β-catenin通过钠/钾ATP酶的α2亚单位调节骨骼肌细胞的静息膜电位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     β-catenin胞浆蛋白是Wnt经典信号通路的一个重要下游分子,它在各系统组织中作用广泛β-catenin已经被证实在神经肌肉接头(neuromuscular junction, NMJ)形成中起着重要作用。而骨骼肌而并非突触前神经元的B-catenin在NMJ中作用尤为重要。我们之前的研究已经表明:特异性地敲除小鼠骨骼肌细胞中的B-catenin (HSA-β-cat-/-)会引起出生后小鼠的早期死亡。目前在关于骨骼肌B-catenin缺失的研究中,主要认为这与骨骼肌B-catenin影响NMJ发育相关,为了更好地理解其中蕴含的机制,我们获取HSA-β-cat-/-敲除小鼠,检测其和同窝对照小鼠骨骼肌细胞的电生理差异,并结合体外用靶向β-catenin的小片段干扰RNAs (β-catenin siRNAs)转染培养的小鼠成肌纤维细胞(C2C12)的方法进一步证实这种差异,从而来探讨骨骼肌β-catenin缺失后小鼠致死的可能原因和引起RMP去极化的可能机制,并进一步为β-catenin在NMJ发育中的作用研究提供补充证据和新的思路。
     方法:
     1.实验分组:1)HSA-B-cat-/-敲除PO小鼠组和同窝β-catloxp/loxpP0小鼠对照组,各4-6只;
     2)分别转染了β-catenin siRNA259s β-catenin siRNA577、β-catenin siRNA1312的三组C2C12细胞作为实验组和转染了scrambled siRNA的C2C12细胞作为对照组;
     2.实验方法:杂交小鼠获取敲除组和实验组小鼠,分别对各组小鼠膈肌、腓肠肌、趾长伸肌进行细胞内记录;转染C2C12细胞,对各组进行全细胞记录;Western blot法检测各组转染后C2C12细胞和各组小鼠肌肉中钠/钾ATP酶(Na,K-ATPase)a2亚单位(a2NKA)、Na,K-ATPase的a1亚单位(alNKA)、Kv3.4蛋白的表达;实时荧光定量逆转录-PCR检测两组小鼠肌肉中a2NKAmRNA的水平。
     结果:
     1.我们发现敲除组小鼠和对照组小鼠相比,β-catenin的缺失会使膈肌,腓肠肌,趾长伸肌的骨骼肌细胞静息膜电位(RMP)发生去极化;
     2.被转染了β-catenin siRNA的C2C12细胞与对照组细胞相比,RMP同样发生了去极化;
     3.无论是体内敲除还是体外敲低骨骼肌细胞的β-catenin都会使钠a2NKA的表达水平减少,而相应细胞中a1NKA和Kv3.4蛋白的表达都没有减少;
     4.接下来,我们进一步验证了小鼠骨骼肌β-catenin的缺失引起了转录水平上a2NKA mRNA的减少。
     结论:
     1.骨骼肌β-catenin对NMJ的突触后骨骼肌细胞RMP的维持起重要作用;
     2.骨骼肌细胞β-catenin的缺失引起a2NKA表达减少;
     3.揭示了β-catenin通过a2NKA调节RMP从而影响骨骼肌正常功能,这一可能机制。
Objective:
     β-catenin cytoplasmic protein is a key downstream component of the canonical (β-catenin-dependent) Wnt signaling pathway, and its function is very extensive in all tissues and systems. Muscle β-catenin has been shown to play a role in the formation of the neuromuscular junction (NMJ). Our previous studies showed that muscle-specific conditional knockout of B-catenin (HSA-β-cat-/-) results in early postnatal death in mice. Recently, the previous studies considered that early postnatal death of skeletal muscle-specific B-catenin-deficient mice mainly involved in development of NMJ. To understand the underlying mechanisms, we investigated the electrophysiological properties of muscle cells from HSA-B-cat-/-and the control mice. Furthermore, to confirm the difference above, we combined the method in vitro by transfecting a primary line of mouse myoblasts (C2C12) with small-interfering RNAs targeting B-catenin. We explored a possible cause underlying the early death and a possible mechanism underlying the depolarized RMP in the absence of muscle B-catenin, and provided additional evidence supporting a role for B-catenin in the development of the NMJs.
