水稻强弱势籽粒灌浆差异的分子生态学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻尤其是大穗型的水稻,存在着强弱势籽粒灌浆差异的现象,弱势籽粒灌浆差限制了水稻高产潜力的发挥,如何提高弱势籽粒的灌浆饱满度及其千粒重是当前水稻高产研究的热点问题。强弱势籽粒灌浆差异的形成是个复杂的分子生态学过程,涉及多个基因的表达调控。虽然前人已就此问题在分子水平上开展了大量的研究,但是关于强弱势籽粒之间的蛋白表达及蛋白磷酸化修饰的差异未见报道。本研究运用双向电泳技术及Pro-Q磷酸化原位检测技术,选用大穗型常规稻“金恢809”作为研究对象,动态比较分析了强弱势籽粒灌浆之间的分子生理差异。主要研究结果如下:
     1、通过形态学及干物质动态分析发现水稻“金恢809”存在显著的强弱势籽粒灌浆差异现象。强势籽粒在花后5-20天,干物质重增长迅速,而弱势籽粒花后存在着一个滞育期,直到花后15天才启动灌浆,其籽粒的大小和干物质重都比强势籽粒低。在滞育期内弱势籽粒可溶性糖含量较高,说明碳水化合物的供应不是限制弱势籽粒灌浆启动的主要原因。通过考察不同种植季节以及不同栽培调控措施下水稻强弱势籽粒干物质动态变化,发现强势籽粒灌浆稳定,而弱势籽粒灌浆易受环境所调控。合理的水肥调控仅能够一定程度促进弱势籽粒的灌浆,但无法促使弱势籽粒灌浆启动的提前。
     2、为了明确限制弱势籽粒灌浆启动的分子机制,构建了弱势籽粒滞育期及灌浆前期的蛋白表达及磷酸化蛋白表达图谱,在弱势籽粒灌浆启动过程中,共鉴定到86个蛋白点和38个磷酸化蛋白点出现显著的表达变化,其中即出现蛋白表达变化的又出现磷酸化修饰变化的蛋白点有6个。经过MALDI-TOF/TOF-MS及LC-MS/MS的分析,蛋白点全部成功得到鉴定。通过蛋白丰度及功能的分析发现,萌发素蛋白的上调表达及α-微管蛋白的磷酸化修饰能够打破弱势籽粒胚乳细胞发育的停滞,导致弱势籽粒胚乳膨大,形成库容,为下一步淀粉累积做准备,而蔗糖合酶、UDP葡糖焦酸酶、ADP葡萄糖焦磷酸化酶、颗粒结合型淀粉合成酶、丙酮酸磷酸二激酶的上调表达,以及丙酮酸磷酸二激酶,ADP葡萄糖焦磷酸化酶,磷酸甘油酸酯变位酶和14-3-3蛋白的磷酸化修饰导致了淀粉合成行为的启动。与此同时,弱势籽粒从滞育期到灌浆期,磷酸戊糖途径减弱,糖酵解途径增强,产生更多的能量及中间产物供弱势籽粒胚乳细胞的增殖及淀粉的合成。
     3、为了明确强弱势籽粒灌浆差异形成的分子机制,构建了强弱势籽粒灌浆启动后对应的不同灌浆时期的蛋白表达及磷酸化蛋白表达图谱,共鉴定到156个蛋白点和54个磷酸化蛋白点在强弱势籽粒之间出现表达变化,其中即出现蛋白表达变化的又出现磷酸化修饰变化的蛋白点数有16个。经过MALDI-TOF/TOF-MS及LC-MS/MS质谱分析,蛋白点全部成功得到鉴定。研究发现,灌浆的前期,弱势籽粒中可溶性糖含量高于强势籽粒,淀粉合成关键蛋白的低丰度表达,限制了淀粉的合成;灌浆的中期,弱势籽粒中蔗糖及淀粉相关蛋白的低丰度表达是导致其淀粉合成效率低的主要原因;而到了灌浆的后期,碳水化合物供应的不足又成为限制其淀粉合成的主要原因。磷酸化分析发现,葡糖磷酸变位酶,UDP葡糖焦酸酶,ADPG焦磷酸化酶,颗粒结合型淀粉合成酶、磷酸化酶及丙酮酸磷酸二激酶在强弱势籽粒之间存在着磷酸化修饰的差异,暗示着在磷酸化修饰层面调控强弱势籽粒淀粉合成关键酶活性差异的可能性,同时也发现这些淀粉合成关键酶会通过磷酸化修饰并在14-3-3的调控下,形成淀粉酶复合体。此外,在弱势籽粒灌浆过程中糖酵解、三羧酸循环及乙醇代谢途径相关蛋白的表达量底,导致其碳流通量低,产生供胚乳细胞分化及淀粉合成的能量及前体相对强势籽粒较少,限制了弱势籽粒库容的形成及淀粉的合成,而肌动蛋白,肿瘤翻译调控蛋白及微管蛋白又限制了弱势籽粒胚乳细胞的分化。
     4、依据比较蛋白组学结果,筛选了7个限制弱势籽粒灌浆启动及9个导致弱势籽粒灌浆不充分的关键蛋白,蛋白丰度分析发现这些蛋白在强弱势籽粒之间存在着时空表达差异,其中14-3-3蛋白被认为在强弱势籽粒灌浆差异形成的过程中具有重要调控作用。进一步通过亲和层析技术探讨了籽粒中14-3-3蛋白的互作网络,共鉴定到24个互作蛋白,发现淀粉合成过程的ADPG焦磷酸化酶、淀粉分支酶、支链淀粉酶,转化酶及丙酮酸磷酸二激酶与14-3-3蛋白存在着紧密的互作关系。 LC-MS/MS/MS分析发现籽粒中14-3-3蛋白存在着丝氨酸和苏氨酸的磷酸化位点,据此认为14-3-3在强弱势籽粒之间的蛋白及磷酸化修饰差异是导致强弱势籽粒淀粉合成差异及对环境产生不同响应机制的一个关键信号调控因子。
     综上所述,本研究发现水稻“金恢809”存在着显著的强弱势籽粒灌浆差异现象,进一步运用比较蛋白组学策略分析了强弱势籽粒灌浆过程中基因的时空表达变化差异,揭示了弱势籽粒灌浆启动及强弱势籽粒灌浆差异形成的蛋白作用及磷酸化信号调控机制,筛选出关键的信号调控因子14-3-3蛋白。最后,依据本研究的结果,提出了改善弱势籽粒灌浆的分子遗传改良及分子生态调控措施。
The asynchronous filling of superior and inferior spikelets is a commonphenomenon in rice (especially the extra-heavy panicles cultivars) and the poorgrain-filling in inferior spikelets limited the high yield potential of rice. Currently,improvement of the grain-filling rate and grain weight in inferior spikelets is one ofthe major tasks to enhance rice yield. The formation of asynchronous filling ofsuperior and inferior spikelets is a complicated ecopisiological process, whichinvolved in multiple gene expression. Although many researches focus on themolecular mechanism of the asynchronous filling, few studies were carried out at theprotein and phosphoprotein level. In order to further understand the molecularphysiology of asynchronous filling of superior and inferior spikelets, we analyzed thechanges of protein expression and phosphorylation in the superior and inferiorspikelets during the grain filling of rice “jinhui809” with the proteomic approaches,including the technology of two-dimensional electrophoresis (2-DE) and Pro-QDiamond phosphoprotein gel stain.
