盐碱胁迫及外源植物激素对小麦和羊草生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化给农业生产造成了严重的损失,是人类面临的生态危机之一。研究植物对盐碱胁迫的生理响应特点,提高作物和牧草的耐盐碱性和种子产量对改良和利用退化盐碱草地具有重要意义。植物激素是植物响应环境胁迫的信号转导的主要成员,当植物受到环境胁迫后,植物的生长和发育受到抑制,其激素含量会发生变化,相应的应用外源植物激素可缓解环境胁迫对植物的伤害。此外,植物激素也是成花的重要信号物质,植物激素如生长素(IAA)、脱落酸(ABA)和赤霉素(GA3)等对果树的成花具有一定的作用。针对东北盐碱土壤的现状,本论文以一年生粮食作物小麦和多年生牧草羊草为材料,分别研究了盐胁迫和碱胁迫对小麦幼苗和羊草幼苗生态和生理生长的影响,外源ABA在提高小麦耐盐碱性中的作用,以及外源植物激素对羊草有性生殖的影响。研究结果如下:
     (1)盐胁迫和碱胁迫均抑制了小麦幼苗的生长,且碱胁迫的伤害更大。两种胁迫下,小麦表现了不同的生理响应机制,在盐胁迫下,小麦大量积累Na+、Cl-等无机离子,及脯氨酸和可溶性糖等有机溶质,而未积累有机酸。在碱胁迫下,小麦积累大量Na+和有机酸、可溶性糖、脯氨酸,而未积累Cl-和H2PO4-等无机阴离子,有机酸和Cl-的积累是小麦对两种胁迫生理响应机制和适应对策的根本区别所在。通过对小麦茎叶和根中有机酸组分的测定,进一步证明苹果酸和柠檬酸是小麦幼苗抵御碱胁迫伤害的最主要有机酸成分;有机酸组分在茎叶和根中的含量和变化趋势不同,尽管茎叶中的有机酸含量明显高于根中,但碱胁迫后根中的增加量却明显大于茎叶中;随着碱度的增加,茎叶中的苹果酸和柠檬酸的含量显著增加,在根中则呈现先上升后下降的趋势,以上结果表明碱胁迫对小麦根系的危害程度明显大于茎叶,苹果酸和柠檬酸是小麦响应碱胁迫的主要有机酸组分。
     (2)叶面喷施ABA,可有效缓解盐胁迫和碱胁迫对小麦幼苗生长的伤害作用。小麦对盐胁迫和碱胁迫的生理响应机制不同,因此ABA在这些胁迫上的缓解机制也不同。盐胁迫下,ABA主要通过降低盐胁迫所引起的Na+的积累,提高K+/Na+和Ca2+/Na+的比值来达到缓解盐胁迫对小麦幼苗的伤害作用;碱胁迫下,ABA主要通过增加有机溶质的合成,(可溶性糖,柠檬酸和琥珀酸等)来响应碱胁迫,达到缓解碱胁迫对小麦幼苗的伤害作用,且低浓度ABA的缓解效果好于高浓度。
     (3)在一定浓度的盐胁迫和碱胁迫下,羊草幼苗的根生长并未受到影响,羊草幼苗的根茎生长受到的抑制作用高于其他器官。两种胁迫均使羊草的分蘖节和根茎所产生的芽数减少,且对根茎所产生的芽抑制作用更大,对羊草幼苗地上、地下生物量及地下芽数的影响中,都表现为高浓度碱胁迫具有显著抑制作用。两种胁迫下,羊草表现出不同的生理响应机制。在盐胁迫下,羊草积累以Na+和Cl-为主的无机离子,参与渗透及离子平衡调节,脯氨酸、可溶性糖和有机酸等有机溶质作为渗透溶质的调节作用较小;在所有器官中,根茎含有相对高的Na+和Cl-等盐离子及最低的硝酸根离子含量,根茎这种对盐离子的容纳及营养离子的贡献作用,减少了盐胁迫对其他器官生长的伤害,相对的保护了其他器官的正常生长。在碱胁迫下,羊草积累Na+的同时,更多的积累脯氨酸,可溶性糖和有机酸等有机溶质来参与碱胁迫下的渗透调节,此时根茎具有和盐胁迫下相似的生理响应特点,当碱胁迫浓度增高时,茎和叶内的Na+积累量增多,导致可溶性糖、脯氨酸和有机酸的合成也高于其他器官,茎和叶内毒害离子和有机溶质大量增加及幼苗生长的显著降低,表明高浓度的碱胁迫使羊草生长受到严重损害,物质代谢紊乱,此时有机溶质的合成是胁迫伤害的产物。
     (4)外源GA3显著增加了羊草生长季末的根茎顶芽、根茎节芽和根茎顶苗的数量,降低了根茎顶芽的内源IAA和ABA的含量,显著提高了翌年单位面积羊草的抽穗数和抽穗率,由此可以推出根茎顶芽及根茎顶苗是翌年羊草种群生殖枝的主要来源,内源IAA和ABA含量的下降是促进花芽分化的基础。外源IAA和KT(激动素,一种细胞分裂素)虽然也增加了根茎顶苗和根茎节苗的数量,但最终两种激素均未显著增加翌年羊草种群的抽穗数和抽穗率,其原因是外源IAA和KT均导致根茎顶芽内ABA含量增加,使得IAA/ABA的比值显著降低,抑制了羊草的花芽分化作用。
     (5)外源植物激素对羊草结实的影响与其施用浓度、施用时间和生理特性有关。返青期、分蘖期和拔节期分别喷施GA3、IAA及KT等三种激素对当年羊草的抽穗数与抽穗率均没有显著影响,这与羊草的幼穗分化时期和进程有关,此时期羊草已完成了幼穗分化。返青期施用GA3处理显著提高羊草的结实数、结实率、穗重和粒重;分蘖期施用GA3对有性繁殖数量性状无显著影响;拔节期喷施GA3显著增加羊草每穗小花数、结实数、穗重、粒重及种子产量,以上结果表明GA3对羊草的促进作用受施用时间和植物生长状态的影响,在羊草的返青后及拔节期应用GA3处理,不仅显著提高了结实率,而且大大降低了结实率的变异幅度,使羊草抽穗整齐,开花集中,授粉充分,结实率较高。返青期、分蘖期和拔节期施用IAA对羊草有性生殖数量性状均无显著促进作用。返青期和分蘖期喷施KT对羊草有性繁殖的影响相似,虽然未改变结实率,但是显著提高了羊草每穗结实数和粒重,对羊草的种子灌浆及发育具有明显的促进作用;拔节期喷施KT则显著地增加羊草每穗小花数、结实数、穗重、粒重及种子产量,不同KT浓度间无显著差异。
Soil salinization and alkalization causes serious lesses in agricultural productivity and is one of ecological crisis that faces humans. In order to improve and use the degeneration and saline-alkalization grassland, it is important to study the physiological responses characteristics of plant to salt and alkali stresses, and to improve the salt and alkali tolerance, seed production of plant. Plant hormones are one of main signal transduction components of plant responding to environmental stresses. The hormones contents will change when plant growed in stress conditions. Application of exogenous hormones can alleviate the damage of environmental stress on plant. In addition, plant hormones are key factors in controlling the flower formation and reproductive growth of plants. In this paper, we used wheat and Leymus chinensis as the experiments materials, conducted the experiment to study the effects of salt and alkali stresses on wheat and L. chinensis seedlings; and alleviated function of ABA on both stresses; and application of plant hormones on improvement of sexual reproduction of L. chinensis. We got the conclusions as follows:
     (1)Salt and alkali stresses both inhibited the growth of wheat seedlings, and the adverse effects of alkali stress were higher than that of salt stress. Wheat had the different physiological responses mechanisms between salt and alkali stresses. Under salt stress, wheat significantly accumulated Na+ and simultaneously accumulated Cl-, soluble sugars and proline to keep osmotic and ionic balance. Under alkali stress, high pH enhanced Na+ accumulation and affected absorption of inorganic anions. To maintain ionic and osmotic balance, wheat greatly accumulated organic acids, soluble sugars and proline. The accumulation of Cl- and organic acids was the main difference of wheat in the physiological responses and adaptive mechanisms to salt and alkali stresses, respectively.
