脐橙(Citrus sinensis Osbeck)晚熟芽变性状形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奉节晚橙(Citrus sinensis Osbeck)是一个来源奉节72-1脐橙的晚熟芽变品种。这两个品种一起将构成一个很好的柑橘成熟机理研究体系。加强对奉节晚橙的研究,明确奉节晚橙晚熟芽变发生的机理,将为柑橘熟期育种奠定理论基础,最终有助于柑橘产业的持续健康发展。本文研究了奉节晚橙与奉节72-1脐橙在果实成熟过程中的糖酸、色素、以及转录水平的变化,探讨了晚熟芽变脐橙发生原因,取得如下主要结果:
     1.建立了一种适合于柑橘不同时期不同组织的RNA提取方法。利用该方法所提取的RNA的A_(260)/A_(280)在1.65-1.90之间,A_(260)/A_(230)大于2.0;其质量和浓度能够直接用于其它分子研究,如RT-PCR,cDNA-AFLP和Northern杂交(地高辛)实验。
     2.着色差异分析表明:与奉节72-1脐橙着色相比,奉节晚橙的转色期约延迟30天左右,造成这种着色延迟的原因主要是奉节晚橙果皮前期叶绿素含量减少进程和后期类胡萝卜素积累进程推迟所致。奉节晚橙果皮的叶绿素含量显著减少发生在11月上旬到11月下旬,迟于奉节72-1品种,后者叶绿素含量显著降低发生在10月中下旬到11月上旬;奉节晚橙果皮的类胡萝卜素含量显著积累始于12月中旬,而奉节72-1品种则始于11月初。另外奉节晚橙果皮中叶绿素含量在10至11月间显著高于原品种,类胡萝卜素含量在12至1月间显著低于原品种。基因表达分析发现,奉节晚橙果皮的类胡萝卜素合成酶的相关基因较强表达的时间也整体迟于奉节72-1脐橙;叶绿素水解酶基因表达在10至12月中旬其表达强度较奉节72-1脐橙弱,翌年1月份则有较强的表达。
     3.通过对果实成熟过程中的糖分积累分析表明,奉节晚橙和奉节72-1脐橙果实在成熟过程中两个品种的糖分变化差异主要发生在果肉组织,且奉节晚橙果肉中三种糖分含量在12月中旬之前是显著低于奉节72-1脐橙果肉中的糖分含量,而在元月份后则明显高于后者;果皮中奉节晚橙的蔗糖含量在果实成熟前期两个时期(10月11日和11月3日)显著低于奉节72-1脐橙。而蔗糖相关代谢酶基因表达分析表明,两个品种果肉中酸性转化酶和蔗糖合酶的基因表达表现明显差异,这种差异部分影响了奉节晚橙和奉节72-1果实间的糖分差异。
     4.奉节晚橙和奉节72-1脐橙果肉酸积累分析发现奉节晚橙在成熟前期柠檬酸含量显著高于奉节72-1脐橙,而在后期(11月底始)则低于后者;在果实成熟中期,奉节晚橙节果酸含量显著低于对照品种。柠檬酸代谢相关酶基因表达分析表明柠檬酸合成酶和顺乌头酸酶基因表达在两个品种间表现差异,而造成奉节晚橙柠檬酸含量与奉节72-1的差异可能与此时奉节晚橙果肉中柠檬酸合酶基因表达较强和顺乌头酸酶基因表达受抑制相关。
     5.利用分子标记技术,SSR和AFLP对两个品种的DNA差异进行分析,未发现两个品种间在DNA水平上可重复的差异。
     6.采用cDNA-AFLP技术分析了两个品种的果实在成熟过程中转录水平的表达,并对cDNA-AFLP的结果进行了进一步验证。实验筛选了120对选择性引物,总共获得近20000多条清晰带,结果发现其中有34对引物出现差异带,检测到144条清晰的转录差异带(TDFs)。在成功回收的129个TDFs中,通过测序和序列比对(Blastx)分析表明表达差异片段主要与信号转导、转录因子、成熟衰老、抗逆性、核糖体蛋白和DNA复制等有关。
     7.利用RACE技术,以cDNA-AFLP技术获得的差异片段为基础克隆了6个与成熟相关的基因,分别命名为CitPG(EF185420)、CitCAD(EF185415)、CitMads(EF185417)、CitMAP(EF185418)、CitNAC(EF185419)、CitEREBP(EF185416),除了MADs-box基因外,其它5个目前在柑橘中还未见报道,且CitMads与目前报道的柑橘Mads-box基因序列不同。表达分析表明在果实成熟过程中,他们在两个品种的果皮或果肉组织中有表达差异,可能与晚熟性状的表现有关。
     以上研究结果表明,相对奉节72-1脐橙,奉节晚橙在许多方面发生了改变,这种性状的改变很显然不是因为某一相关指标因子发生突变而引起局部性状发生改变,而确实是果实成熟过程或发育过程整体延迟所致。而导致这种整体改变可能是在表达水平上而非在DNA水平发生改变。由于果实成熟是一个综合而又复杂的过程,而非跃变型柑橘果实是一个渐进式的程序性过程,因此要使奉节晚橙整体协调发生改变,那么这种改变的发生很有可能在果实发育过程或成熟过程发生的上游某个阶段,即可能是启动果实成熟开始的一个‘开关’发生变化,从而导致奉节晚橙成熟过程整体表现延迟。
'Fengjiewancheng'(FJWC, Citrus sinensis Osbeck) is a novel late-ripening navel orange mutant of'Fengjie72-1'navel orang(FJ72-1). Academically, FJWC might constitute a useful experiment system with its parental line for the study of citrus ripening mechanism. To get the knowledge or information as much as possible about the occurrence mechanism of this mutant will play a great role in citrus fruit-mature-time breeding via gene engineering, and at last in maintaining consecutive and healthy development of citrus industry. In order to give clues as to what mechanisms are monitored in the mutant, difference of FJWC and FJ72-1 in coloration or pigmentation, sugar, acid and mRNA transcripts during fruit ripening were compared, and the occurrence mechanism of FJWC was discussed in the end. The main results were as follows:
     1. An efficient RNA isolation method was established, which was proved to be widely applicable in different citrus tissues at different developmental stages. The A_(260)/A_(230) of RNA was over 2.0, and the A_(260)/A_(280) ranged from 1.65-1.90, indicating low levels of polysaccharide and good purity of the RNA. The quality of the RNA was further proved by means of RT-PCR, DIG Northern blot analysis and cDNA-AFLP.