     The morphological analyses showed that rice “jinhui809” has an obviousphenomenon of asynchronous filling of superior and inferior spikelets. The size andgrain weight of superior spikelets increased rapidly at5–20day after flowering (DAF),while that of inferior spikelets hardly increased until15DAF, which indicated thedevelopment of inferior spikelets was stagnant at0-15DAF. The size and grain weighof superior spikelets were better than those of inferior spikelets. In the stagnant stage,the inferior spikelets accumulated high concentrations of soluble carbohydrate,which indicated that the carbohydrate supply didn’t limit the starting of grain-fillingin inferior spikelets. The analyses of grain weigh of superior and inferior spikeletsunder different cultivation measures showed that the grain-filling of inferior spikeletsis more sensitive to the environmental factors than that of superior spikelets. Thesuitable water and fertilizer management was only favorable for the grain-filling ofinferior spikelets in some degree, but could not promote the starting of grain-filling ofinferior spikelets. The results obtained from the present study suggested that the genetic diversity between the superior and inferior spikelets was the major reason forthe poor grain-filling of inferior spikelets.
     To better understand the molecular mechanisms of the starting of inferiorspikelets filling, we took two-dimensional gel-based proteomic andphosphoproteomic approaches to profile the proteins with abundance andphosphorylation state changes in inferior spikelets at stagnant stage and earlygrain-filling stage. A total of86protein spots and38phosphoprotein spots showeddifferential abundance changes by more than1.5-fold, and all of them weresuccessfully identified by the MALDI-TOF/TOF MS and LC-MS/MS. Only6protein spots showed significant changes in both abundance and phosphorylation. Theresults showed that the up-regulated expression of Germin-like protein (GLP) and thephosphorylation change of Alpha-tubulin may favorable to break out the stagnant ofinferior spikelets and promote the cell enlargement, thus leading to the sink capacityformation. The up-regulated expression of Sucrose synthase (SUSase), UDP-glucosepyrophosphorylase(UDPase), ADP glucose pyrophosphorylase (AGPase), Granule-boundstarch synthase(GBSS), Pyruvate orthophosphate dikinase (PPDK) and the phosphorylationchange of UDPase, AGPase, Phosphoglucomutase (PGM),14-3-3protein may help tostart the starch synthesis. At the same time, the Embden-Meyerhof-Parnas pathway (EMP)activity was increased and the Pentose Phosphate Pathway (PPP) activity was decreased,and thereby, more energy and building blocks for cell enlargement and starchsynthesis in the inferior spikelets could be available.