     Organic acids were the special components of wheat responding to alkali stress. We concluded that malate and citrate were the main OAs components of wheat seedling by determining the contents of organic acids components (OAs) in wheat shoots and roots, but the contents and increments of OAs between shoots and roots were different. All OAs components contents in shoots were higher than that in roots, but the increment in roots was higher than that in shoots. With increasing alkalinity, malate and citrate increased in shoots, but in roots they increased first then decreased after. It indicated that the injuries of alkali stress on roots were higher than that on shoots. Organic acids components played different roles in responding to alkali stress. Malate and citrate were the special OAs components of wheat responding to alkali stress.
     (2) Foliar application of ABA could alleviate the adverse effect of salt and alkali stresses on wheat seedlings. Because of the different responding mechanisms of wheat seedlings to salt and alkali stresses, the alleviation mechanisms of ABA on salt and alkali stresses were also different. ABA could decrease the accumulation of Na+ that caused by salt stress, and increase the ratio of K+/Na+ and Ca2+/Na+ to improve the salt resistance of wheat. Under alkali stress, application of ABA could increase the synthesis of organic solutes, such as soluble sugars, organic acids components contents in shoots to decrease the adverse effect of alkali stress on wheat. The lower concentration of ABA had the better mitigation effects than the higher one.
     (3) With certain concentration of salt and alkali stresses, the root growth of L. chinensis was not inhibited, and the inhibition of rhizome growth was higher than that of other organs. Both stresses decreased the buds number that produced from tillerings nodes and rhizomes, and the inhibition of the latter was higher. There was a significant inhibited effect of higher concentration of alkali stress on biomass of above- and under- ground and buds number, comparing with other stress concentration. L. chinensis indicated the different physiological responses mechanisms between salt and alkali stresses. Under salt stress, the inorganic ions such as Na+ and Cl- were the main osmotic ajustment substances of L. chinensis, the osmotic regulation of organic solutes such as soluble sugars, prolines and organic acids was little. Na+ and Cl- accumulated in L. chinensis distributed mainly in rhizome, and NO3- contents were the lowest in rhizome. The capacity of containing toxic ions in rhizomes protected the normal growth of other organs, and avoided adverse effect of salt stress on them. Under alkali stress, L. chinensis accumulated Na+, soluble sugars, proline, and organic acids to involve in the osmotic ajustment. The role of rhizome was similar to that of salt resistance. When the alkaline concentration increased, the contents of Na+, soluble sugar, proline, and organic acids in stems and leaves were increased sharply, which indicated that this concentration caused serious damage on L. chinensis, the metabolism of organic solutes was destroyed, the synthesis of which was the product of damage.
     (4) Exogenous GA3 significantly increased the number of apical rhizome buds, axillary rhizome buds and daughter shoots of apical rhizome at the end of growth season, and decreased endogenesis IAA and ABA contents, then significantly increased the heading number and heading percentage of unit area next year. We concluded that the apical rhizome buds and daughter shoots of apical rhizome were the main components of heading shoots next year. The decreases of endogenesis IAA and ABA were the foundation of inducing differentiation on reproductive buds. Although exogenous IAA and KT can increase the daughter shoots comed from apical rhizome and axillary rhizome, neither of them increased the heading number and heading percentage of L. chinensis population next year. The reason was that exogenous IAA and KT induced the increament of ABA contents, and decreased IAA/ABA, and had no significantly active effect on reproductive buds differentiation.
