用于检测细胞生长、代谢和成像的细胞传感器及其测试系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞传感器作为一类以活体细胞为一级传感单元、换能器为二级传感单元的器件,具有高灵敏度、低成本、高通量检测等特点,是环境毒性研究、食品安全、药物筛选等领域研究的有效手段并在近年来逐步实现产业化。细胞阻抗传感器(Electric Cell-Substrate Impedance Sensor, ECIS)是检测粘附类细胞如上皮细胞、纤维母细胞、内脏细胞等的形态和数目变化的一类细胞传感器。它因无损实时监测、制备工艺简单、高通量等特点而具有广泛的应用前景。光寻址电位传感器(Light-Adressable Potiential Sensor, LAPS)是检测溶液中离子浓度变化的一类细胞传感器,它具有检测单个细胞胞外微环境离子浓度的潜力,因而也受到了较多关注。本论文在ECIS和LAPS的研究基础之上,针对细胞实验向多参数检测和单细胞分析发展的趋势和需求,设计了新式的基于光电检测原理的细胞传感器,并且开发完成了细胞传感器分析仪器。
     本论文的主要研究内容和创新性工作在于:
     一、深入分析了叉指电极检测细胞生长的机理并应用于实际细胞阻抗传感器芯片的设计。
     基于金属电极-电解液界面双电层模型,系统地研究了细胞与微电极耦合的电极阻抗模型。通过讨论不同尺寸电极设计用于检测细胞阻抗的结果,总结了细胞阻抗检测电极的优化准则。根据优化准则设计的细胞阻抗传感器芯片成功应用于了抗肝纤维化中药的初筛。
     二、提出了一种光电复合传感器同时检测细胞生长和代谢的方法。
     细胞阻抗和细胞代谢是细胞生理的两个十分重要的参数。前者反映细胞的粘附、增殖和凋亡过程中的细胞形态和数目变化,指示了细胞的生长阶段;后者反映细胞生理正常或异常时的能量代谢水平,指示了细胞的活性。本论文通过建立细胞与电解液-绝缘层-半导体结构(Electrolyte-Insulator-Semiconductor,EIS)的界面耦合模型,阐明了基于EIS检测细胞阻抗的原理。并根据EIS和LAPS分别检测细胞阻抗和细胞代谢的原理的不同,设计和搭建了专门的传感器测试系统。利用该测试系统成功测试了重金属镉对小鼠成纤维母细胞的细胞毒性。该方法弥补了ECIS和LAPS等方法只能检测单一细胞生理参数的不足;同时也简化了集成多参数检测的细胞传感器的设计方法。
     三、提出了一种利用光寻址技术在芯片表面进行单细胞成像的方法。
     通过模型分析揭示了该方法的可行性。同时,对EIS器件的光电稳定性进行了细致研究,给出了提高EIS器件稳定性的优化准则。该方法能够很好地弥补现有检测技术(如ECIS)的不足:只能分析群细胞行为,而缺少反映单细胞多样化分布信息的能力。该方法虽然还达不到光学显微镜的空间分辨率,但是它不需要构建精密的光路,成本低,操作简单,而且单细胞水平的分辨率也已经能够满足许多细胞实验的需求。
     四、完成了基于细胞传感器的多功能和便携式自动分析仪器的硬件设计
     设计了基于细胞传感器的多功能和便携式自动分析仪器的总体结构。完成了ECIS、LAPS两种细胞传感器检测电路的设计测试;完成了仪器的组装调试。开展了药物筛选、药物评价和药物毒性分析等细胞实验,验证了仪器的实效性。
Cell-based biosensors (CBBs) take live cells and transducers as primary and secondary sensing elements respectively. They can exhibit high-sensitivity, low-cost and high-throughput detection. Thus they have been gradually commercialized and widely applied in the fields of environmental toxicity, food safety and pharmacological screening. Electric cell-substrate impedance sensor (ECIS), a type of cell-based biosensors, is specially to detect the morphology and quantity of adhesive cells such as epithelial cells, fibroblasts, and visceral cells. With outstanding qualities such as non-invasiveness to cells, real-time monitoring, easy to fabricate and high-throughput, it has broad application prospects. Light-adressable potiential sensor (LAPS), also a type of cell-based biosensors, is specially to detect the ion concentration of the solution. It has the potential to detect the ion concentration of extracellular microenvironment of a single cell. Thus, it has been a research hotspot for years. In this dissertation, by combining the studies on ECIS and LAPS, novel cell-based biosensors based on optoelectronic detection principles were designed to meet the trends and needs of cell experiments:multi-parameter detection and single-cell analysis. Moreover, home-made sensor analyzer had been established for testing the cell-based biosensors designed in this paper.