     Methods:
     1. Groups:1) HSA-B-caf-/-P0mice group and6-catloxp/loxp P0mice control group, n=3-6mice per group.
     2) C2C12cells transfected with β-catenin siRNA259, β-catenin siRNA577, B-catenin siRNA1312and scrambled siRNA (control);
     2. Research methods: We generated the β-catenin mutant mice and control mice, and investigated the electrophysiological properties of muscle cells from the diaphragm, gastrocnemius, and extensor digitorum longus muscles by intracellular recording; We transfected C2C12cells and detected the RMP by whole-cell clamp recording; We detected the expression levels of the a2subunit of sodium/potassium adenosine triphosphatase (a2NKA), the a1subunit of sodium/potassium adenosine triphosphatase (a1NKA), and Kv3.4by Western blotting; We investigated the a2NKA mRNA level of muscle cells from the two group mice by real-time quantitative reverse-transcription PCR.
     Results:
     1. We found that in the absence of muscle B-catenin, the resting membrane potential (RMP) depolarized in muscle cells from the diaphragm, gastrocnemius, and extensor digitorum longus muscles;
     2. Furthermore, C2C12cells transfected with small-interfering RNAs targeting B-catenin, the RMP depolarized as well;
     3. We found that the expression levels of the a2NKA were reduced by B-catenin knockdown in vitro or deletion in vivo;
     4. We further confirmed that a deletion of B-catenin affects the transcriptional activity of a2NKA (mRNA).
     Conclusion:
     1. Skeletal muscle B-catenin is crucial for the maintenance of the RMP of postsynaptic skeletal muscle cells of the NMJ;
     2. Skeletal muscle cells lacking B-catenin induces a decreased expression of a2NKA;
     3. We suggested a likely mechanism by which β-catenin regulates the RMP and affects the normal function of skeletal muscle.
引文
[1]. Nishimura W, Yao I, Iida J, et al. Interaction of synaptic scaffolding molecule and Beta-catenin. J Neurosci 2002; 22:p. 757-65.
    [2]. Molenaar M, van de Wetering M, Oosterwegel M, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86: p. 391-9.
    [3]. Hecht A, Vleminckx K, Stemmler MP, et al. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. Embo J 2000; 19:p. 1839-50.
    [4]. Nelson WJ, and Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303: p. 1483-7.
    [5]. Varallo VM, Gan BS, Seney S, et al. Beta-catenin expression in Dupuytren's disease: potential role for cell-matrix interactions in modulating beta-catenin levels in vivo and in vitro. Oncogene 2003; 22: p. 3680-4.
    [6]. Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162: p. 1495-502.
    [7]. Batlle E, Bacani J, Begthel H, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435: p.1126-30.
    [8]. Chan EF, Gat U, McNiff JM, et al. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 1999; 21:p. 410-3.
    [9]. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351:p. 657-67.
    [10]. Ciani L, and Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005; 6: p.351-62.
    [11]. Wodarz A, and Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14: p.59-88.
    [12]. Burden SJ. Wnts as retrograde signals for axon and growth cone differentiation. Cell 2000; 100:p. 495-7.
    [13]. Yoshikawa S, McKinnon RD, Kokel M, et al. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 2003; 422: p.583-8.
    [14]. Zou Y. Wnt signaling in axon guidance. Trends Neurosci 2004; 27:p.528-32.
    [15]. Lyuksyutova AI, Lu CC, Milanesio N, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 2003; 302: p.1984-8.
    [16]. Salinas PC. Synaptogenesis:Wnt and TGF-beta take centre stage. Curr Biol 2003; 13:p. R60-2.
    [17]. Zhao C, Aviles C, Abel RA, et al. Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development 2005; 132: p. 2917-27.
    [18]. Singh KK, Ge X, Mao Y, et al. Dixdcl is a critical regulator of DISCI and embryonic cortical development. Neuron 2010; 67: p. 33-48.
    [19]. Lovestone S, Killick R, Di Forti M, et al. Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci 2007; 30: p. 142-9.
    [20]. De Ferrari GV, and Inestrosa NC. Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 2000; 33: p. 1-12.