     (5) The regulation of plant hormone on growth and reproduction, was correlated with the treatment time, concentration and action mechanisms of plant hormone. There was no significant effect of GA3, IAA and KT on heading number and heading percentage when they were sprayed at the three stages. This was related to the process of spikelets differentiation. According to study of Zhang et al, L. chinensis had finished the spikelets differentiation in this time. On period of seedling establishment, GA3 treatment not only increased seed number, seeding percentage, weight of spikes and seeds, but also decreased CV of seed percentage, which optimized the heading, flower, pollination. But there was no significant effect of GA3 treatment on tillering stage. On jointing stage, GA3 could increasing the number of florets and seeds per spike significantly, and then increasing the weight of spike and seeds per spike and seed yield. So we concluded that GA3 accelerated the florets differentiation of L. chinensis. There was no positive effect of IAA on the traits of sexual reproduction number characters when it sprayed on period of seedling establishment, tillering stage and jointing stage. The effect of KT that sprayed on period of seedling establishment on seeding of L. chinensis was similar to that on tillering stage. They didn’t change the seeding percentage, but increased the seed numbers and spike weights, which played active function on seed filling and development. On jointing stage, KT could increase the number of florets and seeds per spike significantly, and then increase the weight of spike and seeds per spike and seed yield. But there was no difference between different concentration.
引文
[1]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社, 2005.
    [2] FAO. FAO Land and Plant Nutrition Management Service [EB/OL]. http://www. fao.org/ag/agl/agll/ spush. 2008.
    [3] Tanjj K K. Agricultural Salinity Assessment and Management[J]. New York: American Society of Civil Engineers, 1990.
    [4]杨春武,李长有,张美丽等.盐、碱胁迫下小冰麦体内的pH及离子平衡[J].应用生态学报,2008,19(5):1000-1005.
    [5] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora (Griseb.) Scribn.et Merr. Plants[J]. Acta Bot Sin, 1993, 35:144-149 (in Chiese with English abstract).
    [6] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicol Environ Saf, 2005, 60:324-349.
    [7] Hayashi H, Murata N. Genetically engineered enhancement of salt tolerance in higher plants. In: Sato, K, Murata N. (Ed.), Stress Response of Photosynthetic Organisms: Molecular Mechanisms and Molecular Regulation[J]. Elsevier, Amsterdam, pp:138-148.
    [8]赵福庚,何龙飞,罗庆云,编著.植物逆境生理生态学[M].北京:化学工业出版社, 2004.
    [9] Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca(Bge.)[J]. Plant Growth Regul, 2008a, 56 (2):179-190.
    [10] Shi D C, Zhao K F. Effects of NaCl and Na2CO3 on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution[J]. Acta Pratacu Sin, 1997, 6:51-61.
    [11] Yang C W, Chong J N, Li C Y, et al. Osomtic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant Soil, 2007, 294:263-276.
    [12] Yang C W, Wang P, Li CY, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J]. Photosynthetica, 2008b, 46 (1):107-114.
    [13] Adams P, Thomas J C, Vernon D M, et al. Distinct cellular and organismic responses to salt stress[J]. Plant Cell Physiol, 1992, 33:1215-1223.
    [14] Vance C P. The molecular biology of N metabolism[J]. In:Dennis DT, Turpin DH, Lefebrre DD, Layzell DB, editors. Plant Metabolism.Ed 2. London:Longman Scientific, 1997, 449-477.
    [15] Reddy M P, Sanish S, Iyengar E R R. Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions[J]. Photosynthetica, 1992, 26:173-179.
    [16] Iyengar E R R, Reddy M P. Photosynthesis in highly salt-tolerant plants[M]. In:Pesserkali, M. (Ed.) , Handbook of photosynthesis. Marshal Dekar, Baten Rose, USA, 1996, 897-909.
    [17] Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6:441-445.
    [18] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environ Exp Bot, 2007, 59:206-216.
    [19] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environ Exp Bot, 2002, 47:39–50.
    [20] Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J]. Crop Sci, 2000, 40:482-487.
    [21] Salerno G L, Porchia A C, Vargas W A, et al. Fructose-containing oligosaccharides: novel compatible solutes in Anabaena cells exposed to salt stress[J]. Plant Sci, 2004, 167:1003-1008.
    [22] Lee G, Carrow R N, Duncan R R, et al. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum[J]. Environ Exp Bot, 2008, 63:19-27.
    [23] Tonon G, Kevers C, Faivre-Rampant O, et al. Effect of NaCl and mannitol iso-osmotic stress on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus[J]. J Plant Physiol, 2004, 161:701-708.
    [24] Diego H, Sanchez, Juan C C, et al. Free spermidine and spermine content in Lotus glaber under long-term salt stress[J]. Plant Sci, 2005, 168:541-546.
    [25] Pontis H G, Vargas W A, Salerno G L. Structural characterization of the members of a polymer series, compatible solutes in Anabaena cells exposed to salt stress[J]. Plant Sci, 2007, 172:29-35.
    [26] Bohnert, H J, Jensen, R G. Strategies for engineering waterstress tolerance in plants[J]. Trends Biotechnol, 1996, 14:89–97.
    [27] Kohler J, Hernandez J A, Caravaca F, et al. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGRR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J/OL]. http://www.elsevier.com/locate/envexpbot, 2008.
    [28] Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton[J]. Crop Sci, 1994, 34:706-714.
    [29] Hermandez J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress in chloroplasts of pea plants[J]. Plant Sci, 1995, 105:151-167.
    [30] Hermandez J A, Jimenez A, Mullineaux P, et al. Tolerance of pea plants(Pisum sativum) to long-term salt stress is associated with induction of antioxidant defense[J]. Plant Cell Environ, 2000, 23:853-862.
    [31] Sehmer L, Alaoui-Sosse B, Dizengremet P. Effect of salt stress on growth and on the detoxyfying pathway of pedunculate oak seedlings (Quercus robur L.) [J]. J Plant Physiol, 1995, 147:144-154.
    [32] Kennedy B F, De Fillippis L F. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevilles arenaria[J]. J Plant Physiol, 1999, 155:746-754.
    [33] Sreenivasulu N, Grimm B, Wobus U, et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet (Setaria itallica) [J]. Physiol Plant, 2000, 109:435-442.
    [34] Benavides M P, Marconi P L, Gallego S M, et al. Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum[J]. Aust J Plant Physiol, 2000, 27:273-278.