     To gain a better understanding of the molecular mechanisms of the poorgrain-filling of inferior spikelets, comparative proteomic and phosphoproteomicanalysis between the superior and inferior spikelets at different grain-filling stagewere also carried out. A total of156protein spots and54phosphoprotein spotsshowed differential abundance changes between superior and inferior spikelets bymore than1.5-fold, and all of them were successfully identified by the MALDI-TOF/TOF MS and LC-MS/MS. Only16protein spots showed significant changes inboth abundance and phosphorylation. Based on our results, the reasons for the poorgrain-filling of inferior spikelets can be documented as follows. Firstly, in the early grain-filling stage, the lower abundance of starch synthesis related protein in inferiorspikelets compare to the superior spikelets limited the starch accumulated. Secondly,in the middle grain-filling stage, the down-regulate expression of sugar conversionand starch synthesis related protein resulting in slow grain-filling of inferior spikelets.Finally, in the late grain-filling stage, the assimilate supply is the main factor thatleads to poor grain-filling of inferior spikelets. Significant phosphorylation changesbetween superior and inferior spikelets were also found for6proteins involved instarch synthesis, such as PGM, UDPase, AGPase, GBSS, PPDK, and phosphorylase,suggesting that the activity of key enzyme of starch synthesis in inferior spikelets canbe modificated by the phosphorylation. The results also showed that thephosphorylation of the key enzyme of starch synthesis was necessary for theformation of a starch synthesizing protein complex (SSPC) and14-3-3protein mayacts as a scaffold protein holding enzymes of starch synthesis together in aphosphorylation-dependant SSPC. In addition, down-regulated expression of theenzyme proteins related to EMP, Tricarboxylicacidcycle (TCA) and alcohol decreased thecarbon flux in inferior spikelets during the grain-filling stage, thus leading less energyand building blocks for cell enlargement and starch synthesis in the inferior spikeletscompared to the superior spikelets. The author also found that low protein expressionof Translationally controlled tumor protein (TCTP)and tubulin, phosphorylation change ofalpha-tubulin, and early embryogenesis protein caused the low cell division rate in inferiorspikelets.
     According to the results of comparative proteomic analysis,7key proteinsrelated to the starting of the inferior spikelets and9key proteins related to the poorgrain-filling of inferior spikelets were selected. The key proteins in the superior andinferior spikelets exhibited different temporal and spatial expression patterns, whichcaused significant differences in grain-filling at different spikelet positions on thepanicle. Among all of the key proteins,14-3-3protein is considered to be an importantregulatory protein for the poor grain-filling of inferior spikeletss. Then, the14-3-3protein was over-expressed, immobilized and used to affinity purify14-3-3bindingproteins from rice spikelets. These proteins were fractionated by PAGE and identified by LC-MS/MS. In total,2414-3-3binding proteins were identified. These proteinsfell into5functional categories. The largest category was for carbohydratemetabolism, including enzymes for starch synthesis and modification (e.g. AGPase,Starch branching enzyme, Pullulanase, Invertase and PPDK). In the present study, twophosphorylation sites at the serine and threonine residue of14-3-3protein wereidentified by the LC-MS/MS/MS. This work illustrates the starch synthesis in which14-3-3prtoein may be involved, and augments the different expression andphosphorylation changes in superior and inferior spikelets, which demonstrated thekey roles of14-3-3protein in asynchronous filling of superior and inferior spikelets.
     In conclusion, the present field experiments showed that rice “jinhui809” hasobvious asynchronous filling of superior and inferior spikelets. The comparativeproteomic and phosphoproteome analyses further revealed the changes of proteinexpression and phosphorylation in the stagnant stage of inferior spikelets and thegrain-filling stage of inferior spikelets compared to the superior spikelets. Thefindings explained the asynchronous filling properties of superior and inferiorspikelets which were attributed to differential expression of proteome level intemporal and space. In addition, one of the important regulatory protein called as14-3-3protein was selected and its function was studied by the affinitychromatography technology. Finally, according to the present results, the authorproposed two effective ways for molecular genetic manipulations and molecularecological regulations to enhance the grain-filling of inferior spikelets.