    [21]. Mudher A, and Lovestone S. Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci 2002; 25: p. 22-6.
    [22]. Caricasole A, Copani A, Caruso A, et al. The Wnt pathway, cell-cycle activation and beta-amyloid: novel therapeutic strategies in Alzheimer's disease? Trends Pharmacol Sci 2003; 24: p. 233-8.
    [23]. Sanes JR, and Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2001; 2: p. 791-805.
    [24]. Wu H, Xiong WC, and Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 2010; 137: p. 1017-33.
    [25]. DeChiara TM, Bowen DC, Valenzuela DM, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 1996; 85: p. 501-12.
    [26]. Gautam M, Noakes PG, Moscoso L, et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 1996; 85: p. 525-35.
    [27]. McMahan UJ. The agrin hypothesis. Cold Spring Harb Symp Quant Biol 1990; 55:p.407-18.
    [28]. Zong Y, Zhang B, Gu S, et al. Structural basis of agrin-LRP4-MuSK signaling. Genes Dev 2012; 26: p. 247-58.
    [29]. Keller-Peck CR, Feng G, Sanes JR, et al. Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. J Neurosci 2001; 21: p. 6136-46.
    [30]. Lu B, and Je HS. Neurotrophic regulation of the development and function of the neuromuscular synapses. J Neurocytol 2003; 32: p. 931-41.
    [31]. Nguyen QT, Parsadanian AS, Snider WD, et al. Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science 1998; 279: p. 1725-9.
    [32]. Oppenheim RW, Houenou LJ, Johnson JE, et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 1995; 373: p. 344-6.
    [33]. Wang J, Ruan NJ, Qian L, et al. Wnt/beta-catenin signaling suppresses Rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 2008; 283: p. 21668-75.
    [34]. Zhang B, Luo S, Dong XP, et al. Beta-catenin regulates acetylcholine receptor clustering in muscle cells through interaction with rapsyn. J Neurosci 2007; 27: p. 3968-73.
    [35]. Li XM, Dong XP, Luo SW, et al. Retrograde regulation of motoneuron differentiation by muscle beta-catenin. Nat Neurosci 2008; 11: p. 262-8.
    [36]. Wu H, Lu Y, Barik A, et al. beta-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 2012; 139: p. 2392-404.
    [37]. Eakle KA, Lyu RM, and Farley RA. The influence of beta subunit structure on the interaction of Na+/K(+)-ATPase complexes with Na+. A chimeric beta subunit reduces the Na+ dependence of phosphoenzyme formation from ATP. J Biol Chem 1995; 270: p. 13937-47.
    [38]. Lingrel JB, and Kuntzweiler T. Na+,K(+)-ATPase. J Biol Chem 1994; 269: p. 19659-62.
    [39]. Shull GE, Schwartz A, and Lingrel JB. Amino-acid sequence of the catalytic subunit of the (Na++ K+)ATPase deduced from a complementary DNA. Nature 1985; 316: p. 691-5.
    [40]. Shull GE, Greeb J, and Lingrel JB. Molecular cloning of three distinct forms of the Na+,K+-ATPase alpha-subunit from rat brain. Biochemistry 1986; 25:p. 8125-32.
    [41]. Sverdlov ED, Monastyrskaya GS, Broude NE, et al. The family of human Na+,K+-ATPase genes. No less than five genes and/or pseudogenes related to the alpha-subunit. FEBS Lett 1987; 217: p .275-8.
    [42]. Heiny JA, Kravtsova VV, Mandel F, et al. The nicotinic acetylcholine receptor and the Na,K-ATPase alpha2 isoform interact to regulate membrane electrogenesis in skeletal muscle. J Biol Chem 2010; 285: p. 28614-26.
    [43]. Abbott GW, Butler MH, Bendahhou S, et al. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 2001; 104: p. 217-31.
    [44]. Sopjani M, Alesutan I, Wilmes J, et al. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by beta-catenin. Biochem Biophys Res Commun 2010; 402:p. 467-70.
    [45]. Rexhepaj R, Rotte A, Gu S, et al. Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport. Pflugers Arch 2011; 461: p. 527-36.
    [46]. Brault V, Moore R, Kutsch S, et al. Inactivation of the beta-catenin gene by Wntl-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 2001; 128: p. 1253-64.