     The work mainly consisted of four parts as follows:
     Firstly, detection mechanism of ECIS was systematically explored and the design of ECIS chip was achieved.
     Based on the electrochemical attributes of metal-electrolyte interface, the electrode impedance model for cells and micro-electrode coupling was systematiclly studied.By discussing the results of detecting cellular impedance using electrodewith different sizes, the optimization criterion for cellular impedance sensing electrodes were summed up. ECIS chip according to the optimization criteria had been successfully applied in preliminary screening of antifibrotic Chinese medicine.
     Secondly, an optoelectronic cell-based biosensor to simultaneously detect cell growth and metabolism was proposed.
     The cell impedance and metabolism are two very important parameters of cell physiology. The former reflects the changes in cell morphology and quantity during cell adhesion, proliferation and apoptosis which indicating the growth status of cells; latter reflects the level of energy metabolism in the normal or abnormal cells which indicating the cell activity. By establishing the cell andelectrolyte-insulator-semiconductor (EIS) interface coupling model within this dissertation, the principle of detecting cellular impedance using EIS was explained.
     Furthermore, according to the different detection principles of EIS and LAPS, special sensor testing system was designed and established to simultaneously detect cellular impedance and cellular metabolism. With the testing system, the toxicity of cadmium on mouse fibroblast cells was successfully tested. The method described here could make up for the shortage of ECIS and LAPS that could only detect one cell physiological parameter; it also simplifies the design of integrated multi-parameter biosensors.
     Thirdly, a method for single-cell imaging on the chip surface by means of optical addressing was proposed.
     The feasibility of the method was verified by model analysis. Then, a detailed study of the optoelectronic stability of EIS devices was carried out. Several optimization criterias for improving the stability of EIS device was revealed. The method can compensate the shortages of existing detection techniques (such as ECIS) which could only analyze behavior of cell population so that were lack of distribution information of single cells. Although this method hasn't yet reach the spatial resolution of an optical microscope, the merits including free of precision optical path, simple operation make it an patiential tool for various cell-based assays, in which single cellresolution is sufficient.
     Fourthly, a multifunctional and portable automatic sensor analyzer based on the cell-based biosensors was designed and achieved.
     The overall structure of the sensor analyzer was designed as well as the detection circuits for ECIS, LAPS. The assembly and commissioning of the analyzer were accomplished. The cell experiments of drug screening, drug assessment and cytotoxicity assay were carried out and at last the effectiveness of the instruments were verified.
引文
1. Luong, J.H.T., K.B. Male, and J.D. Glennon, Biosensor technology:Technology push versus market pull. Biotechnology Advances,2008.26(5):p.492-500.
    2. Kriz, D.,O. Ramstrom, and K. Mosbach, Peer Reviewed:Molecular Imprinting: New Possibilities for Sensor Technology. Analytical Chemistry,1997.69(11):p. 345A-349A.
    3. Yano, K. and I. Karube, Molecularly imprinted polymers for biosensor applications. TrAC Trends in Analytical Chemistry,1999.18(3):p.199-204.
    4. Jianrong, C., et al., Nanotechnology and biosensors. Biotechnology advances, 2004.22(7):p.505-518.
    5. Pancrazio, J.J., et al., Development and application of cell-based biosensors. Ann Biomed Eng,1999.27(6):p.697-711.
    6. Ziegler, C., Cell-based biosensors. Analytical and Bioanalytical Chemistry, 2000.366(6):p.552-559.
    7. Ozkan, C.S., et al., Cell Based Sensing Technologies, in BioMEMS and Biomedical Nanotechnology2007. p.55-92.
    8. Banerjee, P. and A.K. Bhunia, Mammalian cell-based biosensors for pathogens and toxins. Trends in Biotechnology,2009.27(3):p.179-188.