引文
1. Khush G S. What it will take to feed5.0billion rice consumers in2030. Plant MolecularBiology,2005,59(1):1-6
    2. Virk P, Khush G, Peng S. Breeding to enhance yield potential of rice at IRRI: the ideotypeapproach. International Rice Research Notes,2004,29(1):5-9
    3. Faostat. Production statistics. http://faostatfaoorg/(accessed1May2010),2010
    4. Kato T, Takeda K. Associations among characters related to yield sink capacity inspace-planted rice. Crop Science,1996,36(5):1135-1139
    5. Yang J, Zhang J. Grain-filling problem in ‘super’ rice. Journal of Experimental Botany,2010,61(1):1-5
    6.杨建昌.水稻弱势粒灌浆机理与调控途径.作物学报,2010,36(12):2011-2019
    7. Singh B, Jenner C. Association between concentration of organic nutrients in the grain,endosperm cell number and grain dry weight within the ear of wheat. Functional Plant Biology,1982,9(1):83-95
    8. Jiang D, Yu Z, Li Y. Dynamic changes of enzyme activities involving in starch synthesis insuperior and inferior grains of high-yield winter wheat. Scientia Agricultura Sinica,2002,35(4):378-383
    9. Ou-Lee T-M, Setter T L. Enzyme activities of starch and sucrose pathways and growth ofapical and basal maize kernels. Plant Physiology,1985,79(3):848-851
    10.林文雄,李忠,陈军,张志兴,陈婷.水稻籽粒灌浆的发育遗传与分子生态特性研究.中国生态农业学报,2011,19(6):1237-1242
    11. Ishimaru T, Matsuda T, Ohsugi R, Yamagishi T. Morphological development of ricecaryopses located at the different positions in a panicle from early to middle stage of grain filling.Functional Plant Biology,2003,30(11):1139-1149
    12.林文雄,吴志强,梁义元.气候条件对杂交水稻籽粒灌浆的影响.中国农业气象,1992,13(2):4-8
    13.黄锦文,梁康迳.不同类型水稻籽粒灌浆过程内源激素含量变化的研究.中国生态农业学报,2003,11(2):11-13
    14. Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R,Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes andtheir relationship to grain filling in rice (Oryza sativa L.): Comparison of caryopses located atdifferent positions in a panicle. Plant and Cell Physiology,2005,46(4):620-628
    15.黄升谋,邹应斌,刘春林.杂交水稻两优培九强、弱势粒结实生理研究.作物学报,2005,31(1):102-107
    16. Hoshikawa K. Morphogenesis of endosperm tissue in rice. Japan Agricultural ResearchQuarterly,1973,7(3):153-159
    17.靳德明.杂交水稻强弱势颖花异步灌浆结实特性及其生理机制研究.华中农业大学,2002
    18.杨建昌,刘立军,王志琴,郎有忠,朱庆森.稻穗颖花开花时间对胚乳发育的影响及其生理机制.中国农业科学,1999,32(3):44-51
    19. Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis development of inferior and superiorspikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany,2006,57(1):149-160
    20. Yoshida S. Physiological aspects of grain yield. Annual Review of Plant Physiology,1972,23(1):437-464
    21. Sikder H, Gupta D. Physiology of grain in rice. Indian Agriculture,1976,20(1):133-141
    22. Wang Y. Effectiveness of supplied nitrogen at the primordial panicle stage on ricecharacteristics and yields. International Rice Research News Letter,1981,6(4):23-24
    23. Murty P, Murty K. Spikelet sterility in relation to nitrogen and carbohydrate contents in rice.Indian Journal of Plant Physiology,1982,25(1):40-48
    24.王天铎.水稻籽粒灌浆过程中粒重分布的动态研究.植物学报,1962,10(2):113-119
    25.王天铎.水稻籽粒灌浆过程中粒重分布的动态研究Ⅱ-籽粒灌浆能力的不可逆变化.植物生理学报,1964,1(1):9-13
    26.朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-192
    27.邓仲篪,周鹏,陈翠莲.籼粳亚种杂交组合的结实率与光合产物供给水平及转运效率间的关系.华中农业大学学报,1993,12(4):333-338
    28.张志兴,李忠,陈军,李奇松,陈龙怀,陈鸿飞,黄锦文,林文雄.氮肥运筹对大穗型水稻品种金恢809灌浆期叶片蛋白质表达的影响.作物学报,2011,37(5):842-854
    29.马均,明东风,马文波,许凤英.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究.中国农业科学,2005,38(2):290-296
    30. Kato T. Effect of spikelet removal on the grain filling of Akenohoshi, a rice cultivar withnumerous spikelets in a panicle. The Journal of Agricultural Science,2004,142(2):177-181
    31. Mohapatra P K, Naik P K, Patel R. Ethylene inhibitors improve dry matter partitioning anddevelopment of late flowering spikelets on rice panicles. Functional Plant Biology,2000,27(4):311-323
    32. Tang T, Xie H, Wang Y, Lu B, Liang J. The effect of sucrose and abscisic acid interaction onsucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). Journal ofExperimental Botany,2009,60(9):2641-2652