    [47]. Miniou P, Tiziano D, Frugier T, et al. Gene targeting restricted to mouse striated muscle lineage. Nucleic Acids Res 1999; 27:p. e27.
    [48]. Schwander M, Leu M, Stumm M, et al. Betal integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 2003; 4: p. 673-85.
    [49]. Takahashi M, Kubo T, Mizoguchi A, et al. Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors. EMBO Rep 2002; 3:p. 674-81.
    [50]. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: p. 638-42.
    [51]. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: p. 469-80.
    [52]. Salinas PC, and Zou Y. Wnt signaling in neural circuit assembly. Annu Rev Neurosci 2008; 31: p. 339-58.
    [53]. Budnik V, and Salinas PC. Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 2011; 21: p. 151-9.
    [54]. Wang J, and Luo ZG. The role of Wnt/beta-catenin signaling in postsynaptic differentiation. Commun Integr Biol 2008; 1: p. 158-60.
    [55]. Liu Y, Sugiura Y, Wu F, et al. beta-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice. Dev Biol 2012; 366: p. 255-67.
    [56]. Henriquez JP, and Salinas PC. Dual roles for Wnt signalling during the formation of the vertebrate neuromuscular junction. Acta Physiol (Oxf) 2012; 204: p. 128-36.
    [57]. Clausen T, and Everts ME. K(+)-induced inhibition of contractile force in rat skeletal muscle: role of active Na(+)-K+ transport. Am J Physiol 1991; 261: p. C799-807.
    [58]. Moon RT, Bowerman B, Boutros M, et al. The promise and perils of Wnt signaling through beta-catenin. Science 2002; 296: p. 1644-6.
    [59]. Drees F, Pokutta S, Yamada S, et al. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 2005; 123:p. 903-15.
    [60]. Chibalin AV, Heiny JA, Benziane B, et al. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS One 2012; 7:p. e33719.
    [61]. Radzyukevich TL, Moseley AE, Shelly DA, et al. The Na(+)-K(+)-ATPase alpha2-subunit isoform modulates contractility in the perinatal mouse diaphragm. Am J Physiol Cell Physiol 2004; 287:p. C1300-10.
    [62]. Blaustein MP, Zhang J, Chen L, et al. The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 2009; 53: p. 291-8.
    [63]. Brodie C, Bak A, Shainberg A, et al. Role of Na-K ATPase in regulation of resting membrane potential of cultured rat skeletal myotubes. J Cell Physiol 1987; 130: p. 191-8.
    [64]. Bannett RR, Sampson SR, and Shainberg A. Influence of thyroid hormone on some electrophysiological properties of developing rat skeletal muscle cells in culture. Brain Res 1984; 294: p. 75-82.
    [1]. Nelson WJ, and Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303: p. 1483-7.
    [2]. Drees F, Pokutta S, Yamada S, et al. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 2005; 123: p. 903-15.
    [3]. Wang J, Ruan NJ, Qian L, et al. Wnt/beta-catenin signaling suppresses Rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 2008; 283: p. 21668-75.
    [4]. Zhang B, Luo S, Dong XP, et al. Beta-catenin regulates acetylcholine receptor clustering in muscle cells through interaction with rapsyn. J Neurosci 2007; 27: p. 3968-73.
    [5]. Li XM, Dong XP, Luo SW, et al. Retrograde regulation of motoneuron differentiation by muscle beta-catenin. Nat Neurosci 2008; 11: p. 262-8.
    [6]. Heiny JA, Kravtsova W, Mandel F, et al. The nicotinic acetylcholine receptor and the Na,K-ATPase alpha2 isoform interact to regulate membrane electrogenesis in skeletal muscle. J Biol Chem 2010; 285: p. 28614-26.
    [1]. Radzyukevich TL, Neumann JC, Rindler TN, et al. Tissue-specific role of the Na,K-ATPase alpha2 isozyme in skeletal muscle. J Biol Chem 2013; 288:p. 1226-37.
    [2]. Bonn ML, Goldman WF, and Blaustein MP. Intracellular free Na+ in resting and activated A7r5 vascular smooth muscle cells. Am J Physiol 1993; 264:p. C1513-24.