    [35] Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in therice (Oryza sativa L.)[J]. J Plant Physiol, 2001, 158:737-745.
    [36] Mittova V, Tal M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species[J]. Physiol Plant,2002, 115:393-400.
    [37] Mittova V, Tal M, Volokita M, et al. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii[J]. Plant Cell Environ, 2003, 26:845-856.
    [38] Cushman J C, Meyer G, Michalowski C B, et al. Salt stress leads to differential expression of two isogenes of PEP Case during CAM induction in the common Ice plant[J]. Plant Cell, 1989, 1:715-725.
    [39] Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice[J]. Plant Sci, 1999, 140:21-30.
    [40] Tuna A L, Kaya C, Dikilitas M, et al. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants[J]. Environ Exp Bot, 2008a, 62:1-9.
    [41] Popova L P, Stoinova Z G, Maslenkova L T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L during salinity stress[J]. J Plant Growth Regul, 1995, 14:211-218.
    [42] Thomas J C, McElwain E F, Bohnert H J. Convergent induction of osmotic stress-responses[J]. Plant Physiol, 1992, 100:416-423.
    [43] Sharp R E, LeNoble M E. ABA, ethylene and the control of shoot and root growth under water stress[J]. J Exp Bot, 2002, 53:33-37.
    [44] Chen S, Li J, Wang S, et al. Salt,nutrient uptake and transport,and ABA of Populus euphratica;ahybrid in response to increasing soil NaCl[J]. Trees-Struct Funct, 2001, 15:186-194.
    [45] Hartung W, Schraut D, Jiang F. Physiology of abscisic acid (ABA) in roots under stress-a review of the relationship between root ABA and radial water and ABA flows[J]. Aust J Agric Res, 2005, 56:1253-1259.
    [46] GomezCadenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants[J]. J Plant Growth Regu, 2002, 21:234-240.
    [47] Ashraf M, Athar H R, Harris P J C, et al. Some prospective strategies for improving crop salt tolerance[J]. Adv Agron, 2008, (97):45-110.
    [48] Tuna A L, Kaya C, Higgs D, et al. Silicon improves salinity tolerance in wheat plants[J]. Environ Exp Bot, 2008b, 62:10-16.
    [49] Wahid A, Perveen M, Gelani S, et al. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins[J]. J Plant Physiol, 2007, 164:283-294.
    [50] Melgara J C, Syvertsenb J P, Sa′nchez F G. Can elevated CO2 improve salt tolerance in olive trees[J]? J Plant Physiol, 2008, 165:631-640.
    [51] Zheng Y H, Jia A J, Ning T Y, et al. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance[J]. J Plant Physiol, 2008, 165:1455-1465.
    [52] Akram M S, shraf M, Akram N A. Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.)[J]. Flora, 2009, 204(6):471-483.
    [53] Athar A R, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat[J]. Environ Exp Bot, 2008, 63:224-231.
    [54] Huang Y, Bie Z L, Liu Z X, et al. Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber[J]. Soil Sci Plant Nutri, 2009, 55:698-704.
    [55] Chen T H H, Murata N. Glycinebetaine: an effective protectant against abiotic stress in plants[J]. Trends Plant Sci, 2008, 13(9):499-505.
    [56] Jaleel C A, Gopi R, Manivannan P, et al. Soil applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status[J]. Pestic Biochem and Physiol, 2008, 90:135-139.
    [57] Xie Z X, Duan L S, Tian X L, et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavening activity[J]. J Plant Physiol, 2008, 165:375-384.
    [58] Azooz M M. Foliar application with Riboflavin (Vitamin B2) enhancing the resistance of Hibiscus sabdariffa L. (Deep red sepals variety) to salinity stress[J]. J Biol Sci, 2009, 9(2):109-118.
    [59] Etehadnia M, Waterer D R, Tanino K K. The method of ABA application affects salt stress responses in resistant and sensitive potato lines[J]. J Plant Growth Regul, 2008, 27:331-341.
    [60] Gurmani A R, Bano A, Din J, et al. Effect of phytohormones on growth and ion accumulation of wheat under salinity stress[J]. African J Biotechnol, 2009, 8(9):1887-1894.
    [61] Wen F P, Zhang Z H, Bai T, et al. Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots[J]. Plant Sci, 2010, 178:170-175.
    [62] Chen C W, Yang Y W, Lur H S, et al. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development[J]. Plant Cell Physiol, 2006, 47:1-13.
    [63] Khadri M, Tejera N A, Lluch C. Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply[J]. J Plant Growth Regul, 2006, 25:110-119.
    [64] Khadri M, Tejera N A, Lluch C. Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance[J]. Environ Exp Bot, 2007, 60:211-218.
    [65] Fricke W, Akhiyarova G, Veselov D, et al. Rapid and tissue-specific changes in ABA and in growth rate in responses to salinity in barley leaves[J]. J Exp Bot, 2004, 55:1115-1123.
    [66] Thompson A J, Andrews J, Mulholland B J, et al. Overproduction of abscisic acid in tomato increase transpiration efficiency and root hydraulic conductivity and influences leaf expansion[J]. Plant Physiol, 2007, 143:1905-1917.
    [67]祝廷成主编.羊草生物生态学[M].长春:吉林科学出版社, 2004.
    [68]梁存柱,祝廷成,王德利等.21世纪初我国草地生态学研究展望[J].应用生态学报, 2002, 13(6):743-746.
    [69]张崇邦,张忠恒,杨靖春.东北羊草草原羊草种群生长与环境关系的研究[J].植物研究, 1995, 15(1):97-103.
    [70]杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报, 1995,37(2):147-153.
    [71]杨允菲,张宝田.松嫩平原羊草种群营养繁殖的季节动态及其生物量与密度关系的分析[J].植物学报, 1996, 34(6):443-449.
    [72]易津,李青丰,谷安琳等.根茎类禾草生物学特性研究进展[J].干旱区资源与环境, 2001, 15(5):1-16.
    [73]李建东.东北草地的退化及其治理.国土与自然资源研究[J].1995, (3):34-38.