    33. Zhu G, Ye N, Yang J, Peng X, Zhang J. Regulation of expression of starch synthesis genes byethylene and ABA in relation to the development of rice inferior and superior spikelets. Journal ofExperimental Botany,2011,11(62):3907-3916
    34.黄升谋,邹应斌,李淑清.两优培九稻穗枝梗维管束特征及生理特性.湖南农业大学学报:自然科学版,2004,30(1):1-3
    35.郭玉春,林文雄,梁义元,余高镜,陈鸿飞.新株型水稻物质生产与产量形成的生理生态I新株型水稻物质生产与灌浆特性.福建农业大学学报,2001,30(1):16-21
    36.刘凯,张耗,张慎凤,王志琴,杨建昌.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276
    37.杨建昌,彭少兵,顾世梁, VISPERAS R,朱庆森.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27(2):157-164
    38.李木英,石庆华,潘晓华.影响两系杂交稻结实期茎鞘贮藏碳水化合物转运的生理因素研究.1998,20(3):296-302
    39.王志琴,叶玉秀,杨建昌,袁莉民,王学明,朱庆森.水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节.作物学报,2004,30(7):634-643
    40.唐瑭,谢红,吕冰,梁建生.植物激素对杂交稻籽粒灌浆及蔗糖合酶活性的影响.中国水稻科学,2011,25(2):182-188
    41. Zhang H, Li H W, Yuan L M, Wang Z Q, Yang J C, Zhang J H. Post-anthesis alternate wettingand moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion ininferior spikelets of rice. Journal of Experimental Botany,2012,63(1):215-227
    42.杨建昌,苏宝林. ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):341-348
    43.陶龙兴,王熹.内源IAA对杂交稻强、弱势粒灌浆增重的影响.中国水稻科学,2003,17(2):149-155
    44.黄升谋,邹应斌.赤霉素和脱落酸对水稻籽粒灌浆及结实的影响.安徽农业大学学报,2006,33(3):293-296
    45. Yang J, Zhang J, Wang Z, Zhu Q. Hormones in the grains in relation to sink strength andpostanthesis development of spikelets in rice. Plant Growth Regulation,2003,41(3):185-195
    46. Zhang Z, Chen J, Lin S, Li Z, Cheng R, Fang C, Chen H, Lin W. Proteomicand phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L.inferior spikelets. Plant Science,2012,185-186:259-273
    47. Javid M G, Sorooshzadeh A, Sanavy S A M M, Allahdadi I, Moradi F. Effects of theexogenous application of auxin and cytokinin on carbohydrate accumulation in grains of riceunder salt stress. Plant Growth Regulation,2011,65(2):305-313
    48. Spollen W G, Lenoble M E, Samuels T D, Bernstein N, Sharp R E. Abscisic acidaccumulation maintains maize primary root elongation at low water potentials by restrictingethylene production. Plant Physiology,2000,122(3):967-976
    49. Zhu T, Budworth P, Chen W Q, Provart N, Chang H S, Guimil S, Su W P, Estes B, Zou G Z,Wang X. Transcriptional control of nutrient partitioning during rice grain-filling. PlantBiotechnology Journal,2003,1(1):59-70
    50. Teo C J, Thuc L V, Yeoh K A, Chan W S, Chivukula S V, Namasivayam P, Ho C L.Profiling the differentially expressed genes in two rice varieties during rapid grain-filling stages.Acta Physiol Plant,2011,33(6):2259-2268
    51. Peng T, Lv Q, Zhang J, Li J Z, Du Y X, Zhao Q Z. Differential expression of the microRNAsin superior and inferior spikelets in rice (Oryza sativa.L). Journal of Experimental Botany,2011,62(14):4943-4954
    52. ünlü M, Morgan M E, Minden J S. Difference gel electrophoresis. A single gel method fordetecting changes in protein extracts. Electrophoresis,1997,18(11):2071-2077
    53. Zhang C, Yin Y, Zhang A, Lu Q, Wen X, Zhu Z, Zhang L, Lu C. Comparative proteomicstudy reveals dynamic proteome changes between superhybrid rice LYP9and its parents atdifferent developmental stages. Journal of Plant Physiology,2012,169(4):387-398
    54. Chen F, Yuan Y, Li Q, He Z. Proteomic analysis of rice plasma membrane reveals proteinsinvolved in early defense response to bacterial blight. Proteomics,2007,7(9):1529-1539
    55. Lee K, Bae D W, Kim S H, Han H J, Liu X, Park H C, Lim C O, Lee S Y, Chung W S.Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium.Journal of Plant Physiology,2010,167(3):161-168
    56. Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Hosseini Salekdeh G. Proteomicsreveals new salt responsive proteins associated with rice plasma membrane. BioscienceBiotechnology and Biochemistry,2007,71(9):2144-2154
    57. Torabi S, Wissuwa M, Heidari M, Naghavi M R, Gilany K, Hajirezaei M R, Omidi M,Yazdi‐Samadi B, Ismail A M, Salekdeh G H. A comparative proteome approach to decipher themechanism of rice adaptation to phosphorous deficiency. Proteomics,2009,9(1):159-170