    [3]. Juhaszova M, and Blaustein MP. Distinct distribution of different Na+ pump alpha subunit isoforms in plasmalemma. Physiological implications. Ann N Y Acad Sci 1997; 834: p. 524-36.
    [4]. Juhaszova M, and Blaustein MP. Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc Natl Acad Sci U S A 1997; 94: p. 1800-5.
    [5]. Mercer RW, Biemesderfer D, Bliss DP, Jr., et al. Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na,K-ATPase. J Cell Biol 1993; 121: p. 579-86.
    [6]. O'Shea RD. Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 2002; 29: p.1018-23.
    [7]. Honegger P, and Pardo B. Separate neuronal and glial Na+,K+-ATPase isoforms regulate glucose utilization in response to membrane depolarization and elevated extracellular potassium. J Cereb Blood Flow Metab 1999; 19: p. 1051-9.
    [8]. Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol 2006; 209: p. 2304-11.
    [9]. Ross ST, and Soltesz I. Selective depolarization of interneurons in the early posttraumatic dentate gyrus:involvement of the Na(+)/K(+)-ATPase. J Neurophysiol 2000; 83: p. 2916-30.
    [10]. Kim JH, Sizov I, Dobretsov M, et al. Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3 Na(+)/K(+)-ATPase. Nat Neurosci 2007; 10: p. 196-205.
    [11]. Tominaga T, and Barber DL. Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell 1998; 9: p. 2287-303.
    [12]. Kotova O, Al-Khalili L, Talia S, et al. Cardiotonic steroids stimulate glycogen synthesis in human skeletal muscle cells via a Src- and ERKl/2-dependent mechanism. J Biol Chem 2006; 281: p. 20085-94.
    [13]. Ikeda K, Onimaru H, Yamada J, et al. Malfunction of respiratory-related neuronal activity in Na+, K+-ATPase alpha2 subunit-deficient mice is attributable to abnormal Cl- homeostasis in brainstem neurons. J Neurosci 2004; 24:p. 10693-701.
    [14]. Palladino MJ, Bower JE, Kreber R, et al. Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase alpha subunit mutants. J Neurosci 2003; 23: p. 1276-86.
    [15]. Arystarkhova E, Liu YB, Salazar C, et al. Hyperplasia of pancreatic beta cells and improved glucose tolerance in mice deficient in the FXYD2 subunit of Na,K-ATPase. J Biol Chem 2013; 288: p. 7077-85.
    [16]. Segall L, Mezzetti A, Scanzano R, et al. Alterations in the alpha2 isoform of Na,K-ATPase associated with familial hemiplegic migraine type 2. Proc Natl Acad Sci U S A 2005; 102: p. 11106-11.
    [17]. de Carvalho Aguiar P, Sweadner KJ, Penniston JT, et al. Mutations in the Na+/K+-ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 2004; 43: p. 169-75.
    [18]. Rindler TN, Lasko VM, Nieman ML, et al. Knockout of the Na,K-ATPase alpha2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 2013; 304: p. H1147-58.
    [19]. Florkiewicz RZ, Anchin J, and Baird A. The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+,K+-ATPase. J Biol Chem 1998; 273: p. 544-51.
    [20]. Laski ME, and Kurtzman NA. The renal adenosine triphosphatases: functional integration and clinical significance. Miner Electrolyte Metab 1996; 22: p. 410-22.
    [21]. Anderson WR, Franck JE, Stahl WL, et al. Na,K-ATPase is decreased in hippocampus of kainate-lesioned rats. Epilepsy Res 1994; 17: p. 221-31.
    [22]. Fernandes MJ, Naffah-Mazzacoratti MG, and Cavalheiro EA. Na+K+ ATPase activity in the rat hippocampus: a study in the pilocarpine model of epilepsy. Neurochem Int 1996; 28:p. 497-500.
    [23]. el-Mallakh RS, and Wyatt RJ. The Na,K-ATPase hypothesis for bipolar illness. Biol Psychiatry 1995; 37: p. 235-44.
    [24]. Mynett-Johnson L, Murphy V, McCormack J, et al. Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psychiatry 1998; 44: p. 47-51.
    [25]. Holthouser KA, Mandal A, Merchant ML, et al. Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am J Physiol Renal Physiol 2010; 299: p. F77-90.