    [74] Blair J M, Parmele K M, and Beare M H. Decay rates nitrogen fluxes and decom poser comu.units of single and mixed-species foliar litter[J]. Ecology, 1990, 71:1976-1985.
    [75] Wang L Y, Gu T and Zhao J H. Studies on pollen mother cell meiosis and pollen morphology on 6 species of rhizomatous forages[J]. Grassland of China, 2001, 23(6):12-15.
    [76]段晓刚,樊金玲.羊草PMC减数分裂的研究[J].中国草原, 1984, (1):66-67.
    [77]杨允菲,杨利民,张宝田等.东北草原羊草种群种子生产与气候波动的关系[J].植物生态学报, 2001, 25(3):337-343.
    [78]高雷明,黄银晓,林舜华.CO2倍增对羊草物候和生长的影响[J].环境科学, 1999, 20(5):25-29.
    [79]杨允菲,李建东.不同利用方式对羊草繁殖特性的影响及其草地更新的分析[J].中国草地, 1994, (5):34-37.
    [80]马鹤林等.羊草抽穗特性及穗分化过程的观察[J].内蒙古草原, 1983,(1):17-24.
    [81]杨允菲,李建东.东北草原羊草种群单穗数量性状的生态可塑性[J].生态学报, 2001, 21(5):752-758.
    [82]杨允菲.刈割对羊草种群生殖器官数量形状的影响[J].中国草地, 1989, (1) :49-52.
    [83] Wang R Z and Gao Q. Climate-driven changes in shoot density and shoot biomass in Leymus chinensis (Poaceae) on the North-east China[J]. Global Ecol Biogeogr, 2003, (12):249-259.
    [84] Wang Z L, Xu Q Z and Huang B R. Endogenous Cytokinin Levels and Growth Responses to Extended Photoperiods for Creeping Bentgras under Heat Stress[J]. Crop Sci, 2004, 44(1):209-213.
    [85]马鹤林,等.羊草结实特性及结实率低的原因[J].中国草原, 1984, 6(3):15-21.
    [86]王梦龙.羊草结实特性研究[J].中国草地, 1998, 20(1):18-20.
    [87]卫星,申家恒.羊草大小孢子发生与雌雄配子体发育的观测[J].西北植物学报, 2003, 23(12):2058-2066.
    [88]杨允菲.水肥对羊草穗部器官及籽粒产量性状的影响[J].中国草地, 1989, 11(1):11-15.
    [89]王仁忠.放牧影响下羊草种群生殖生态学的研究[J].应用生态学报, 2000, 11(3):399-402.
    [90] Stephen M S and Davinder P S. Tall tales from sly dwarves:novel functions of gibberellins in plant development[J]. Trend Plant Sci, 2005, 10(3):125-128.
    [91]曹尚银,张秋明,吴顺.果树花芽分化机理研究进展[J].果树学报, 2003, 20(5):345-350.
    [92]樊卫国,等.刺梨花芽分化期芽中内源激素和碳、氮营养的含量动态[J].果树学报, 2003, 20(1) :40-43.
    [93]任桂杰,等.棉花花芽分化及部分内源激素变化规律的研究[J].西北植物学报, 2000, 20(5) :847-851.
    [94]任桂杰,等.棉花花芽分化时期茎尖内源激素的变化[J].西北植物学报, 2002, 22(2) :321-326.
    [95]李秉真,等.苹果梨花芽分化期内源激素含量的变化(简报)[J].植物生理学通讯, 2000, 36(1) :27-29.
    [96]蒋欣梅,等.青花菜花芽分化前后内源激素含量及酶活性的变化[J].东北农业大学学报, 2005, 36(2) :156-160.
    [97]廖平安,等.外源激素对甘薯茎尖分生组织培养再生植株的影响[J].信阳农业高等专科学校学报, 1998, 8(3) :39-40.
    [98]胡芳名,等.施肥与喷施激素对枣树内源激素变化与座果情况的影响研究[J].经济林研究, 1997, 15(4) :3-7.
    [99] Brenner M L. The role of hormones in photosynthate parting and seed filling In: Plant Hormones and Their Role in Growth and Development.Martinus[J]. Nijihoff Publishers, 1987, 473-493.
    [100]杨建昌,王志琴,朱庆森,等.ABA和GA对水稻籽粒灌浆的调空[J].作物学报, 1999, (25):341-347.
    [101]王熹,陶龙兴,俞美玉,等.GA3对杂交水稻“粒间顶端优势”及灌浆期间籽粒内源IAA的影响[J].植物胜利学报, 2000, 26(3):247-251.
    [102] F P加德纳, R B皮尔斯, RL米切尔等著.于振文,王振林,崔德才等译.作物生理学[M].北京:农业出版社,1993.
    [103] Wang Z L, Cao W X, Dai T B, et al. Effects of exogenous hormones on floret development and grain set in wheat[J]. Plant Growth Regul, 2001, 35:225-231.
    [104] Xu G W, Zhang J H, Lam H M, et al. Hormonal changes are related to the poor grain filling in the inferior spikelets of rice cultivated under non-flooded and mulched condition[J]. Field Crops Res, 2007, 101:53-61.
    [105] Nagel L, Brewster R, Riedell W E, Reese R N. Cytokinin regulation of flower and pod set in soybeans (Glycine max (L.) Merr.)[J]. Annals of Bot, 2001, 88:27-31.
    [106] Brokove B, et al. Transport of 14C-Sucrose and 14c-benxyl adenine in winter wheat in the pre-anthesis period[J]. Agron Crop Sci, 1990, 165:217-223.
    [107] Brokove B, et al. Pre-anthesis interaction of cytokinins and ABA in the transport of 14C-Sucrose to the ear of winter wheat[J]. Agron Crop Sci, 1992, 169:229-235.
    [108] L?uchli A, Lüttge U. Salinity in the soil environment.– In : Tanji, K.K. (ed.): Salinity: Environment-Plants-Molecules[M]. Boston:Kluwer Academic Publ, 2002, 21-23.