     2. Coloration analysis during fruit ripening indicating that FJWC's coloration was delayed about 30 days or so, which was because that the distinctive decrease of chlorophyll in the peel of FJWC occurred from the early of November to the late of November, later than that of its original cultivar which occurred from the middle of October to the early of November, and the obvious accumulation of carotenoid in the peel of the mutant began on Dec. 12th, while its original cultivar on Nov. 3rd. What's more, analysis of independent-samples T test showed that the chlorophyll content in the peel of FJWC from October to November was significantly higher, and the carotenoid content from December to January was significantly lower than that of the parental line, FJ72-1 respectively. Gene expression of some carotenoid biosynthetic genes and cholorophyllase gene using RT-PCR technique were showed that the time of some carotenoid biosynthetic gene expression reaching a maximum in the peel of the mutant were postponed for one month comparing to those of its original cultivar, while the gene expression of cholorophyllase in the peel of FJWC reached a maximum in January, and kept slightly lower level from October to December than that of FJ72-1.
     3. Analysis of sugar seasonal changes in the pulp and peel of both FJWC and FJ72-1 during fruit ripening discovered a major difference of sugar contents in the pulp between the two cultivars. Sugar contents of sucrose, glucose and fructose in FJWC pulp were significantly lower than those in FJ72-1 before the middle December, and became higher after then. In fruit peel, only sucrose contents in FJWC were significantly lower than those in FJ72-1 at the two early sampling dates during fruit ripening. Transcript analysis of sucrose metabolic gene showed that CitAI(citrus acid invertase gene) and CitSS1(citrus sucrose synthase genel) had different expression patterns in the pulp between the two cultivars during fruit ripening which were related with the sugar content difference of them.
     4. Acid contents of FJWC during fruit ripening were also changed comparing with FJ72-1. The citric acid contents in the pulp of FJWC were obviously higher than those in FJ72-1 pulp during the early ripening stages, while lower than the latter after the late November. In the middle of fruit ripening, malic acid contents in FJWC were significantly lower than those of FJ72-1. Transcript comparison of citric metabolic gene showed that the difference of citric acid between the two cultivars might be related with the high transcript level of citrate synthase gene and with the block of cytosolic aconitase gene in the pulp of FJWC during the early ripening stages.
     5. No reliable differences on DNA level between the two cultivars were discovered by SSR and AFLP analysis.
     6. Expression profiles of the two cultivars' fruit during fruit ripening were analyzed using cDNA-AFLP. After screening 120 pairs of selective primers which produced about 20000 clear transcript bands, only 144 clear transcript different fragments(TDFs) were found in 34 pairs of primers. However, only 129 TDFs were successfully recovered, sequenced and then blasted by blastx tool. The blastx results showed that most of the TDFs were related with signal transduction and transcription factors, senescence or maturation, stress reaction, ribosome protein and DNA replication.
     7. Using the sequence of TDFs, six genes related with fruit maturation were successfully cloned using RACE technique. There were named as CitPG(EF185420), CitCAD(EF185415), CitMads(EF185417), CitMAP(EF185418), CitNAC(EF185419) and CitEREBP(EF185416). RT-PCR indicated that they expressed differently in fruit peel or pulp between the two cultivars, which implicated that these gene might be related with the occurrence of late-ripening phenotypes.
     Taken together, many aspects of FJWC were changed compared with FJ72-1, the late-ripening phenotypes of FJWC is obviously not the results of some factor mutation or alteration, but is involved in delay of ripening progress. Furthermore, the alteration of transcript level might be one of the reasons of the late-ripening phenotypes.Fruit ripening is a comprehensive and complicated progress. Unlike climacteric fruit, non-climacteric fruit ripening, such as citrus, experienced a gradual and programmed progress. Hence, what made FJWC coordinate changes must located in the upstream stages of fruit ripening or development, that is, a factor having the function to trigger the onset of fruit ripening might be altered, which lead to the coordinate delay of FJWC fruit ripening progress.