    58. Shi F, Takasaki H, Komatsu S. Quantitative analysis of auxin-regulated proteins from basalpart of leaf sheaths in rice by two-dimensional difference gel electrophoresis. Phytochemistry,2008,69(3):637-646
    59. Tanaka N, Konishi H, Khan M M K, Komatsu S. Proteome analysis of rice tissues bytwo-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins.Molecular Genetics and Genomics,2004,270(6):485-496
    60. Dai S, Li L, Chen T, Chong K, Xue Y, Wang T. Proteomic analyses of Oryza sativa maturepollen reveal novel proteins associated with pollen germination and tube growth. Proteomics,2006,6(8):2504-2529
    61. Li H X, Chen Z, Hu M X, Wang Z M, Hua H, Yin C X, Zeng H L. Different effects of nightversus day high temperature on rice quality and accumulation profiling of rice grain proteinsduring grain filling. Plant Cell Reports,2011,30(9):1641-1659
    62. Xu S B, Li T, Deng Z Y, Chong K, Xue Y, Wang T. Dynamic Proteomic Analysis Reveals aSwitch Between Central Carbon Metabolism and Alcoholic Fermentation in Oryza sativa FillingGrains1. Plantphysiol,2008,48(2):908-925
    63.张志兴,李忠,陈军,李兆伟,黄锦文,陈婷,方长旬,林文雄.水稻籽粒灌浆过程中蛋白质表达特性及其对氮肥运筹的响应.生态学报,2012,32(10):3209-3224
    64. Zhang Z, Chen J, Li Z, Chen H, Fang C, Huang J, Lin W. Differential proteomicexpressions between superior and inferior spikelets of rice in response to varied nitrogentreatments. Austrialian Journal of Crop Science,2012,6(2):316-325
    65. Lin J, Xie Z, Zhu H, Qian J. Understanding protein phosphorylation on a systems level.Briefings in Functional Genomics,2010,9(1):32-42
    66. Manning G, Plowman G D, Hunter T, Sudarsanam S. Evolution of protein kinase signalingfrom yeast to man. Trends in Biochemical Sciences,2002,27(10):514-520
    67. Ficarro S B, Mccleland M L, Stukenberg P T, Burke D J, Ross M M, Shabanowitz J, Hunt DF, White F M. Phosphoproteome analysis by mass spectrometry and its application toSaccharomyces cerevisiae. Nature Biotechnology,2002,20(3):301-305
    68. Cohen P. The regulation of protein function by multisite phosphorylation–a25year update.Trends in Biochemical Sciences,2000,25(12):596-601
    69. Agrawal G K, Thelen J J. Large scale identification and quantitative profiling ofphosphoproteins expressed during seed filling in oilseed rape. Molecular&Cellular Proteomics,2006,5(11):2044-2059
    70. Tan F, Li G, Chitteti B R, Peng Z. Proteome and phosphoproteome analysis of chromatinassociated proteins in rice (Oryza sativa.L). Proteomics,2007,7(24):4511-4527
    71. Heazlewood J L, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze W X.PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specificphosphorylation site predictor. Nucleic Acids Research,2008,36(1):1015-1121
    72. Grimaud F, Rogniaux H, James M G, Myers A M, Planchot V. Proteome andphosphoproteome analysis of starch granule-associated proteins from normal maize and mutantsaffected in starch biosynthesis. Journal of Experimental Botany,2008,59(12):3395-3406
    73. Tetlow I J, Wait R, Lu Z, Akkasaeng R, Bowsher C G, Esposito S, Kosar-Hashemi B, MorellM K, Emes M J. Protein phosphorylation in amyloplasts regulates starch branching enzymeactivity and protein–protein interactions. The Plant Cell Online,2004,16(3):694-708
    74. Hardin S C, Winter H, Huber S C. Phosphorylation of the amino terminus of maize sucrosesynthase in relation to membrane association and enzyme activity. Plant Physiology,2004,134(4):1427-1438
    75. Yang J C, Zhang J H. Grain-filling problem in 'super' rice. Journal of Experimental Botany,2010,61(1):1-4
    76. Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W,Baginsky S. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinasesubstrates and phosphorylation networks. Plant Physiology,2009,150(2):889-903
    77. Meyer L J, Gao J, Xu D, Thelen J J. Phosphoproteomic analysis of seed maturation inArabidopsis, rapeseed, and soybean. Plant Physiol,2012,159(22440515):517-528
    78. Nielsen T H, Wischmann B, Enevoldsen K, Moller B L. Starch phosphorylation in potatotubers proceeds concurrently with de novo biosynthesis of starch. Plant Physiologyogy,1994,105(1):111-117