    [109] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environ Exp Bot, 2007, 59:206-216.
    [110] Da-Silva E C, Custodio-Nogueira R J M, De-Araujo F P, et al. Physiological response to salt stressin young umbu plants[J]. Environ Exp Bot, 2008, 63:147-157.
    [111] Ruan Y F, El-Hendawy S E, Hu Y C, et al. Differential effect of moderate salinity on growth and ion contents in the mainstem and subtillers of two wheat genotypes[J]. Soil Sci Plant Nutr, 2007, 53(6):782-791.
    [112] Ehsanzadeh P, Nekoonam M S, Azhar J N, et al. Growth, chlorophyll,and cation concentration of tetraploid Wheat on a solution high in sodium chloride salt:Hulled versus free-threshing genotypes[J]. J Plant Nutr, 2009, 32 (1):58-70.
    [113] Heidari M, Mesri F. Salinity effects on compatible solutes, antioxidants enzymes and ion content in three wheat cultivars[J]. Pak J Biol Sci, 2008, 11:1385–1389.
    [114] Bao S D. Determine of cation. In:Bao SD (ed) Analysis methods for soil and agriculture chemistry[M].Beijing:China Agriculture Press, 1981:150-160.
    [115] Zhu G L, Deng X W, Zuo W N. Determination of free proline in plants[J]. Plant Physiol Commun, 1983, 1:35-37.
    [116] Khan M A, Ungar I A, Showalter A M. Effects of salinity on growth,ion content,and osmotic relations in Halopyrum mocoronatum (L.) Stapf[J]. J Plant Nutr, 1999, 2:191-204.
    [117] Heidari M, Mesri F. Salinity effects on compatible solutes, antioxidants enzymes and ion content in three wheat cultivars[J]. Pak J Bio Sci, 2008, 11(10):1385-1389.
    [118] Meloni D A, Gulotta M R, Martinez C A. Salinity tolerance in Schinopsis quebracho colorado:Seed germination, gorwth ion relations and metabolic responses[J]. J Arid Environ, 2008, 72:1785-1792.
    [119] Gabriel R, Kesselmeier J. Apoplastic solute concentrations of organic acids and mineral nutrients in the leaves of several Fagaceae[J]. Plant Cell Physiol, 1999, 40:604-612.
    [120] Lo′pez-Bucio J, Nieto-Jacobo M F, Ram?′rez-Rodr?′guez V, et al. Organic acid metabolism in plants:from adaptive physiology to transgenic varieties for cultivation in extreme soils[J]. Plant Sci, 2000, 160:1-13.
    [121] Shi D C,Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J]. Plant Soil, 2005, 271:15-26.
    [122] Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009, 47:79-86.
    [123] Zhang J T, Mu C S. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius[J]. Soil Sci Plant Nutri,2009,55 (5):685-697.
    [124] Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress[J]. Acta Bot Sin, 2002, 44:537-540.
    [125] Li X Y, Liu J J, Zhang Y T, et al. Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses[J]. Soil Sci Plant Nutri, 2009, 55(5):680-684.
    [126] Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25:239-250.
    [127] Chen, WC, Cui P J,Sun H Y, et al. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.) [J]. Ind Crops Prod,2009, 30 (3):351-358.
    [128] Ocheretina O, Haferkamp I, Tellioglu H, et al. Light-modulated NADP-malate dehydrogenases from mossfern and green algae:insights into evolution of the enzyme's regulation[J]. Gene, 2000, 258:147-154.
    [129] Vance C P, Heichel G H. Carbon in N2 fixation: limitation or exquisite adaptation[J]. Annu Rev Plant Mol Biol, 1991, 42:373-392.
    [130] Miller S S, Driscoll B T, Gregerson R G, et al. Alfalfa Malate Dehydrogenase (MDH):Molecular Cloning and Characterization of Five Different Forms Reveals a Unique Nodule-Enhanced MDH[J]. Plant J, 1998, 15:173-184.
    [131] Mart?′nez-Camacho J L, Gonza′lez-de la Vara L, Hamabata A, et al. A pH-stating mechanism in isolated wheat (Triticum aestivum) aleurone layers involves malic acid transport[J]. J Plant Physiol, 2004, 161:1289-1298.
    [132] Edwards G E, Andreo C S. NADP-malic enzyme from plants[J]. Photo-chemistry, 1992, 31:1845-1857.
    [133] Martinoia E, Rentsch D. Malate compartmentation:responses to a complex metabolism[J]. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45:447-467.
    [134] Schaaf J, Walter M H, Hess D. Primary metabolism in plant defense:regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues[J]. Plant Physiol, 1995, 108:949-960.
    [135] Casati P, Drincovich M F, Edward G E, et al. Malate metabolism by NADP-malic enzyme in plant defense[J]. Photosynth Res, 1999, 61:99-105.
    [136] Wang X Y and Bi Y F. Research progress of plant malate dehydrogenase[J]. Biotechnology Bulietin, 2006, 4:44-50 (in Chiese with English abstract).
    [137] Zhu J K. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6(2):66-71.
    [138] Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress[J]. Field crops res, 2004, 85:125-133.
    [139] Benlloch-Gonzalez M, Fournier J M, Famos J, et al. Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus[J]. Plant Sci, 2005, 168:653-659.
    [140] Ashraf M, Orooj A.Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicianl plant ajwain (Trachyspermum ammi [L.] Sprague) [J]. J Arid Environ, 2006, 64:209-220.
    [141] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681.
    [142] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water stress studies[J]. Plant Soil, 1973, 39:205-207.
    [143] Marcum K B, Murdoch C L. Salinity tolerance mechanisms of six C4 turfgrass[J]. J Am Soc Hortic Sci, 1994, 119:779-784.
    [144] Silveira J A G, Araujo S A M, Lima J P M, et al. Roots and leaves display contrasting osmotic adjustment mechanisms in responses to NaCl-salinity in Atriplex nummularia[J]. Environ Exp Bot,2009, 66 (1):1-8.
    [145] Ashraf M, Bashir A. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance[J]. Flora, 2003, 198:486-498.