引文
1.安新民,徐昌杰,张上隆.柑橘酸性转化酶基因片段的克隆.果树学报,2001,18(4):189-192
    2.蔡应繁,莫剑川,曾宇,任薇薇,苗琛,徐莺,王胜华,陈放.抑制性消减杂交方法克隆棉属突变材料腺体发育相关的cDNAs.北京林业大学学报,2003,25 (3):6-10
    3.陈发河,吴光斌,冯作山,张维一.葡萄贮藏过程中落粒与离区酶活性变化及植物生长调节物质的关系.植物生理与分子生物学学报,2003,29(2):133-140
    4.陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展.果树学报,2005,22(5):526-531
    5.陈俊伟,谢鸣,秦巧平.植物糖信号与激素信号之间的联系.植物生理学通讯,2005,41(3):279-285
    6.陈俊伟,张上隆,张良诚.果实中糖的运输、代谢与积累及其调控.植物生理 与分子生物学学报,2004,30(10):1-10
    7.陈昆松,李方.ABA和IAA对猕猴桃果实成熟进程的调控.园艺学报,1999,26 (2):81-86
    8.陈尚武,张大鹏.ABA和Fluridone对苹果果实成熟的影响.植物生理学报,2000,26(2):123-129
    9.陈文峻,蒯本科.植物叶绿素的降解.植物生理学通讯,2001,37(4):336-339
    10.陈竹生.晚熟柑桔—中国柑桔业的希望.中国南方果树,2004,33(4):18-20
    11.程运江,伊华林,庞晓明,郭文武,邓秀新.几种木本果树DNA的有效提取.华中农业大学学报,2001,20(5):481-483
    12.池晓菲,舒庆尧.开放的差异基因表达技术研究进展.中国生物化学与分子生物学报,2002,18(3):259-264
    13.邓烈,吴厚玖,周常勇.世界柑桔产销现状与趋势.柑桔与亚热带果树信息,2005,21(1):1-4
    14.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32(6):1140-1146
    15.丁长奎.果实完熟过程中的激素调控.植物生理学通讯,1990(5):5-9
    16.董志敏,张宝石,关荣霞,常汝镇,邱丽娟.全长cDNA文库的构建方法.中国农学通报,2006,22(2):51-55
    17.付凤玲,李晚忱.用cDNA-AFLP技术构建基因组转录图谱.分子植物育种,2003,1(4):523-529
    18.韩志萍,安利佳,侯和胜.AP2/EREBP转录因子的结构与功能.中国农学通报,2006,22(2):33-38
    19.何天富.柑橘学.北京:中国农业出版社,1999,54-183,329-405
    20.侯雷平,李梅兰.T-DNA标签在植物基因克隆和功能分析中的应用.西北植物学报,2006,26(5):1066-1070
    21.金勇丰,张耀洲,陈大明,张上隆.桃早熟芽变品种‘大观一号’的RAPD分析及其特异片段的克隆.果树科学,1998,15(2):103-106
    22.寇晓虹,罗云波.植物多聚半乳糖醛酸酶研究进展.山西农业大学学报,2004,24(4):411-415
    23.李广善,荆玉祥.植物细胞核基因和细胞质基因.生物工程进展,1990,10(5):39-44
    24.李合生.植物生理和生化实验原理和技术.北京:高等教育出版社,2000,134-137
    25.李建国,周碧燕.大核和焦核“桂味”荔枝果实发育及其发育期间果皮中内源激素含量的变化比较.植物生理学通讯,2005,41(5):587-590
    26.廖振坤,张秋明,刘卫国,丁伟平,王春梅.利用AFLP鉴定柑橘变异.果树学报,2006,23(3):486-488
    27.刘春荣,陶俊,张上隆,徐建国.柑橘果实主要类胡萝卜素成分及含量分析.中国农业科学,2003,36(10):1202-1208
    28.刘强,张贵友,Kazuo S.植物促分裂原活化蛋白(MAP)激酶.植物学报,2000,42(7):661-667
    29.刘强,张贵友.植物转录因子的结构与调控作用.科学通报,2000,45(14):1465-1474
    30.刘淑娴,蒋跃明.GA_3对三华李采后色泽的影响.园艺学报,1994,21(4):320-322
    31.刘永忠,李道高.柑橘果实糖积累与蔗糖代谢酶活性的研究.园艺学报,2003,30(4):457-459
    32.鹿金颖,毛永民,申莲英,彭士琪,刘敏.用AFLP分子标记鉴定冬枣自然授粉实生后代杂种的研究.园艺学报,2005,32(4):680-683
    33.罗安才,李纯凡,李道高.奉节脐橙芽变株系的AFLP分析.中国农学通报,2003a,19(6):20-24
    34.罗安才,杨晓红,邓英毅,李纯凡,向可术,李道高.柑橘果实发育过程中有机酸含量及相关代谢酶活性的变化.中国农业科学,2003b,36(8):941-944
    35.马焕普,刘志民.赤霉素与果树的生长发育.植物学通报,1998,15(1):27-36
    36.乜兰春,孙建设,黄瑞虹.果实香气形成及其影响因素.植物学通报,2004,21(5):631-637
    37.庞晓明.用分子标记研究柑橘属及其近缘属植物的亲缘关系和枳的遗传多样性.[博士学位论文].武汉:华中农业大学图书馆,2002
    38.秦巧平,张上隆,谢鸣,陈俊伟.果实糖含量及成分调控的分子生物学研究进展.果树学报,2005,22(5):519-525
    39.阮晓,王强,周疆明,郑春.香梨果实成熟衰老过程中4种内源激素的变化.植 物生理学报,2000,26(5):402-406
    40.沈德绪,王元裕,陈力耕.柑橘遗传育种学.北京:科学出版社,1998,161-170
    41.宋东辉,宋凤鸣,郑重.MAP激酶在植物信号传递网络中的功能.浙江大学学报 (农业与生命科学版),2004,30(2):119-126
    42.陶俊,张上隆,张良诚,安新民,刘春荣.柑橘果皮颜色的形成与类胡萝卜素组分变化的关系.植物生理与分子生物学学报,2003a,29(2):121-126
    43.陶俊,张上隆,安新民,赵智中.光照对柑橘果皮类胡萝卜素和色泽形成的影响.应用生态学报,2003b,14(11):1833-1836
    44.陶能国.甜橙(Citrus sinensis Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特性分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    45.王波,冯晓黎,张富春.植物中microRNA的合成及在发育和抗逆中的作用.植物生理学通讯,2006,42(3):581-588
    46.王中凤,应铁进,张英,鲍碧丽,黄晓丹.番茄乙烯受体基因反义表达对果实成熟的影响.园艺学报,2006,33(3):518-522
    47.吴谡琦,张进兴,洪旭光,孙修勤.分子标记技术的进展及其应用.高技术通讯,2001,11(4):99-103