    [1]. Kam Y, and Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PLoS One 2009; 4: p. e4580.
    [2]. Yang-Snyder J, Miller JR, Brown JD, et al. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 1996; 6:p.1302-6.
    [3]. Chen W, ten Berge D, Brown J, et al. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 2003; 301:p. 1391-4.
    [4]. Brennan K, Gonzalez-Sancho JM, Castelo-Soccio LA, et al. Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize beta-catenin independently of Frizzled proteins. Oncogene 2004; 23:p. 4873-84.
    [5]. Hecht A, Vleminckx K, Stemmler MP, et al. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. Embo J 2000; 19: p. 1839-50.
    [6]. Nelson WJ, and Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303: p. 1483-7.
    [7]. Drees F, Pokutta S, Yamada S, et al. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 2005; 123: p. 903-15.
    [8]. Strutt D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 2003; 130: p. 4501-13.
    [9]. Lyu J, Yamamoto V, and Lu W. Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev Cell 2008; 15: p. 773-80.
    [10]. Fradkin LG, Dura JM, and Noordermeer JN. Ryks: new partners for Wnts in the developing and regenerating nervous system. Trends Neurosci 2010; 33:p. 84-92.
    [11]. Mathew D, Ataman B, Chen J, et al. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 2005; 310: p. 1344-7.
    [12]. Ataman B, Ashley J, Gorczyca D, et al. Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proc Natl Acad Sci U S A 2006; 103: p. 7841-6.
    [13]. Westfall TA, Brimeyer R, Twedt J, et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 2003; 162: p. 889-98.
    [14]. Reguart N, He B, Taron M, et al. The role of Wnt signaling in cancer and stem cells. Future Oncol 2005; 1: p. 787-97.
    [15]. Gregorieff A, Pinto D, Begthel H, et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 2005; 129: p. 626-38.
    [16]. Lowry WE, Blanpain C, Nowak JA, et al. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 2005; 19: p. 1596-611.
    [17]. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: p. 409-14.
    [18]. Daniels DL, and Weis WI. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 2005; 12:p.364-71.
    [19]. Kato M, Patel MS, Levasseur R, et al. Cbfal-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002; 157: p. 303-14.
    [20]. Yu HM, Jerchow B, Sheu TJ, et al. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 2005; 132: p. 1995-2005.
    [21]. Li X, Yamagata K, Nishita M, et al. Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells 2013; 18: p. 608-19.
    [22]. Salinas PC, and Zou Y. Wnt signaling in neural circuit assembly. Annu Rev Neurosci 2008; 31: p. 339-58.
    [23]. Krylova O, Herreros J, Cleverley KE, et al. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 2002; 35: p. 1043-56.
    [24]. Budnik V, and Salinas PC. Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 2010; 21:p. 151-9.
    [25]. Ciani L, Krylova O, Smalley MJ, et al. A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J Cell Biol 2004; 164: p. 243-53.
    [26]. Purro SA, Ciani L, Hoyos-Flight M, et al. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J Neurosci 2008; 28:p. 8644-54.
    [27]. Zumbrunn J, Kinoshita K, Hyman AA, et al. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 2001; 11: p. 44-9.
    [28]. Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M, et al. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 2002; 16:p. 2058-72.
    [29]. Ahmad-Annuar A, Ciani L, Simeonidis I, et al. Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 2006; 174: p. 127-39.
    [30]. Farias GG, Alfaro IE, Cerpa W, et al. Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 2009; 284: p. 15857-66.
    [31]. Cuitino L, Godoy JA, Farias GG, et al. Wnt-5a modulates recycling of functional GAB AA receptors on hippocampal neurons. J Neurosci 2010; 30:p. 8411-20.
    [32]. Liu Y, Shi J, Lu CC, et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 2005; 8: p. 1151-9.
    [33]. Schmitt AM, Shi J, Wolf AM, et al. Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 2006; 439: p. 31-7.
    [34]. Mikels AJ, and Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 2006; 4: p. e115.
    [35]. Wayman GA, Impey S, Marks D, et al. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 2006; 50: p. 897-909.
    [36]. Ataman B, Ashley J, Gorczyca M, et al. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 2008; 57: p. 705-18.