    9. Stenger, D.A., et al., Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol,2001.19(8):p.304-9.
    10. Maher, M.P., et al., The neurochip:a new multielectrode device for stimulating and recording from cultured neurons. Journal of Neuroscience Methods,1999.87(1):p.45-56.
    11. Keefer, E.W., et al., Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors. Biosens Bioelectron,2001.16(7-8):p.513-25.
    12. Hescheler, J., et al., Determination of electrical properties of ES cell-derived cardiomyocytes using MEAs. Journal of Electrocardiology,2004. 37(Supplement 1):p.110-116.
    13. Pierres, A., et al., Cell-cell interactions. Physical Chemistry of Biological Interfaces,2000:p.459-522.
    14. Bongrand, P., Specific and nonspecific interactions in cell biology. Journal of dispersion science and technology,1998.19(6-7):p.963-978.
    15. LeBaron, R.G. and K.A. Athanasiou, Extracellular Matrix Cell Adhesion Peptides:Functional Applications in Orthopedic Materials. Tissue Engineering, 2000.6(2):p.85-103.
    16. Gallant, N.D., et al., Micropatterned surfaces to engineer focal adhesions for analysis of cell adhesion strengthening. Langmuir,2002.18(14):p. 5579-5584.
    17. Giaever, I. and C.R. Keese, Monitoring fibroblast behavior in tissue culture with an applied electric field. Proceedings of the National Academy of Sciences of the United States of America,1984.81(12):p.3761-3764.
    18. Wegener, J., C.R. Keese, and I. Giaever, Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res.,2000.259(1):p.158-166.
    19. Xiao, C., et al., An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal. Chem.,2002.74 p.1333-1339.
    20. Mayer, M., et al., Monitoring of lung edema using focused impedance spectroscopy:a feasibility study. Physiol. Meas.,2005.26(3):p.185-92.
    21. Lo, C.M., C.R. Keese, and I. Giaever, Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys. J.,1995. 69(6):p.2800-2807.
    22. Cascales-Sanchez, P., et al., Electrical impedance of the liver during experimental long-term liver preservation. Transplant. Proc.,2007.39(7):p. 2118-9.
    23. Park, J.Y., et al., Label-free impedimetric sensor for a ribonucleic acid oligomer specific to hepatitis C virus at a self-assembled monolayer-covered electrode. Anal. Chem.,2010.82(19):p.8342-8.
    24. Yang, M., et al., A novel microfluidic impedance assay for monitoring endothelin-induced cardiomyocyte hypertrophy. Biosens. Bioelectron.,2007. 22(8):p.1688-93.
    25. Balasubramanian, L., et al., Impedance analysis of renal vascular smooth muscle cells. Am. J. Physiol. Cell. Physiol.,2008.295(4):p. C954-65.
    26. Haas, S., et al., Real-time monitoring of relaxation and contractility of smooth muscle cells on a novel biohybrid chip. Lab Chip,2010.10(21):p.2965-71.
    27. Kirstein, S.L., et al., Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay Drug Dev. Technol.,2006. 4(5):p.545-53.
    28. Atienza, J.M., et al., Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J. Biomol. Screen.,2005.10(8):p.795-805.
    29. Keese, C.R., et al., Electrical wound-healing assay for cells in vitro. Proc. Natl. Acad. Sci. USA.,2004.101(6):p.1554-9.
    30. Wang, L., et al., An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing. Lab Chip,2008.8(6):p.872-878.
    31. Ren, J., et al., Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res.,2006.66(6):p.3006-14.
    32. Noiri, E., et al., Permissive Role of Nitric Oxide in Endothelin-induced Migration of Endothelial Cells. J. Biol. Chem.,1997.272(3):p.1747-1752.
    33. Saxena, N.K., et al., Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res.,2007.67(6):p. 2497-507.
    34. Chen, J., et al., Placenta growth factor, PLGF, influences the motility of lung cancer cells, the role of Rho associated kinase, Rock1. J. Cell. Biochem.,2008. 105(1):p.313-20.