    48.吴有梅,顾采琴,邰根福,刘愚.ABA和乙烯在草莓采后成熟衰老中的作用.植物生理学报,1992,18(2):167-172
    49.忻雅,崔海瑞.植物表达序列标签(EST)标记及其应用研究进展.生物学通报,2004,39(8):4-6
    50.徐娟,邓秀新.柑橘类果实汁胞的红色现象及其呈色色素.果树学报,2002,19(5):307-313
    51.闫其涛,逯慧,毛万霞,李建粤.植物基因分离的图位克隆技术.分子植物育种,2005,3(4):585-590
    52.余珍,丁靖垲.几种芸香科柑桔类精油的化学成分与香气的研究.云南植物研究,1996,18(4):465-470
    53.曾柏全,甘霖,熊兴耀,邓秀新,邓子牛.冰糖橙优良芽变的AFLP分析.江西农业大学学报,2006,28(2):222-225
    54.曾祥国.不同种类和产区柑橘糖酸含量及组成研究.[硕士学位论文].武汉:华中农业大学图书馆,2005
    55.张大鹏,许雪峰,张子连,贾文锁.葡萄果实始熟机理的研究.园艺学报,1997,24(1):1-7
    56.张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展.果树学报,2006,正在排版
    57.张嵩,张光伦,曾秀丽.纤维素酶和多聚半乳糖醛酸酶与果实成熟.果树学报,2005.22(5):532-536
    58.章霄云,郭安平,贺立卡,孔华.木质素生物合成及其基因调控的研究进展.分子植物育种,2006,4(3):431-437
    59.赵智中,张上隆,徐昌杰.蔗糖代谢相关酶在温州蜜柑果实中糖积累中的作用.园艺学报,2001,28(2):112-118
    60.赵智中,张上隆,陈俊伟,陶俊,吴延军.柑橘品种间糖积累差异的生理基础.中国农业科学,2002,35(5):541-545
    61.郑成木.植物分子标记原理与方法.长沙:湖南科学技术出版社,2003,37
    62.周丽萍,张维一.外源激素和病原侵染对采后葡萄呼吸速率及组织内源激素的影响.植物生理学报,1997,23(4):353-356
    63.朱明月,沈文涛,周鹏.果实成熟软化机理研究进展.分子植物育种,2005,3(3):421-426
    64. Abbott J A. Quality measurement of fruits and vegetables. Postharvest Biol Tech, 1999, 15(3): 207-225
    65. Adams M D, Kelley J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Xiao H, Merril C R, Wu A, Olde B, Moreno R F. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991,252:1651-1656
    66. Adams-Phillips L, Barry C, Giovannoni J. Signal transduction systems regulating fruit ripening. Trends Plant Sci, 2004, 9(7): 331-338
    67. Alba R, Fei Z, Payton P, Liu Y, Moore S L, Debbie P, Cohn J, D'Ascenzo M, Gordon J S, Rose J K, Martin G, Tanksley S D, Bouzayen M, Jahn M M, Giovannoni J. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting Plant Physiol, and development. The Plant J, 2004, 39:697-714
    68. Alferez F, Pozo L, Burns J K. Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. Physiol Plant, 2006, 127 (1): 66-73
    69. Armitage A M. Promotion of fruit ripening of ornamental peppers by ethephon. HortScience, 1989, 24:962-964
    70. Asif M H, Nath P. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. Plant Physiol Bioch, 2005, 43:177-184
    71. Asins M J, Monforte A J, Mestre P F, Carbonell E A. Citrus and Prunus copia-like retrotransposons. Theor Appl Genet, 1999, 99:503-510
    72. Aung L H, Houck L G, Norman S M. The Abscisic Acid Content of Citrus with Special Reference to Lemon. J Exp Bot, 1991, 42:1083-1088
    73. Bachem C W, van der Hoeven R S, de Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G F. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant J, 1996, 9:745-753
    74. Bahem C W, Oomen R J F, Visser R G. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Bio Rep, 1998, 16:157-173
    75. Barry C S, Giovannoni J J. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci, 2006,103(20): 7923-7928
    76. Barry C S, McQuinn R P, Thompson A J, Seymour G B, Grierson D, Giovannoni J J. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol, 2005, 138 (1): 267-275
    77. Benedito V A, Visser P B, van Tuyl J M, Angenent G C, de Vries S C, Krens F A. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. J Exp Bot, 2004, 55:1391-1399
