlorocholone chloride[J].Bangladesh Journal AgriculturalResearch,2008,33(3):419-425.
    [166] M. E. Hoque.In vitro tuberization in potato (Solanum tuberosum L.)[J].Plant OmicsJournal,2010,3(1):7-11.
    [167]马崇坚,谢从华,柳俊,等.内源生长物质在马铃薯试管块茎形成中的作用[J].华中农业大学学报,2003,22(4):389-394.
    [168]于品华,戴朝曦.多效唑对马铃薯无土栽培微型种薯的生长和产量的影响[J].甘肃农业大学学报,1995,30(2):160-163.
    [169]陈伊里,吕文河,秦昕,等.三种植物生长调节剂对马铃薯生育及产量的影响[J].马铃薯杂志,1994,8(1):16-18.
    [170]郭予榕.生长调节剂对马铃薯某些生理特性的协同效应[J].河南科学,1996,14(增刊):36-38.
    [171]范有君,闫志山,杨骥.马铃薯应用外源激素及叶面微肥的增产效果[J].中国马铃薯,2007(21):81-84.
    [172]宫占元.植物生长调节剂对马铃薯匍匐茎生理代谢及产量的影响[J].黑龙江八一农垦大学学报,2011,23(4):7-10.
    [173]宫占元,王艳杰,杜吉到,等.植物生长调节剂对马铃薯产量商品性状的影响及经济效益分析[J].黑龙江八一农垦大学学报,2011,23(2):1-4.
    [174]于洪涛.壮而丰应用于马铃薯增产效果的研究[J].中国马铃薯,2003(17):88-89.
    [175]路永贵,闫当萍,南斌成,等.马铃薯喷施丰产宝增产效应试验[J].中国马铃薯,2004(18):106-107.
    [176]李宝华,徐春全.马铃薯生长期喷施调节剂对其产量及淀粉含量的影响[J].中国马铃薯,2002,16(4):229-230.
    [177]周银珠.0.1%天然芸苔素481对马铃薯的施用效及施用方法研究[J].中国马铃薯,2002(16):78-80.
    [178] Oktay Külen, Cecil Stushnoff, Robert D, et al.. Gibberellic acid and ethephon alter potatominituber bud dormancy and improve seed tuber yield [J]. Am. J. Pot Res,2011(88):167-174.
    [179] Song-Hai Shen, Jian-Hua Wu,Da-Li Zen Physiological effects of calonyctin ondevelopment and yield of potato [J].Potato Research,1999(39):63-68.
    [180]史彦江,陈同森,郑庆惠,等.ABT绿色植物生长调节剂在马铃薯上的应用研究[J].新疆农业科学,1999,1:18-19.
    [181]汤红玲..PP333对马铃薯生长的影响及在生产上的应用[J].中国马铃薯,2002,16(3):152-153.
    [182]纳添仓.多效唑对马铃薯促控的增产作用[J].中国马铃薯,2004,(18):108-109.
    [183]鲁喜荣,胡金锁.多效唑对晋薯7号马铃薯的调控作用[J].中国马铃薯,2006(20):168-169.
    [184]龚举品,杨万奉,黄佐全,等.马铃薯初蕾期喷施多效唑技术初探[J].马铃薯杂志,1999(13):106-107.
    [185]张铁强,张荣华,沈勇.不同植物生长调节剂对马铃薯产量的影响[J].现代化农业,2009,9:24-26.
    [186]王阳,郑笑微,叶曙光,等.块根块茎膨大素和多效唑对马铃薯效应的研讨[J].浙江农村技术师专学报,1997,(2):30-31.
    [187]申惠波.马铃薯叶面喷施植物生长调节剂对植株和产量的影响[J].中国马铃薯,2007,21(4):209-211.
    [188]杨国放,姜河,纪志雨,等.叶面喷施烯效唑对马铃薯生长及产量的影响[J].辽宁农业科学,2006,(2):81-82.
    [189]靳占忠,牛瑞明,曹敬山,等.多效唑和缩节胺对不同生长势马铃薯生长和产量的影响[J].马铃薯杂志,1992,6(2):95-96.
    [190]康朵兰,萧浪涛,陈立德,等.喷施矮壮素对加工型马铃薯大西洋后期光合性能、产量和品质的影响[J].邵阳学院学报(自然科学版),2007,4(4):95-99.
    [191]王惠群,萧浪涛,李合松,等.矮壮素对马铃薯磷素营养动态变化和产量的影响[J].核农学报,2008,22(2):218-222.
    [192]申流柱,王紫贤.不同植物生长调节剂对马铃薯植株性状及产量的影响[J].农技服务,2009,26(10):15-16
    [193]陈文鑫.马铃薯叶面喷施三碘苯甲酸复试简报[J].马铃薯杂志,1993,7(1):34-35.
    [194]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995.
    [195]张志良.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [196]李合生.植物生理生化实验原理和技术导[M].北京:高等教育出版社,2000.184-185.
    [197]韩雅珊.食品化学实验指导[M].北京:北京农业大学出版社,1996.61-63.
    [198]张宪政.作物生理研究法[M].北京:农业出版社,1992.
    [199]崔辉梅,石国亮,安君和.马铃薯还原糖测定方法的比较研究[J].安徽农业科学,2006,34(19):4821-4823.
    [200]郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社,2007.107-109.
    [201]王惠聪,黄辉白,黄旭明.荔枝果实的糖积累与相关酶活性[J].园艺学报,2003,30(1):1-5.
    [202]王怀珠,杨焕文,郭红英.烟叶烘烤中淀粉酶和淀粉磷酸化酶的活性测定[J].河南农业科学,2006,5:32-34.
    [203]门福义,刘梦芸.马铃薯栽培生理[M].北京:中国农业出版社,1995.318-326.