    35. Earley, S. and G.E. Plopper, Phosphorylation of focal adhesion kinase promotes extravasation of breast cancer cells. Biochem. Biophys. Res. Commun.,2008.366(2):p.476-82.
    36. Saxena, N.K., et al., Bidirectional crosstalk between leptin and insulin-like growth factor-1 signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res., 2008.68(23):p.9712-22.
    37. Sgambato, A., et al., Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells. J. Cell. Physiol.,2007.213(2):p.528-39.
    38. Sun, T., et al., On-chip epithelial barrier function assays using electrical impedance spectroscopy. Lab Chip,2010:p.
    39. Ko, K.S.C., et al., Cell-substrate impedance analysis of epithelial cell shape and micromotion upon challenge with bacterial proteins that perturb extracellular matrix and cytoskeleton. J. Microbiol. Meth.,1998.34(2):p. 125-132.
    40. Wegener, J., A. Hakvoort, and H.J. Galla, Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain. Res.,2000.853(1):p.115-124.
    41. Yin, F. and M.A. Watsky, LPA and SIP increase corneal epithelial and endothelial cell transcellular resistance. Invest. Ophthalmol. Vis. Sci.,2005. 46(6):p.1927-33.
    42. Chang, Y.C., et al., Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect. Immun.,2004. 72(9):p.4985-95.
    43. Treeratanapiboon, L., et al., In vitro study of malaria parasite induced disruption of blood-brain barrier. Biochem. Biophys. Res. Commun.,2005. 335(3):p.810-8.
    44. Weidenfeller, C., et al., Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain. Res., 2005.1053(1-2):p.162-74.
    45. Hartmann, C., et al., The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells:an in vitro study. Exp. Cell Res., 2007.313(7):p.1318-25.
    46. Moy, A.B., et al., Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J. Clin. Invest.,1996. 97(4):p.1020.
    47. Usatyuk, P.V., et al., Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. Antioxid. Redox. Signal.,2003.5(6):p.723-30.
    48. Usatyuk, P.V., N.L. Parinandi, and V. Natarajan, Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J. Biol. Chem.,2006.281(46): p.35554-66.
    49. Shivanna, M., G. Rajashekhar, and S.P. Srinivas, Barrier dysfunction of the corneal endothelium in response to TNF-alpha:role of p38 MAP kinase. Invest. Ophthalmol. Vis. Sci.,2010.51(3):p.1575-82.
    50. Boyd, J.M., et al., A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals. Anal. Chim. Acta.,2008.615(1):p.80-7.
    51. Caide, X. and H.T.L. John, On-Line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-Substrate Impedance Sensing (ECIS). Biotechnol. Progr., 2003.19(3):p.1000-1005
    52. Wang, H., et al., Prostaglandin E2 alters human orbital fibroblast shape through a mechanism involving the generation of cyclic adenosine monophosphate. J. Clin. Endocr. Metab.,1995.80(12):p.3553.
    53. Litkouhi, B., et al., Claudin-4 overexpression in epithelial ovarian cancer is associated with hypomethylation and is a potential target for modulation of tight junction barrier function using a C-terminal fragment of Clostridium perfringens enterotoxin. Neoplasia,2007.9(4):p.304.
    54. Ehret, R., et al., Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron., 1997.12(1):p.29-41.
    55. Ehret, R., et al., Multiparametric microsensor chips for screening applications. Fresenius. J. Anal. Chem.,2001.369(1):p.30-5.
    56. Ciambrone, G.J., et al., Cellular dielectric spectroscopy:a powerful new approach to label-free cellular analysis. J. Biomol. Screen.,2004.9(6):p. 467-80.
    57. Verdonk, E., et al., Cellular dielectric spectroscopy:a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev. Technol.,2006.4(5):p.609-19.
    58. Yeon, J.H. and J.K. Park, Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal. Biochem.,2005.341(2):p.308-15.
    59. Guo, M., et al., Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. Biochim. Biophys. Acta., 2006.1760(3):p.432-9.
    60. Glamann, J. and A.J. Hansen, Dynamic detection of natural killer cell-mediated cytotoxicity and cell adhesion by electrical impedance measurements. Assay Drug Dev. Technol.,2006.4(5):p.555-63.