    78. Biale J B. Growth, maturation and senescence in fruits. Science, 1964,146: 880-888.
    79. Bove J, Lucas P, Godin B, Oge L, Jullien M, Grappin P. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Bio, 2005, 57(4): 593-612
    80. Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inze D, Zabeau M. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics, 2003,269: 173-179
    81. Brownleader M D, Jackson P, Mobasheri A, Pantelides A T, Sumar S, Trevan M, Dey P M. Molecular Aspects of Cell Wall Modifications during Fruit Ripening. Crit Rev Food Sci Nutri,1999, 39(2): 149-464
    82. Brugmans B, Fernandez del Carmen A., Bachem C W B, van Os H, van Eck H J, Visser R G F. A novel method for the construction of genome wide transcriptome maps. The Plant J, 2002, 31:211-222
    83. Bureau S M, Razungles A J, Baumes R L. The aroma of ‘Muscat of Frontignan’ grapes: effect of the light environment of vine or bunch on volatiles and glycoconjugates. J Soc Food Agric, 2000, 80: 2012-2020
    84. Burger A L, Botha F C. Cloning of a specific ripening-rlated gene from the multiple of ripening-related genes identified from a single band excised from a cDNA-AFLP gel. Plant Mol Bio Rep, 2004, 22: 225-236
    85. Buttner M, Singh K B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci, 1997, 94: 5961-5966
    86. Canel C, Bailey-Serres J N, Roose M L. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo (Citrus maxima). Plant Mol Biol, 1996,31: 143-147
    87. Causier B, Kieffer M, Davies B. MADS-Box genes reach maturity. Science, 2002, 296: 275-276
    88. Cawthon D L, Morris J R. Relationship of seed number and maturity to berry development, fruit maturation, hormonal changes, and uneven ripening of 'Concord' (Vitis lubrusca L.) grapes. J Am Soc Hortic Sci, 1982, 107:1097-1104
    89. Chiou T J, Bush D R. Sucrose is a signal molecule in assimilates partitioning. Proc Natl Acad Sci, 1998, 95:4784-4788
    90. Chomzynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanatc-phenol-chloroform extraction. Anal Biochem, 1987, 162(4): 156-159
    91. Claros M G, Canovas F M. Rapid high quality RNA preparation from pine seedlings. Plant Mol Biol Rep, 1998, 16:9-18
    92. Cohen J D. In vitro tomato fruit cultures demonstrate a role for indole-3-acetic acid in regulating fruit ripening. J Am Soc Hortic Sci, 1996, 121:520-524
    93. Coombe B G, Hale C R. The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol, 1973, 51:629-634
    94. Cowan K J, Storey K B. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Bot, 2003, 206: 1107-1115
    95. Curler S, Somervile C. Cloning in silico. Curt boil, 1997, 7(2): 108-111
    96. Davies C, Boss P K, Robinson S P. Treatment of grape berries, a non-climacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol, 1997, 115:1155-1161
    97. Davuluri G R, van Tuinen A, Fraser P D, Manfrcdonia A, Newman R. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotech, 2005, 23:890-895
    98. de Almeida I M L, Rodrigues J D, Ono E O. Application of Plant Growth Regulators at Pre-harvest for Fruit Development of 'PERA' Oranges. Brazil Archi Biol Tech, 2004, 47(4): 511-520
    99. De Paepe, Annelies, Vuylstekc, Marnik, Van Hummelcn, Paul, Zabeau, Marc & Van Der Straeten, Dominique. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. The Plant J, 2004, 39 (4): 537-559
    100. Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, Siebert P D. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci, 1996, 93:6025-6030
    101. Doganlar S, Tanksley S D, Mutschler M A. Identification and molecular mapping of loci controlling fruit ripening time in tomato. Theor Appl Genet, 2000, 100:249-255
    102. Donson J, Fang Y, Espiritu-Santo G, Xing W, Salazar A, Miyamoto S, Armendarez V, Volkmuth W: Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol, 2002, 48:75-97
    103. Endo T, Shimada T, Fujii H, Omura M. Cloning and characterization of 5 MADS-box cDNAs isolated from citrus fruit tissue. Scientia Horti, 2006, 109: 315-321
    104. Etxeberria E, Gonzalez P, Pozueta-Romero J. Sucrose transport into citrus juice cells: evidence for an endocytic transport system. J Amer Soc Hort Sci, 2005,130: 269-274
    105.Fei Z G, Tang X M, Alba R M, White J A, Ronning C M, Martin G B, Tanksley S D, Giovannoni J J. Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. The Plant J, 2004,40: 47-59
    106.Ferrandiz C, Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 2000, 289 (5478): 436-438
    107.Fonseca S, Hackler L, Zvara A, Dudits D. Monitoring gene expression along pear fruit development, ripening and senescence using cDNA microarrays. Plant Sci, 2004, 167: 457-469
    108.Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci, 1988, 85: 8998-9002
    109.Gepstein S, Sabehi G, Carp M J, Falah M, Hajouj T, Nesher O, Yariv I, Dor C, Bassani M. Large-scale identification of leaf senescence-associated genes. The Plant J, 2003,36: 629-642
    110.Gibson S I. Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot, 2003, 55(395): 253-264
    111.Gifford R M, Thome J H, Hitz W D. Giaquinta R T. Crop productivity and photoassimilate partitioning. Science, 1984, 225: 801-808
    112.Giovannoni J J. Genetic regulation of fruit development and ripening. The Plant Cell, 2004, 16: S170-180
    113.Giovannoni J J. Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Bio, 2001, 52: 725-749
    114.Given N K, Venis M A, Grierson D. Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta, 1988, 174: 402-406
    115.Godwin I D, Aitken E A, Smith L W. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 1997, 18(9): 1524-1528