    [37]. Sahores M, Gibb A, and Salinas PC. Frizzled-5, a receptor for the synaptic organizer Wnt7a, regulates activity-mediated synaptogenesis. Development 2010; 137: p. 2215-25.
    [38]. Gogolla N, Galimberti I, Deguchi Y, et al. Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 2009; 62: p. 510-25.
    [39]. Avila ME, Sepulveda FJ, Burgos CF, et al. Canonical Wnt3a modulates intracellular calcium and enhances excitatory neurotransmission in hippocampal neurons. J Biol Chem 2010; 285: p. 18939-47.
    [40]. Beaumont V, Thompson SA, Choudhry F, et al. Evidence for an enhancement of excitatory transmission in adult CNS by Wnt signaling pathway modulation. Mol Cell Neurosci 2007; 35: p. 513-24.
    [41]. Cerpa W, Godoy JA, Alfaro I, et al. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 2008; 283:p. 5918-27.
    [42]. Packard M, Koo ES, Gorczyca M, et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 2002; 111:p. 319-30.
    [43]. Klassen MP, and Shen K. Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell 2007; 130: p. 704-16.
    [44]. Korkut C, and Budnik V. WNTs tune up the neuromuscular junction. Nat Rev Neurosci 2010; 10: p. 627-34.
    [45]. Wu H, Xiong WC, and Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 2010; 137: p. 1017-33.
    [46]. Henriquez JP, Webb A, Bence M, et al. Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin. Proc Natl Acad Sci U S A 2008; 105: p. 18812-7.
    [47]. Rosso SB, Sussman D, Wynshaw-Boris A, et al. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 2005; 8: p. 34-42.
    [48]. Niemann S, Zhao C, Pascu F, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet 2004; 74: p. 558-63.
    [49]. Jordan BK, Shen JH, Olaso R, et al. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proc Natl Acad Sci U S A 2003; 100: p.10866-71.
    [50]. Rodova M, Islam MR, Maser RL, et al. The polycystic kidney disease-1 promoter is a target of the beta-catenin/T-cell factor pathway. J Biol Chem 2002; 277: p. 29577-83.
    [51]. Ouko L, Ziegler TR, Gu LH, et al. Wntll signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem 2004; 279: p. 26707-15.
    [52]. Hoffineyer K, Raggioli A, Rudloff S, et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 2012; 336:p. 1549-54.
    [53]. Varallo VM, Gan BS, Seney S, et al. Beta-catenin expression in Dupuytren's disease: potential role for cell-matrix interactions in modulating beta-catenin levels in vivo and in vitro. Oncogene 2003; 22: p. 3680-4.
    [54]. Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162: p.1495-502.
    [55]. Batlle E, Bacani J, Begthel H, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435: p. 1126-30.
    [56]. Chan EF, Gat U, McNiff JM, et al. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 1999; 21: p. 410-3.
    [57]. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351:p. 657-67.
    [58]. Zhao C, Aviles C, Abel RA, et al. Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development 2005; 132: p. 2917-27.
    [59]. Singh KK, Ge X, Mao Y, et al. Dixdcl is a critical regulator of DISCI and embryonic cortical development. Neuron 2010; 67: p. 33-48.
    [60]. Lovestone S, Killick R, Di Forti M, et al. Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci 2007; 30: p. 142-9.
    [61]. Wilkinson MB, Dias C, Magida J, et al. A novel role of the WNT-dishevelled-GSK3beta signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J Neurosci 2011; 31:p.9084-92.
    [62]. De Ferrari GV, and Inestrosa NC. Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 2000; 33:p. 1-12.
    [63]. Mudher A, and Lovestone S. Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci 2002; 25: p. 22-6.
    [64]. Caricasole A, Copani A, Caruso A, et al. The Wnt pathway, cell-cycle activation and beta-amyloid: novel therapeutic strategies in Alzheimer's disease? Trends Pharmacol Sci 2003; 24: p. 233-8.
    [65]. Vargas JY, Fuenzalida M, and Inestrosa NC. In vivo Activation of Wnt Signaling Pathway Enhances Cognitive Function of Adult Mice and Reverses Cognitive Deficits in an Alzheimer's Disease Model. J Neurosci 2014; 34: p. 2191-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700