    61. Solly, K., et al., Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev. Technol.,2004.2(4):p. 363-72.
    62. Zhu, J., et al., Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J. Immunol. Methods., 2006.309(1-2):p.25-33.
    63. Caide Xiao, J.H.T.L., On-Line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-Substrate Impedance Sensing (ECIS). Biotechnology Progress, 2003.19(3):p.1000-1005.
    64. Solly, K., et al., Application of Real-Time Cell Electronic Sensing (RT-CES) Technology to Cell-Based Assays. ASSAY and Drug Development Technologies, 2004.2(4):p.363-372.
    65. Ciambrone, G.J., et al., Cellular Dielectric Spectroscopy:A Powerful New Approach to Label-Free Cellular Analysis. J Biomol Screen,2004.9(6):p. 467-480.
    66. Thedinga, E., et al., Online monitoring of cell metabolism for studying pharmacodynamic effects. Toxicology and Applied Pharmacology,2007. 220(1):p.33-44.
    67. Hafner, F., Cytosensor(?) Microphysiometer:technology and recent applications. Biosensors and Bioelectronics,2000.15(3):p.149-158.
    68. Colalongo, L., et al., Modeling of light-addressable potentiometric sensors. Electron Devices, IEEE Transactions on,1997.44(11):p.2083-2090.
    69.Yoshinobu, T., et al., Alternative sensor materials for light-addressable potentiometric sensors. Sensors and Actuators B:Chemical,2001.76(1):p. 388-392.
    70. George, M., et al., Investigation of different semiconductor substrates for an optimized light-addressable potentiometric sensor (LAPS).
    71. Ismail, A.B.M., et al., Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosensors and Bioelectronics,2003.18(12):p.1509-1514.
    72. Md Ismail, A.B., et al., A novel low-noise measurement principle for LAPS and its application to faster measurement of pH. Sensors and Actuators B: Chemical,2001.74(1):p.112-116..
    73. Parak, W.J., et al., Lateral resolution of light-addressable potentiometric sensors:an experimental and theoretical investigation. Sensors and Actuators A:Physical,1997.63(1):p.47-57.
    74. George, M., et al., Investigation of the spatial resolution of the light-addressable potentiometric sensor. Sensors and Actuators A:Physical, 2000.86(3):p.187-196.
    75. Garnovskaya, M.N., et al., Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. Journal of Biological Chemistry,2003.278(19): p.16908-16915.
    76. Rabinowitz, J.D., et al., Screening for novel drug effects with a microphysiometer:A potent effect of clofilium unrelated to potassium channel blockade. Life sciences,1997.61(7):p. PL87-PL94.
    77. Wille, K., L.A. Paige, and A.J. Higgins, Application of the CytosensorTM microphysiometer to drug discovery. Receptors and Channels,2003.9(2):p. 125-131.
    78. Di Natale, C., et al., Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array. Sensors and Actuators B:Chemical,1996.34(1):p.539-542.
    79. Vlasov, Y, Y. Tarantov, and P. Bobrov, Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors-a critical review. Analytical and Bioanalytical Chemistry,2003. 376(6):p.788-796.
    80. Adami, M., M. Sartore, and C. Nicolini, PAB:a newly designed potentiometric alternating biosensor system. Biosensors and Bioelectronics,1995.10(1):p. 155-167.
    81. Wagner, T., et al., Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications. Electrochimica Acta,2007.53(2):p.305-311.
    82. Brischwein, M.; et al., Functional cellular assays with multiparametric silicon sensor chips. Lab on a Chip,2003.3(4):p.234-240.
    83. Ceriotti, L., et al., Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Analytical Biochemistry,2007. 371(1):p.92-104.
    84. Xiao, L., et al., Evaluation of doxorubicin toxicity on cardiomyocytes using a dual functional extracellular biochip. Biosensors and Bioelectronics,2010. 26(4):p.1493-1499.
    85. Giaever, I. and C.R. Keese, Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behavior in Tissue Culture. Biomedical Engineering, IEEE Transactions on,1986. BME-33(2):p.242-247.