    116.Grandillo S, Ku H M, Tanksley S D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet, 1999, 99: 978-987
    117.Gross J, Bazak H, Ben-Arier B. Changes in chlorophyll and carotenoid pigments in the peel of Triumph persimmon (Diospyros kaki L.) induced by pre-harvest gibberellin (GA_3) treatment. Scientia Hort, 1984, 24: 305-314
    118.Guo Y F, Gan S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant J, 2006, 46 (4): 601-612
    119.Gutierrez L, Conejero G, Castelain M, Guenin S, Verdeil JL, Thomasset B, Van Wuytswinkel O. Identification of new gene expression regulators specifically expressed during plant seed maturation. J Exp Bot, 2006, 57(9): 1919-1932
    120.Hadfied K A, Bennett A B. Polygalacturonases: many genes in search of a function. Plant physiol, 1998,117: 337-343
    121.Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene intransgenicplant. Nature, 1990, 346: 284
    122.Han C U, Lee C H, Jang K S, Choi G J, Lim H K, Kim J C, Ahn S N, Choi J E, Cha J S, Kim H T, Cho K Y, Lee S W. Identification of rice genes induced in a rice blast-resistant mutant. Mol Cells, 2004,17 (3): 462-468
    123.Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. Molecular characterization of Brassicanapus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Bio, 2003, 53: 383-397
    124.Heid C A, Stevens J, Livak K J, Williams P M. Real time quantitative PCR. Genome Res, 1996,6(10): 986-994
    125.Hibara K, Takada S, Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant J, 2003,36: 687-696
    126.Hong J H, Cowan A K, Lee S K. Glucose inhibits ACC oxidase activity and ethylene biosynthesis in ripening tomato fruit. Plant Growth Regul, 2004,43: 81-87
    127.Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci, 2006, 103: 12987-12992
    128.Hubank M, Schatz D G Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994, 22: 5640-5648
    129.Huber D J. The role of cell wall hydrolases in fruit softening. Horticul Rev, 1983, 5: 169-219
    130.Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH. Phytochrome-interacting fctor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305(5692): 1937-1941
    131.Iglesias D J, Tadeo F R, Legaz F. Primo-Millo E, Talon M. In vivo sucrose stimulation of color change in citrus fruit epicarps: Interactions between nutritional and hormonal signals. Physiol Plant, 2001,112: 244-250
    132.Iglesias D J, Tadeo F R, Primo-Millo E. Talon M. Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiol, 2003, 23: 199-204
    133.Jiang W B, Sheng Q, Jiang Y M, Zhou X J. Effects of 1-methylcyclopropene and gibberellic acid on ripening of Chinese jujube (Zizyphus jujuba M) in relation to quality. J Sci Food Agri, 2003, 84(1): 31-35
    134.Johal G S, Bridgs S P. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science, 1992,258: 985-987
    135.John I, Hackett R, Cooper W, Drake R, Farrell A, Grierson D. Cloning and characterization of tomato leaf senescencerelated cDNAs. Plant Mol Bio, 1997, 33: 641-651
    136.Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A H. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet, 1999, 98:704-711
    137.Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol, 2004,134(2): 824-838
    138.Katz E, Lagunes P M, Riov J, Weiss D, Goldschmidt E E. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta, 2004, 219: 243-252
    139.Kerr E A. Mutations of chlorophyll retention in ripe fruit. Rep Tomato Genet Coop, 1958, 8: 22
    140.Kijas J M H, Thomas M R, Fowler J C S, Roose M L. Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet, 1997,94: 701-770
    141.Kikuchi K, Tanaka M U, Yoshida K T, Nagato Y, Matsusoka M, Hirano H Y. Molecular analysis of the NAC gene family in rice. Mol Genet Genomics, 2000, 262: 1047-1051
    142.Kimura T, Shi Y Z, Shoda M. Identification of Asian pear varieties by SSR analysis. Breeding Sci, 2002,52(2): 115-121
    143.Klee H J. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol, 2004, 135: 660-667
    144.Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color. Science, 2004, 304(5673): 982
    145.Kobayashi S, Ishimaru M, Ding C K, Yakushiji H, Goto N. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci, 2001, 160 (3):543-550
    146.Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Bio, 2004, 7: 235-246
    147.Koch K E, Avigne W T. Postphloem, nonvascular transfer in Citrus: kinetics, metabolism, and sugar gradients. Plant Physiol, 1990, 93: 1405-1416
    148.Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot, 2002, 53: 61-71
    149.Komatsu A, Takanokura Y, Omura M. Akihama T. Cloning and molecular analysis of cDNA encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc). Mol Genet Genomics, 1996, 252: 346-351
    150.Krautler B. Unravelling chlorophyll catabolism in higher plants. Biochem Soci Transactions, 2002, 30(4): 625-630
    
    151.Kriedmann E. ~(14)C translocation in orange plants. Aust J Agric Res, 1969, 20: 291-300
    152.K.U H M, Doganlar S, Chen K Y, Tanksley S D. The genetic basis of pear-shaped tomato fruit. Theor Appl Genet, 1999,99: 844-850
    153.Lalusin A G, Nishita K, Kim S H, Ohta M, Fujimura T. A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Genet Genomics, 2006,275(1): 44-54
    154.Lampe J W. Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. Am J Clin Nutr, 1999,70(3): 475S-490S
    155.Lanahan M B, Yen H C, Giovannoni J J, Klee H J. The never ripe mutation blocks ethylene perception in tomato. Plant Cell, 1994,6: 521-530
    156.Lang P, Zhang C K, Ebel R C, Dane F, Dozier W A. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene, 2005, 359 (SUPPL): 111-118