    79. Gururaj A, Barnes C J, Vadlamudi R K, Kumar R. Regulation of phosphoglucomutase1phosphorylation and activity by a signaling kinase. Oncogene,2004,23(49):8118-8127
    80. Thitisaksakul M, Jim Nez R C, Arias M C, Beckles D M. Effects of environmental factors oncereal starch biosynthesis and composition. Journal of Cereal Science,2012,56(1):67-80
    81. Thompson E, Lane B. Relation of protein synthesis in imbibing wheat embryos to thecell-free translational capacities of bulk mRNA from dry and imbibing embryos. Journal ofBiological Chemistry,1980,255(12):5965-5970
    82. Wojtaszek P, Stobiecki M, Bolwell G P. Changes in the composition of exocellular proteins ofsuspension-cultured Lupinus albus cells in response to fungal elicitors or CuCl2. Journal ofExperimental Botany,1997,48(12):2015-2021
    83. Membré N, Berna A, Neutelings G, David A, David H, Staiger D, Vásquez J S, Raynal M,Delseny M, Bernier F. cDNA sequence, genomic organization and differential expression of threeArabidopsis genes for germin/oxalate oxidase-like proteins. Plant Molecular Biology,1997,35(4):459-469
    84. Ohmiya A, Tanaka Y, Kadowaki K-I, Hayashi T. Cloning of genes encoding auxin-bindingproteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins.Plant and Cell Physiology,1998,39(5):492-499
    85. El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S. Regulation of two germin-like proteingenes during plum fruit development. Journal of Experimental Botany,2010,61(6):1761-1770
    86. Schoonheim P J, Veiga H, Da Costa Pereira D, Friso G, Van Wijk K J, De Boer A H. Acomprehensive analysis of the14-3-3interactome in barley leaves using a complementaryproteomics and two-hybrid approach. Plant Physiology,2007,143(2):670-683
    87. Mackintosh C. Dynamic interactions between14-3-3proteins and phosphoproteins regulatediverse cellular processes. Biochemical Journal,2004,381(Pt2):329-342
    88. Comparot S, Lingiah G, Martin T. Function and specificity of14‐3‐3proteins in theregulation of carbohydrate and nitrogen metabolism. Journal of Experimental Botany,2003,54(382):595-604
    89. Hajduch M, Ganapathy A, Stein J W, Thelen J J. A systematic proteomic study of seed fillingin soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles,and an interactive proteome database. Plant Physiology,2005,137(4):1397-1419
    90. Ferl R J.14‐3‐3proteins: regulation of signal‐induced events. PhysiologiaPlantarum,2004,120(2):173-178
    91. Schoonheim P J, Sinnige M P, Casaretto J A, Veiga H, Bunney T D, Quatrano R S, De Boer AH.14-3-3adaptor proteins are intermediates in ABA signal transduction during barley seedgermination. The Plant Journal,2007,49(2):289-301
    92. Mayer U, Jürgens G. Microtubule cytoskeleton: a track record. Current Opinion in PlantBiology,2002,5(6):494-501
    93. Vassileva V N, Fujii Y, Ridge R W. Microtubule dynamics in plants. Plant Biotechnology,2005,22(3):171-178
    94. Hennen-Bierwagen T A, Lin Q, Grimaud F, Planchot V, Keeling P L, James M G, Myers A M.Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in highmolecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts.Plant Physiol,2009,149(3):1541-1559
    95. Méchin V, Thévenot C, Le Guilloux M, Prioul J L, Damerval C. Developmental analysis ofmaize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. PlantPhysiology,2007,143(3):1203-1219
    96. Vensel W H, Tanaka C K, Cai N, Wong J H, Buchanan B B, Hurkman W J. Developmentalchanges in the metabolic protein profiles of wheat endosperm. Proteomics,2005,5(6):1594-1611
    97. Blennow A, Nielsen T H, Baunsgaard L, Mikkelsen R, Engelsen S B. Starch phosphorylation:a new front line in starch research. Trends in Plant Science,2002,7(10):445-450
    98. Stahl Y, Coates S, Bryce J H, Morris P C. Antisense downregulation of the barley limitdextrinase inhibitor modulates starch granule size distribution, starch composition andamylopectin structure. The Plant Journal,2004,39(4):599-611