    86. Ehret, R., et al., Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics,1997.12(1):p.29-41.
    87. Keese, C.R., et al., Electrical wound-healing assay for cells in vitro. Proceedings of the National Academy of Sciences of the United States of America,2004.101(6):p.1554-1559.
    88. Asphahani, F. and et al., Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment. Physical Biology,2011.8(1): p.015006.
    89. Kirstein, S.L., et al., Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay Drug Dev Technol,2006.4(5): p.545-53.
    90. Xing, J.Z., et al., Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicology in Vitro,2006.20(6):p.995-1004.
    91. Yu, N., Atienza, J.M., Bernard, J., Blanc, S., Zhu, J., Wang, X.B., Xu, X., Abassi, Y.A., Real-Time Monitoring of Morphological Changes in Living Cells by Electronic Cell Sensor Arrays:An Approach To Study G Protein-Coupled Receptors. Anal. Chem.,2006.78(1):p.35-43.
    92. Randles, J., Kinetics of rapid electrode reactions. Discussions of the faraday society,1947.1:p.11-19.
    93. Gouy, M., Sur la constitution de la charge electrique a la surface d'un electrolyte. J. Phys. Theor. Appl.,1910.9(1):p.457-468.
    94. Stern-Hamburg, H.O., ZUR THEORIE-DER ELEKTROLYTISCHEN DOPPELSCHICHT. S. f. Electrochemie,1924.30:p.508.
    95. Lodish, H., et al., Molecular cell biology. New York,2000.
    96. Zeck, G. and P. Fromherz, Repulsion and attraction by extracellular matrix protein in cell adhesion studied with nerve cells and lipid vesicles on silicon chips. Langmuir,2003.19(5):p.1580-1585.
    97. Lisdat, F. and D. Schafer, The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry,2008.391(5):p. 1555-1567.
    98. Wang, L., et al., Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosensors and Bioelectronics,2008.24(1):p.14-21.
    99. Zhou, H., R.D. Tilton, and L.R. White, The role of electrode impedance and electrode geometry in the design of microelectrode systems. Journal of Colloid and Interface Science,2006.297(2):p.819-831.
    100. Sun, T., H. Morgan, and N.G. Green, Analytical solutions of ac electrokinetics in interdigitated electrode arrays:Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),2007.76(4):p.046610-18.
    101. Irelan, J.T., et al., Rapid and quantitative assessment of cell quality, identity, and functionality for cell-based assays using real-time cellular analysis. Journal of Biomolecular Screening,2011.16(3):p.313-322.
    102. Atienzar, F.A., et al., The Use of Real-Time Cell Analyzer Technology in Drug Discovery Defining Optimal Cell Culture Conditions and Assay Reproducibility with Different Adherent Cellular Models. Journal of Biomolecular Screening, 2011.16(6):p.575-587.
    103. Weaver, J.C., T.E. Vaughan, and G.T. Martin, Biological effects due to weak electric and magnetic fields:the temperature variation threshold. Biophysical journal,1999.76(6):p.3026-3030.
    104. Glaser, R.W., et al., Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochimica et Biophysica Acta (BBA)-Biomembranes,1988.940(2):p.275-287.
    105. Gowrishankar, T., W. Chen, and R.C. Lee, Non-Linear Microscale Alterations in Membrane Transport by Electropermeabilizationa. Annals of the New York Academy of Sciences,1998.858(1):p.205-216.
    106. Foster KR, S.H., Dielectric properties of tissues and biological materials:a critical review. Crit Rev Biomed Eng,1989.17(1):p.25-104.
    107. Mittal, N., A. Rosenthal, and J. Voldman, nDEP microwells for single-cell patterning in physiological media. Lab Chip,2007.7(9):p.1146-53.
    108. 贾芸芳,et al.,EIS型半导体生化传感器 EI 界面势的理论模拟.半导体学报,2005.26(11):p.2196-2201.
    109. ROY, S. and A.J. FLEISCHMAN, Cytotoxicity evaluation of Microsystems materials using human cells. Sensors and materials,2003.15(6):p.335-340.
    110. Hernandez, P., et al., Evaluation of biocompatibility of pH-ISFET materials during long-term subcutaneous implantation. Sensors and Actuators B: Chemical,1998.46(2):p.133-138.