    157.Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001,294: 862-864
    158.Lee R C, Feinbaum R L, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4. Cell, 1993, 75: 843-854
    159.Lelievre J M, Latche A, Jones B, Bouzayen M, Pech J C. Ethylene and fruit ripening. Physiol Plant, 1997,101 (4): 727-739
    160.Lestari P, Van K, Kim M Y, Hwang C H, Lee B W, Lee S H. Differentially expressed genes related to symbiotic association in a supernodulating soybean mutant and its wild-type. Mol Plant Pathol, 2006,7 (4): 235-247
    161.Liang P, Pardee A B. Differential display of eukaryolic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257(5072): 967-971
    162.Liu Y S, Roof S, Ye Z B, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci, 2004, 101(26): 9897-9902
    163.Lori A P, Barry C, Giovannoni J J. Signal transduction systems regulating fruit ripening. Trends in Plant Sci, 2004,9(7): 331-338
    164.Lowell C A, Tomlinson P T, Koch K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol, 1989, 90: 1394-1402
    165.Mallory A C, Dugas D V, Bartel D P, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2004, 14: 1035-1046
    166.Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P. Identification of aluminium-regulated genes by cDNA-AFLP in rice(Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot, 2004, 55(394): 137-143
    167.Marshall A, Hodgson J. DNA chips: an array of possibilities. Nat Biotech, 1998, 16(1): 27-31
    168.Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene, 2003, 316(16): 1-21
    169.Neff M M, Fankhauser C, Chory J. Light: an indicator of time and place. Genes Dev, 2000,14: 257-271
    170.Oeller P W, Lu M W, Taylor L P, Pike D A, Theologis A. Reversible inhibition of tomato fruit senescence by antisense 1-aminocyclopropane-1-carboxylate synthase. Science, 1991,254:437-439
    171.Ogawa T, Pan L, Kawai-Yamada M, Yu L H, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H. Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to bax and abiotic stress-induced plant cell death. Plant Physiol, 2005,38(3): 1436-1445
    172.Olsen AN, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005,10 (2): 79-87
    173.Palatnik J F, Alen E, Wu X, Schommer C, Schwab R. Control of leaf morphogenesis by microRNA. Nature, 2003,425: 257-263
    174.Pangborn R M. Relative taste intensities of selected sugars and organic acids. J Food Sci, 1963,28:726-733
    175.Park S, Sugimoto N, Larson M D, Beaudry R, van Nocker S. Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol, 2006, 141: 811-824
    176.Peraza-Echeverria S, Herrera-Valencia VA, Kay A. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 2001, 161(2): 359-367
    177.Peters J L, van Tuinen A, Adamse P, Kendrick R E, Koornneef M. High pigment mutants of tomato exhibit high sensitivity for phytochrome action. Plant Physiol, 1989,134:661-666
    178.Pialdwin E A. Citrus fruit in biochemistry of fruit ripening. Edited by Seymour G, Taylor J and Tuker G. Chapman & Hall, London, 1993,107-137
    179.Picton S B. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. The Plant J, 1993, 3: 469-481
    180.Piepho H P, Koch G. Co-dominant analysis of banding data from a dominant marker system by normal mixtures. Genetics, 2000, 155: 1459-1468
    181 .Popova T N, Pinheiro de Carvalho M A A. Citrate and isocitrate in plant metabolism. Biochimica et Biophysica Acta, 1998, 1364: 307-325
    182.Ramakrishnan C V. Citric acid metabolism in the fruit tissues of Citrus acida. Curr Sci, 1971, 5: 97-100
    183.Ratajczak R, Luttge U, Gonzalez P, Etxeberria E. Malate and malate-channel antibodies inhibit electrogenic and ATPdependent citrate transport across the tonoplast of citrus juice cells. J Plant Physiol, 2003, 160: 1313-1317
    184.Razin A, Cedar H. DNA methylation and gene expression. Microbiol Mol Biol Rev, 1991, 55(3): 451-458
    185.Reinhart M M, Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P. MicroRNAs in plants. Genes Develop, 2002,16: 1616-1626
    186.Ren M Z, Chen Q J, Li L, Zhang R, Guo S D. Successive chromosome walking by compatible ends ligation inverse PCR (CELI-PCR). Mol Biotech, 2005, 30(2): 95-102
    
    187.Rick C M. New mutants. Rep Tomato Genet Coop, 1956,6: 22-23
    188.Robinson R, Tomes M. Ripening inhibitor: a gene with multiple effects on ripening. Rep Tomato Genet Coop, 1968,18: 36-37
    189.Rodrigo M J, Marcos J F, Alferez F, Mallent M D, Zacarias L. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot, 2003, 54(383): 727-738.
    190.Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol, 2006, 57: 675-709
    191.Ron P, Feng X Q, Moshe H, David G, Raphael G, Eliezer E G Gibberellic acid slows postharvest degreening of 'Oroblanco' citrus fruits. Hortscience, 2001, 36(5): 937-940
    192.Ros F, Kunze R. Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics, 2001,157: 1728-1733
    193.Sadka A, Dahan E, Cohen L Marsh K B. Aconitase activity and expression during the development of lemon fruit. Physiol Plant, 2000a, 108: 255-262
    194.Sadka A, Dahan E, Or E, Cohen L. NADP-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci, 2000b, 158: 173-181
    195.Salentijn E M J, Aharoni A, Schaart J G, Boone M J, Krens F A. Differential gene expression analysis of strawberry cultivars that differ in fruit-firmness. Physiol Plant, 2003,118:571-578
    196.Sanchez-Ballesta M T, Lluch Y, Gosalbes M J, Zacarias L, Granell A, Lafuente M T. A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta, 2003,28(1): 65-70
    197.Schaefer B C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem, 1995, 227: 255-273.