    99. Dinges J R, Colleoni C, James M G, Myers A M. Mutational analysis of the pullulanase-typedebranching enzyme of maize indicates multiple functions in starch metabolism. The Plant CellOnline,2003,15(3):666-680
    100. Liu F, Makhmoudova A, Lee E A, Wait R, Emes M J, Tetlow I J. The amylose extendermutant of maize conditions novel protein–protein interactions between starch biosyntheticenzymes in amyloplasts. Journal of Experimental Botany,2009,60(15):4423-4440
    101. Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C. Combined networks regulatingseed maturation. Trends in Plant Science,2007,12(7):294-300
    102. Fernie A R, Carrari F, Sweetlove L J. Respiratory metabolism: glycolysis, the TCA cycle andmitochondrial electron transport. Current Opinion in Plant Biology,2004,7(3):254-261
    103. Meyer L J, Gao J, Xu D, Thelen J J. Phosphoproteomic analysis of seed maturation inArabidopsis, rapeseed, and soybean. Plant Physiology,2012,159(1):517-528
    104. Cooper J A, Esch F S, Taylor S, Hunter T. Phosphorylation sites in enolase and lactatedehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. Journal of BiologicalChemistry,1984,259(12):7835-7841
    105. Kim Y-M, Han Y-J, Hwang O-J, Lee S-S, Shin A-Y, Kim S Y, Kim J-I. Overexpression ofArabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerancewith rapid ABA-induced stomatal closure. Molecules and Cells,2012,33(6):617-626
    106. Geigenberger P. Response of plant metabolism to too little oxygen. Current Opinion in PlantBiology,2003,6(3):247-256
    107. Berkowitz O, Jost R, Pollmann S, Masle J. Characterization of TCTP, the translationallycontrolled tumor protein, from Arabidopsis thaliana. The Plant Cell Online,2008,20(12):3430-3447
    108. Kim Y M, Han Y J, Hwang O J, Lee S S, Shin A Y, Kim S Y, Kim J I. Overexpression ofArabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerancewith rapid ABA-induced stomatal closure. Molecules and Cells,2012,33(6):617-626
    109. Kim H J, Triplett B A. Cotton fiber germin-like protein. I. Molecular cloning and geneexpression. Planta,2004,218(4):516-524
    110. Alexander R D, Morris P C. A proteomic analysis of14-3-3binding proteins from developingbarley grains. Proteomics,2006,6(6):1886-1896
    111. Sehnke P C, Chung H-J, Wu K, Ferl R J. Regulation of starch accumulation bygranule-associated plant14-3-3proteins. Proceedings of the National Academy of Sciences,2001,98(2):765-770
    112. Yaffe M B, Elia A. Phosphoserine/threonine-binding domains. Current Opinion in CellBiology,2001,13(2):131-138
    113. Ferl R J.14-3-3proteins and signal transduction. Annual Review of Plant Biology,1996,47(1):49-73
    114. Lima L, Seabra A, Melo P, Cullimore J, Carvalho H. Post-translational regulation of cytosolicglutamine synthetase of Medicago truncatula. Journal of Experimental Botany,2006,57(11):2751-2761
    115. Jarillo J A, Capel J, Leyva A, Martínez-Zapater J M, Salinas J. Two relatedlow-temperature-inducible genes of Arabidopsis encode proteins showing high homology to14-3-3proteins, a family of putative kinase regulators. Plant Molecular Biology,1994,25(4):693-704
    116. Yan J, He C, Wang J, Mao Z, Holaday S A, Allen R D, Zhang H. Overexpression of theArabidopsis14-3-3protein GF14λ in cotton leads to a “stay-green” phenotype and improves stresstolerance under moderate drought conditions. Plant and Cell Physiology,2004,45(8):1007-1014
    117. Chen Z, Fu H, Liu D, Chang P F L, Narasimhan M, Ferl R, Hasegawa P M, Bressan R A. ANaCl‐regulated plant gene encoding a brain protein homolog that activates ADPribosyltransferase and inhibits protein kinase C. The Plant Journal,1994,6(5):729-740
    118. Yuan H E. The relationship between the glutamine synthetase in grain of rice and the protein.Bulletin of Acadencia Sinica,1990,31(2):149-161
    119.宋健民,戴双,李豪圣,刘爱峰,程敦公,楚秀生, Tetlow I J, Michael J E.小麦胚乳14-3-3蛋白的表达及其淀粉体淀粉合成酶的互作.作物学报,2009,35(008):1445-1450
    120.武翠,邵国军,吕文彦,马莲菊,崔鑫福,曹萍,侯秀英.不同发育时期水稻强,弱势粒灌浆速率的遗传分析.中国农业科学,2007,40(6):1135-1141
    121.崔鑫福,马莲菊,吕文彦,曹萍,朱彩云,邵国军,武翠.北方粳稻籽粒灌浆特性及其蔗糖代谢酶的活性研究.吉林农业大学学报,2005,27(1):15-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700