    [146] Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth,organic solutes,and cation accumulation in a halophyte Spartina alterniflora (Poaceae) [J]. Environ Exp Bot, 2010, 68(1):66-74.
    [147] Taiz L, Zeiger E. Plant physiology[M], 3rd Edit.Sunderland: Sinauer Ass, 2002.
    [148] Flexas J, Bota J, Escalona J M, et al. Effects of drought on photosynthesis in grapevines under field conditions:an evaluation of stomatal and mesophyll limitations[J]. Funct Plant Biol, 2002, 29:461-471.
    [149] El-hafid R, Smith D H, Karrou M, et al. Physiological attributes associated with early-season drought resistance in spring durum wheat cultivars[J]. Can J Plant Sci, 1998, 78:227-237.
    [150] Clark H, Newton P C D, Barker D J. Physiological and morphological responses to elevated CO2 and a soil moisture deficit of temperate pasture species growing in an established plant community[J]. J Exp Bot, 1999, 50:233-242.
    [151] Blumwald E. Sodium transport and salt tolerance in plants[J]. Curr Opin Cell Biol, 2000, 12:431-434.
    [152] Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants[J]. Crop Sci, 2005, 45:437-448.
    [153] Dudeck A E, Peacock C H. Salinity effects on growth and nutrient uptake of selected water season turf. Int. Turfgrass Soc[J]. Res J, 1993, 7:680-686.
    [154] Marschner H. Mineral Nutrition of Higher Plants[M], sencond ed. London:Academic Press, 1995.
    [155] Davenport R J, Reid R J, Smith F A. Sodium-calcium interactions in two wheat species differing in salinity tolerance[J]. Physiologia Plantarum, 1997, 99:323-327.
    [156] Wenxue W, Bilsborrow P E, Hooley P, et al. Salinity induced differences in growth,ion distribution and partioniong in barley between the cultivar Maythorpe and its derived mutant Golden Promise[J]. Plant and Soil, 2003, 250:183-191.
    [157] Knight H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity[J]. Plant J, 1997, 2:1067-1078.
    [158] Gorham J, Bridaes J, Dubcovsky J, et al. Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat[J]. New Phytologist, 1997, 137:109-116.
    [159] Wyn Jones G, Gorham J. Intra- and inter- cellular comparments of ions[J]. In: L?uchli A, Lüttge U, eds. Salinity: environment–plant–molecules, Dordrecht, the Netherlands:Kluwer, 2002:159-180.
    [160] Sagi M, Dovrat A, Kipnis T, et al. Ionic balance, iomass production, and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass[J]. J Plant Nutr, 1997, 20:1291-1316.
    [161] Greenway H, Munns R. Interactions between growth, uptake of Cl and Na, and water relations ofplants in saline environments[J]. Plant Cell Environ, 1983, 6:575-589.
    [162] Sanada Y, Ueda H, Kuribayashi K, et al. Novel light-dark change of proline levels in halophyte (Mesembryanthemum-crystallinum L.) and glycophytes (Hordeum vulgare L. and Triticum aestivum L.) leaves and roots under salt stress[J]. Plant Cell Physiol, 1995, 36:965-970.
    [163] Ishitani M, Majumder A L, Bornhouser A, et al. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress[J]. Plant J, 1996, 9:537-548.
    [164] Ashraf M. Breeding for salinity tolerance in plants[J]. Crit Rev Plant Sci, 1994, 13:17-42.
    [165] Ali G, Srivastava P S, Iqbal M. Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress[J]. Biol Plant, 1999, 42:89-95.
    [166] Maggaio A, Miyazaki S, Veronese P, et al. Does proline accumulation play an active role in stress induced growth reduction[J]? Plant Physiol Biochem, 2002, 36:767-772.
    [167] De-Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environ Exp Bot, 2003, 49:107–120.
    [168] Morgan J M. Osmotic components and properties associated with genotypic differences in osmoregulation in wheat[J]. Aust J Plant Physiol, 1992, 19:67-76.
    [169] Meloni D A, Gulotta M R, Martinea C A, et al. Salinity tolerance in algarrobo seedlings (Prosopis alba G):growth,osmotic ajustment and nitrate reduction[J]. Braz J Plant Physiol, 2004, 15:39-46.
    [170] Li XY, Liu J J, Zhang Y T, et al. Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses[J]. Soil Sci Plant Nutri, 2009, 55(5):680-684.
    [171]杨允菲,李建东,郑慧莹.松嫩平原两个趋异类型羊草无性系种群特征的比较研究[J].植物学报, 1997, 39(11):1058-1064.
    [172] Delhaize E, Ryan PR, Randall PJ. Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminium-stimulated excretion of malic acid from root apices[J]. Plant Physiol, 1993, 103:695-702.
    [173]杨建昌,苏宝林.ABA和GA对水稻籽粒灌浆的调控[J].作物学报, 1999, (25):341-347.
    [174]张兆军,穆春生,张继涛等.羊草根茎顶芽分生组织分化的动态研究[J].草业学报, 2008, 17(1):71-79.
    [175]丁静,沈德镇,方亦雄.植物内源激素的提取分离和生物鉴定[J].植物生理学通讯, 1979, (2):27-39.
    [176] Bangerth P K. Can regulatory mechanism in growth and development be elucidated through the study of endogenous hormone concentration[J]. Acta Gort, 1998, 463:77-78.
    [177]曹尚银,张俊昌,魏立华.苹果花芽孕育过程中内源激素的变化[J].果树科学, 2000, 17(4):244-248.
    [178] Kojema K, Yayata Y, Yamamolo M. Effects of cropping on photosynthesis, dark resperation, leaf ABA concentration and inflorescence induction in Satsuma mandarin[J]. J Japan Soc Hort Sci, 1995, 64:9-16.
    [179] Koshita Y, Takalara T, gata T. Involvement of endogenous plant hormones of leaves in flower budformation of Satsuma Mandarin[J]. Scientia Hort, 1999, 79:185-194.