    [204]王继安,宁海龙,罗秋香,等.大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其与产量间的关系[J].东北农业大学学报,2004,35(2):129-134.
    [205]张恒善,程砚喜,王大秋,等.大豆结荚期品种间叶绿素含量差异与产量相关分析[J].大豆科学,2001,20(4):276-278.
    [206] Evans L T. Crop evolution, adaptation and yield. UK: Press of Cambridge University,1996HatamM, Akmal M, Jamro G H. Seasonal patterns of nodal and diurnal reproductive abscission inthree soybean cultivars[J]. Pakistan Journal of Botany,1993,25(2):167-174.
    [207] HuberS C, Rogers H H, Mowry F L. Effects of water stress on photosynthesis and carbonpartitioning in soybean (Glycine max[L]Merr.) plants grown in the field at different CO2levels[J].Plant Physiology,1984,76:244-249.
    [208] Ookawa T,Naruoka Y,Sayama A,et al.Cytokinin effects on ribulose-1,5-bisphosphatecarboxy-lase Oxygenase and Nitrogen partitioning in rice during ripening[J].CropScience,2004,44(6):2107-2115.
    [209]董学会,何钟佩,关彩虹.根系导人生长素和玉米素对玉米光合产物输出及分配的影响[J].中国农业大学学报,2001,6(3):21-25.
    [210]李军,高新昊,郭世荣,等.外源亚精胺对盐胁迫下黄瓜幼苗光合作用的影响木[J].生态学杂志,2007,26(10):1595-1599.
    [211] Wang L J,Jiang W B,Huang B J.Promotion of5-aminolevulini acid on photosynthesis ofmelon seedlings under low light and chilling stress condition[J].Physiol Plant,2004,l(21):258-261.
    [212] Lin Y, Xu D Q. Stimulation effect of gibberellic acid short-termtreatment onleafphotosynthesis related to the increase in Rubisco content in broad bean and soybean[J].Photosynthesis Research,2001,68:39-43.
    [213] Lin Y, Xu D Q. Stimulatory effectofexogenousGA3on photosynthesis and the level ofendogenous GA1+3in soybean leaf[J].Journal of Plant Physiology and Molecular Biology,2002,28(4):317-320.
    [214]周蕴薇.翠南报春叶片细胞超微结构对低温的适应性变化[J].园艺学报,2006,33(6):1361-1364.
    [215]刘以前,沈火林,石正强.番茄果实生长发育过程中糖的代谢[J].华北农学报,2006,21(3):51-56.
    [216] Doehlert D C, Huber S C. Regulation of spinach leaf sucrose phosphate synthase byglucose phosphate, inorganic phosphate, and pH [J]. Plant Physiol,1983,73(4):989-994.
    [217]Ishii S, Asano N, Kizu H, et al. In vitro inhibition and intracellular enhancement oflysosomal α-galactosidase A activity in Fabry lymphoblasts by1-deoxygalactonojirimycin and itsderivatives [J]. Eur J. Biochem,2000,267:4179-4186.
    [218]李兴军,汪国云.杨梅花芽孕育期间叶片酸性转化酶活性及糖类含量的变化[J].四川农业大学学报,2000,18(2):164-166.
    [219]徐兴东.桃树使用多效唑技术规程[J].果树实用技术与信息,1995(4):27-28.
    [220]汤红玲,吴幼容,陈清西.PP333和CTK对油奈新梢生长和座果的影响[J].福建果树,2000(3):1-4.
    [221]杜永臣.高温对黄瓜根系可溶性糖含量和α-半乳糖苷酶活性的影响[J].园艺学进展(第二辑),1998,448-451.
    [222] MeenaR. Chandok SoPoryS.K Phosphorylation dephosphorylation steps are key events inthe phytoehrome-mediated enhancement of nitrate reduetase mRNA levels and enzyme activity inmaize. Moleeular Geneties and Genomics,1996,251(5):599-608.
    [223]单明珠,胡必得,蒋飞彦.玉米硝酸还原酶消长规律研究初报[J].陕西农业科学,1996(l):25-26.
    [224]胡晓辉,郭世荣,李静,等.钙对低氧胁迫下黄瓜幼苗根系碳水化合物代谢的影响[J].沈阳农业大学学报,2006,37(3):322-326.
    [225] Neerja Sharma, Narinder Kaur,Anil K. Gupta Effect of chlorocholine chloride sprayson the carbohydrate composition and activities of sucrose metabolising enzymes in potato (Solanumtuberosum L.)[J] Plant Growth Regulation,1998,(26):97-103.
    [226]张春娟.植物生长物质对马铃薯生长发育及产量品质的影响[D].大庆,黑龙江八一农垦大学硕士学位论文,2009.
    [227]连勇,刘蕾,屈冬玉.GA3、IAA和C/N对马铃薯试管匍匐茎及试管薯形成的影响[J].马铃薯杂志,1999(13):3-6.
    [228]刘志芳,陈修斌.三种化学物质处理种薯对马铃薯产量及品质的影响[J].种子,2005,24(9):25-26.
    [229]侯利霞,铁双贵,王付欣,等.植物生长调节剂对马铃薯脱毒试管薯形成的效应研究[J].中国马铃薯,2001(15):329-331.
    [230]肖旭峰,刘明月.不同生长调节剂对马铃薯微型薯结薯的影响[J].中国马铃薯,2008,22(1):14-46.
    [231]刘玲玲.不同植物生长调节剂对马铃薯微型薯诱导的影响[J].安徽农学通报,2007,13(16):18-19.
    [232]张卫中,姚满生.干旱丘陵区化学调节剂在马铃薯生产中的应用研究[J].安徽农学
    通报,2007,13(3):64-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700