    111. Voskerician, G., et al., Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials,2003.24(11):p.1959-1967.
    112. Giannoulis, C.S. and T.A. Desai, Characterization of proteins and fibroblasts on thin inorganic films. Journal of Materials Science:Materials in Medicine, 2002.13(1):p.75-80.
    113. Habeebu, S.S., J. Liu, and C.D. Klaassen, Cadmium-induced apoptosis in mouse liver. Toxicology and Applied Pharmacology,1998.149(2):p.203-209.
    114. Szuster-Ciesielska, A., et al., The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology,2000.145(2-3):p.159-171.
    115. Watjen, W., et al., Induction of apoptosis in mammalian cells by cadmium and zinc. Environmental Health Perspectives,2002.110(Suppl 5):p.865.
    116. Stephens, D.J. and V.J. Allan, Light microscopy techniques for live cell imaging. Science,2003.300(5616):p.82-6.
    117. Charwat, V., et al., Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays. Lab on a Chip,2013. 13(5):p.785-797.
    118. Wilson, J.D., et al., Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling. Biophysical journal,2005. 88(4):p.2929-2938.
    119. Galanzha, E.I., et al., In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Research,2009.69(20):p.7926-7934.
    120. Mulvey, C.S., et al., Elastic scattering spectroscopy as a diagnostic tool for apoptosis in cell cultures. Selected Topics in Quantum Electronics, IEEE Journal of,2007.13(6):p.1663-1670.
    121. Chalut, K.J., et al., Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis. Cancer Research,2009.69(3):p.1199-1204.
    122. Mulvey, C.S., C.A. Sherwood, and I.J. Bigio, Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells. Journal of biomedical optics,2009.14(6):p. 064013-064013-14.
    123. Hielscher, A.H., J.R. Mourant, and I.J. Bigio. Biomedical diagnostics with elastic light scattering in cell suspensions and tissues. in Engineering in Medicine and Biology Society,1997. Proceedings of the 19th Annual International Conference of the IEEE.IEEE.
    124. Bigio, I.J., et al., Diagnosis of breast cancer using elastic-scattering spectroscopy:preliminary clinical results. Journal of biomedical optics,2000. 5(2):p.221-228.
    125. Lovat, L.B., et al., Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett's oesophagus. Gut,2006.55(8):p. 1078-1083.
    126. Schwartz, M.P., et al., The smart Petri dish:a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir,2006.22(16):p.7084-90.
    127. Voldman, J., Engineered systems for the physical manipulation of single cells. Curr Opin Biotechnol,2006.17(5):p.532-7.
    128. Di Carlo, D. and L.P. Lee, Dynamic single-cell analysis for quantitative biology. Anal Chem,2006.78(23):p.7918-25.
    129. Deutsch, M., et al., A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab Chip, 2006.6(8):p.995-1000.
    130. Andersson, H. and A. van den Berg, Microtechnologies and nanotechnologies for single-cell analysis. Current Opinion in Biotechnology,2004.15(1):p. 44-49.
    131. Li, D. and S.L. Friedman, Liver fibrogenesis and the role of hepatic stellate cells:new insights and prospects for therapy. J Gastroenterol Hepatol,1999. 14(7):p.618-33.
    132.关玉娟。et al.,干扰素 γ 治疗慢性乙型肝炎肝纤维化的临床研究.中华内科,2003.42(7):p.797.
    133.赵长青,吴艺青,and 徐列明,扶正化瘀胶囊抗肝纤维化的临床疗效和作用机制.中西医结合学报,2006.4(S):p.467-472.
    134,陈菊梅.et al.,复方鳖甲软肝片治疗慢性乙型肝炎肝纤维化的临床研究.中华实验和临床病毒学杂志,2007.21(4):p.358-360.
    135. 尹珊珊,王宝恩,and王泰龄,复方861治疗慢性乙型肝炎肝纤维化与早期肝硬化的临床研究.中华肝脏病杂志,2004.12(8):p.467470.
    136. Singal, P.K. and N. Iliskovic, Doxorubicin-induced cardiomyopathy. N Engl J Med,1998.339(13):p.900-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700