    [180]曹尚银,汤一卒,江爱华.GA3和PP333调控苹果花芽孕育的机理研究[J].园艺学报, 2001, 28(4):339-341.
    [181]曹尚银,汤一卒,张俊昌.GA3和PP333对苹果花芽形态建成及其内源激素比例变化的影响[J].果树学报, 2001, 18(6):313-316.
    [182]苏明华,刘志成,庄伊美.水涨龙眼结果母枝内源激素含量变化对花芽分化的影响[J].热带作物学报, 1998, 2:66-77.
    [183]曹尚银,张威远.多效唑对桃树的控制效应[J].中国农业科学, 1990, 23(6):88-89.
    [184]曹尚银,张威远.多效唑对甜樱桃的化学控制效应[J].化学生态物质, 1992, 6(2):80-84.
    [185]李博.中国的草原[M].北京:科学出版社, 1990.
    [186]杨映根,郭奕明,郭毅等.种子生产及提高种子萌发率的研究进展[J].种子, 2001, (5):40-42.
    [187]王俊锋,穆春生,张继涛等.施肥对羊草有性生殖影响的研究[J].草业学报, 2008, 17(3):53-58.
    [188] Pan B, Bai Y M, Leibovith S, et al. Plant-growth-promoting rhizobacteria and kinetin as ways to promote corn growth and yield in a short-growth-season area[J]. Euro J Agron, 1999, 11:179-186.
    [189]史瑞青,谢惠玲,李鹏坤等.花后喷施外源物质对小麦激素含量及源库的调节效应[J].河南农业大学学报, 2006, 40(2):122-126.
    [190]张玲娥,张萍.植物生长调节剂对冬小麦籽粒灌浆期源库关系的调控[J].核农学报, 2005, 19(3):228-231.
    [191]曾富华,罗泽民.赤霉素对杂交水稻生育后期剑叶中活性氧清除剂的影响[J].作物学报, 1994, 20(3):347-351.
    [192]杨安中,黄义德.旱作水稻喷施6-苄基腺嘌呤的防早衰及增产效应[J].南京农业大学学报, 2001, 24(2):12-15.
    [193]杨建昌,王志琴,朱庆森.外源植物激素对水稻光合能力与产量的影响[J].江苏农学院报, 1995, 16(1):27-31.
    [194]李合生.现代植物生理学[M].北京:高等教育出版社, 2004.
    [195]阿加拉铁,薛大伟,李士贵等.植物激素与水稻产量的关系[J].中国稻米, 2006, 5:1-3.
    [196]黄升谋,邹应斌.赤霉素和脱落酸对水稻籽粒灌浆及结实的影响[J].安徽农业大学学报, 2006, 33(3):293-296.
    [197]娄伟平,孙永飞,吴利红等.孕穗期气象条件对水稻每穗总粒数和结实率的影响[J].中国农业气象, 2007, 28(3):296-299.
    [198]郭继勋.羊草草地营养元素的吸收、积累和归还[J].中国草原, 1986, 5:53-56.
    [199]呼天明等.氮素在羊草—土壤中的分配及其季节动态的初步研究[J].生态学杂志, 1987, (4).
    [200] Hajlaoui H, El Ayeb N, Garrec J P, et al. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties[J]. Industr Crops Products, 2010, 31:122-130.
    [201] Radic′S, Radic′-Stojkovic′M, Pevalek-Kozlina B. Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots[J]. J Plant Physiol, 2006, 163:1284-1292.
    [202] Da-Silva E C, Cust′odio Nogueira R J M, De-Ara′ujo F P, et al. Physiological responses to salt stress in young umbu plants[J]. Environ Exp Bot, 2008, 63:147-157.
    [203] De-Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environ Exp Bot, 2003, 49:107-120.
    [204] Saqib M, Zo¨rb C, Rengel Z, et al. The expression of the endogenous vacuolar Na+/H+ antiporters in roots and shoots correlates positively with the salt resistance of wheat (Triticum aestivum L.) [J]. Plant Sci, 2005, 169:959–965.
    [205] Baccio D D, Navari-Izzo F, Izzo R. Seawater irrigation: antioxidant defence responses in leaves and roots of a sunflower (Helianthus annuus L.) ecotype[J]. J Plant Physiol, 2004, 161:1359-1366.
    [206] Neves O S C, Carvalho J G, Rodrigues C R. Crescimento e nutric? ?ao mineral de mudas de umbuzeiro (Spondias tuberosa Arr. Cam.) submetidas a n′?veis de salinidade em soluc? ?ao nutritive[J]. Ci?enc. Agrotec, 2004, 28:997-1006.
    [207] Vi′egas R A, Queiroz J E, Silva L M M, et al. Plant growth, accumulation and solute partitioning of four forest species under salt stress[J]. Rev Bras Eng Agric Amb, 2003, 7:258-262.
    [208] Chartzoulakis K, Loupassaki M Bertaki M, et al. Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars[J]. Sci Hortic, 2002, 96:235-247.
    [209] Kameli A, Losel D M. Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress[J]. J. Plant Physiol, 1995, 145:363–366.
    [210] De Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environ Exp Bot, 2003, 49:107-120.
    [211] Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indusdelta[J]. Pakistan Aquat Bot, 2001, 70:259-268.
    [212] Munns R, TeaterM. Mechanisms of salinity tolerance[J]. Annu.rev.plant Biol, 2008, 59:651-681.
    [213] Chen L S, Tang N, Jiang H X, et al. Changes in organic acid metabolism differ between roots and leaves of Citrus grandis in responses to phosphorus and aluminum interactions[J]. J Plant Physiol, 2009, 166:2023-2034.
    [214]中华人民共和国农业部畜牧兽医司,全国畜牧兽医总站主编.中国草地资源[M].北京:中国科学技术出版社,1996.
    [215] Lardizabal R D, Thompson P G. Growth regulators combined with grafting increase flower number and seed production in Sweet Potato[J]. Hort Sci, 1990, 25(1):79-81.
    [216] Lutts S, Majerus V, Kinet J M. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings[J]. Physiol Plant, 1999, 105:450-458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700