    198.Schofield A, Paliyath G Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. Plant Physiol Bioch, 2005,43(12): 1052-1060
    199.Schuktz J, Doerks T, Ponting C P, Copley R R, Bork P. More than 1000 putative new human signaling proteins revealed by EST data mining. Nat Genet, 2000, 25(2): 201-204
    200.Sciancalopore A, Martelli G, Greco I, Cellini F, Sunseri F, Gallitelli M. Towards the identification of candidate genes involved in the sit tomato (Lycopersicon esculentium MILL.) mutant by using cDNA-AFLP analysis in isogenic lines. Acta Hort (ISHS), 2003,618: 95-103
    201.Scott K D, Ablett E M, Lee L S, Henry R J. AFLP markers distinguishing an early mutant of flame seedless grape. Euphytica, 2000,113: 245-249
    202.Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, Lastochkin E, Ravid U, Amar O, Edelstein M, Karchi Z, Lewinsohn E. Acetyl-CoA alcohol acetyltransferase activity and aroma form action in ripening melon fruits. J Agric Food Chem, 2001,49: 794-799
    203.Sharma A C, Gill P K, Singh P. RNA isolation from plant tissues rich in polysaccharides. Anal Biochem, 2003, 314: 319-321
    204.Sharon-Asa L, Shalit M, Frydman A, Bar E, Holland D, Or E, Lavi U, Lewinsohn E, Eyal Y. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstpsl, a key gene in the production of the sesquiterpene aroma compound valencene. The Plant J, 2003, 36(5): 664-674
    205.Sheen J, Zhou L, Jang J C. Sugars as signaling molecules. Curr Opin Plant Biol, 1999,2:410-418
    206.Sinclair W B. The biochemistry and physiology of the Lemon and other citrus fruits. University of California, Oakland, CA, 1984,114-141
    207. Smart R E, Smith S M, Winchester R V. Light quality and quantity effects on fruit ripening for Cabernet sauvignon. Am J Enol Vitic, 1988, 39(3): 250-258
    208.Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Sci, 1999, 4 (10): 401-407
    209.Takada S, Hibara K, Ishida T, Tasaka M. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 2001, 128: 1127-1135
    210.Talon M, Tadeo F R, Ben-Cheikh W, Gomez-Cadenas A, Mehouachi J, Perez-Botella J, Primo-Millo E. Hormonal regulation of fruit set and abscission in citrus: classical concepts and new evidence. Acta Hort (ISHS), 1998, 463: 209-218
    211 .Tao N G, Xu J, Cheng Y J, Deng X X. Lycopene-ε-cyclase pre-mRNA is alternatively spliced in Cara Cara navel Orange (Citrus sinensis Osbeck). Biotech Lett, 2005, 27: 779-782
    212.Tesniere C, Pradal M, El-Kereamy A, Torregrosa L, Chatelet P, Roustan J P, Chervin C. Involvement of ethylene signaling in a non-climacteric fruit: new elements regarding the regulation of ADH expression in grapevine. J Exp Bot, 2004, 55(406): 2235-2240
    213.Theissen G, Strater T, Fischer A, Saedler H. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene, 1995, 156(2): 155-166
    214.Thompson A J, Tor M, Barry C S, Verbalov J, Orfila C, Jarvis M C, Giovannoni J J, Grierson D, Seymour G B. Molecular and genetic characterisation of a novel pleiotropic tomato-ripening mutant. Plant Physiol, 1999, 120: 383-389
    215.Tieman D M, Taylor M G, Ciard I JA, Klee H J. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene responseand exibit functional compensation within a multigene family. Proc Natl Acad Sci, 2000, 97:5663-5668
    216.Tigchelaar E C, Tomes M, Kerr E, Barman R. A new fruit ripening mutant, non-ripening (nor). Rep Tomato Genet Coop, 1973, 23:33
    217.Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P. The use of microarray μtPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci, 2006, 170(3): 606-613
    218.Trainotti L, Pavanello A, Casadoro G. Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot, 2005, 56(418): 2037-2046
    219.Twyman R M.发育生物学(影印本).北京:科技出版社,2002, 1-38
    220.Tzeng T Y, Chen H Y, Yang C H. Ectopic expression of carpel-specific MADS-box genes from lily and lisianthns causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol, 2002, 130(4): 1827-1836
    221.Van Hal N L W, Vorst O, Van Houwelingen A M M L, Kok E J, Peijnenburg A, Aharoni A, Van Tunen A J, Keijer J. The application of DNA microarrays in gene expression analysis, J Biotechnol, 2000, 78:271-280
    222.Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inze D, Van Breusegem F. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci, 2003, 100:16113-16118
    223.Velculescu V E, Zhang L, Vogelstein B, Kinzler K W. Serial analysis of gene expression. Science, 1995, 270:484-487
    224.Vrebalov J, Ruezinskey D, Giovannoni J. A MADS-bOX gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus. Science, 2002, 296:343-346
    225.Vuylsteke M, Daele H, Vercauteren A, Zabeau M, Kuiper M. Genetic dissection of transcriptional regulation by cDNA-AFLP. The Plant J, 2006, 45(3): 439-446
    226.Wada T, Penninger J M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004, 23(16): 2838-2849
    227.Wang H, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8:172-178
    228.Wang S M, Rowley J D. A strategy for genome-wide analysis: Integrated procedure for gene identification. Proc Natl Acad Sci, 1998, 95:11909-11914
    229.White P J. Recent advances in fruit development and ripening: an overview, J Exp Bot, 2002, 53(377): 1995-2000
    230.Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NACI transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev, 2000, 14: 3024-3036
    231.Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N. SSRs isolatied from apple can identify polymorphism and genetic diversity in pear. TheorAppl Genet, 2001,102: 865-887
    232.Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 1984,35: 155-157
    233.Yao J L, Dong Y H, Morris B A M. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci, 2001,98:1306-1311
    234.Yen C H, Koch K E. Developmental changes in translocation and localization of ~(14)C-labeled assimilates in grapefruit: Light and dark CO_2 fixation by leaves and fruit. J Am Soc Hortic Sci, 1990,115: 815-819
    235.Yen H C, Shelton B A, Howard L R, Lee S, Vrebalov J, Giovannoni J J. The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet, 1997,95(7): 1069-1079
    236.Yolanda M C V, Neftali O A, Linda W, Elizabeth A B. An improved method for isolating RNA from dehydrated and nondehydrated Chili pepper (Capsicum annuum L.) plant tissues. Plant Mol Bio Rep, 2002, 20: 407-414
    237.Zhang B H, Pan X P, Cobb G P, Anderson T A. Plant microRNA: a small regulatory molecule with big impact. Dev Biol, 2006, 289(1): 3-16.
    238.Zhu T. Global analysis of gene expression using GeneChip microarrays. Curr Opin Plant Biol, 2003,6: 418-425
    239.Ziliotto F, Begheldo M, Rasori A, Bonghi C, Ramina A, Tonutti P. Molecular and genetic aspects of ripening and qualitative traits in peach and nectarine fruits. Acta Hort (ISHS), 2005,682: 237-246
    240.Zsuzsanna S S, Peter H, Wolfgang N, Heinz S, Hans S. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 1990, 250: 931-936

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700