某些延迟微分方程数值方法的分支相容性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,延迟微分方程已经被广泛地应用到近代物理学、生物学、医学、经济学、人口学、化学反应工程学、自动控制理论等众多科学领域。对这类方程,由于只有少数特殊的方程可以显式求解,因此发展适用的数值方法是必要的。然而,能够正确反映原系统性质的数值方法才具有应用价值,所以研究数值方法能否保持原系统的动力学行为在理论上和应用上都具有十分重要的意义。
     本论文分别对几类延迟微分方程,研究了某些数值方法的分支相容性,即方法能否保持原方程分支的性质。
     首先,本文应用差分方法求解一类具有负反馈的二阶延迟微分方程,并研究了其数值离散系统的动力学行为。通过分析随着参数的变化,特征根的变化情况,再应用Neimark-Sacker分支定理,本文给出了Neimark-Sacker分支存在的充分条件。利用规范形理论和中心流形定理,我们计算了确定分支方向及闭的不变曲线稳定性的显式公式。通过比较数值离散系统和原系统的分支性质,结果说明了差分方法关于这类二阶延迟微分方程是分支相容的。
     其次,针对M.C. Mackey和L. Glass提出的用于描述血循环中粒细胞密度的延迟微分方程,本文考虑了非标准有限差分方法的分支相容性。应用上面类似的方法,我们分析了其数值离散系统正不动点的稳定性,给出了Neimark-Sacker分支存在的充分条件,得到了判断分支方向和闭的不变曲线稳定性的显式表达式。
     再次,本文应用中点公式求解一个描述动脉中二氧化碳浓度的延迟微分系统。我们分析了得到的数值离散系统正不动点的稳定性,给出了它经历Neimark-Sacker分支的条件,计算了确定分支方向和闭的不变曲线稳定性的显式表达式。得到的结论与原系统的分支性质比较表明,对于此方程中点公式是分支相容的。
     最后,本文研究了一类Runge-Kutta方法对于一类具有一般形式的延迟微分方程的分支相容性。应用隐函数定理,我们证明了如果原方程具有Hopf分支,那么这类Runge-Kutta方法对于该方程是分支相容的,并且如果方法是p阶的,那么Neimark-Sacker分支点收敛于Hopf分支点的收敛阶数也是p。为了验证上述理论结论的正确性,我们应用2级Gauss方法求解延迟Logistic方程,计算得到了Neimark-Sacker分支点收敛于Hopf分支点的阶数是4。
     此外,在每章的理论证明之后,我们都进行了相应的数值算例。它们表明了理论结果的正确性。
In the past several decades, delay differential equations have been widely appliedin many fields of science, such as in modern physics, biology, medicine, economics, de-mography, chemical reaction engineering, the theory of automatic control etc. Since theseequations can only be solved explicitly in some special cases, it is necessary to developsome appropriate numerical methods. However, a numerical method is valuable only ifthe method can re?ect exactly the property of the original system. Hence, both in the the-ory and in the applications, it is great significant to study whether the numerical methodscan preserve the dynamical behavior of the original system.
     In this dissertation, the bifurcational consistency of some numerical methods forcertain kinds of delay differential equations is studied, that is, whether the numericalmethods could preserve the bifurcation of the original systems is researched.
     Firstly, for a class of second order delay differential equations with negative feed-back, the dynamical behavior of the numerical discrete system derived by a differencemethod is investigated. The sufficient conditions under which the Neimark-Sacker bi-furcation exists are derived by analyzing the moving of the characteristic roots withthe changing of the delay parameter and using the Neimark-Sacker bifurcation theorem.Meanwhile, the explicit expressions of determining the direction of the bifurcation and thestability of the closed invariant curve are given by using the normal form theory and thecenter manifold theorem. Through comparing the bifurcation of the origin system withthe numerical discrete system, it is showed that the difference method is bifurcationallyconsistent for the second order delay differential equations.
     Secondly, for a delay differential equation constructed by M.C. Mackey and L.Glass, which characterizes the regulation of the density of mature cells in blood circu-lation, the bifurcational consistency of a non-standard finite difference method is consid-ered. It follows the similar way as in the above problem. The stability of the positivefixed point of the numerical discrete system is analyzed. The conditions which guaranteethe existence of the Neimark-Sacker bifurcation are given. The explicit expressions fordetermining the direction of the bifurcation and the stability of the closed invariant curveare obtained.
     Thirdly, for an arterial carbon dioxide control system, a delay differential equation,the Midpoint rule is applied to solve the numerical solutions. It is analyzed the stabilityof the positive fixed point of the numerical discrete system. The conditions under whichthe discrete system undergoes a Neimark-Sacker bifurcation are given. The explicit ex-pressions for determining the direction of the bifurcation and the stability of the closedinvariant curve are obtained. It is illustrated that the Midpoint rule for the system is bi-furcationally consistent, by comparing the results with the dynamical behaviors of thecontrol system.
     At last, a class of Runge-Kutta methods for some general delay differential equationsare studied. It is proved by employing the implicit function theorem that the Runge-Kuttamethods are bifurcationally consistent for the equations which undergo Hopf bifurcation,and that the Neimark-Sacker bifurcation point converges to the Hopf bifurcation pointwith order p if the Runge-Kutta method is of order p. To illustrate the correctness of theresults, the 2-stage Gauss method is used to solve the delay Logistic equation and it isseen that the Neimark-Sacker bifurcation point converges to the Hopf bifurcation pointwith order 4.
     Moreover, after the theoretical proof in every chapter, some numerical examples aregiven which illustrate the correctness of the theoretical results.
引文
1陈明晖,邓明立.庞加莱微分方程定性理论研究初探–兼纪念庞加莱诞辰150周年.科学(上海). 2004, 56(1):29~31
    2 A.M. Liapunov. The General Problem of the Stability of Motion, Kharkov Mathe-matical Society, 1892
    3 G.D. Birkhoff. Dynamical Systems. Amer. Math. Soc. Coll. Publ., New York, 1927
    4魏俊杰,黄启昌.泛函微分方程分支理论发展概况.科学通报. 1997, 42(24):2581~2586
    5 M.S. Peng. Symmetry Breaking, Bifurcations, Periodicity and Chaos in the EulerMethod for a Class of Delay Differential Equations. Chaos Solitons Fractals. 2005,24: 1287~1297
    6 M.S. Peng. Effective Approaches to Explore Rich Dynamics of Delay-DifferentialEquations. Chaos Solitons Fractals. 2005, 25(5): 1113~1140
    7 B.D. Zheng, Y. Zhang, C.R. Zhang. Stability and Bifurcation of a Discrete BAMNeural Network Model with Delays. Chaos Solitons Fractals. 2008, 36: 612~616
    8 N. Chafee. A Bifurcation Problem for a Functional Differential Equation of FinitelyRetarded Type. J. Math. Anal. Appl. 1971, 35: 312~348
    9 O. Diekmann. Delay Equations Functional-, Complex-, and Nonlinear Analysis.Springer-Verlag. 1995
    10 K. Gopalsamy. Stability and Oscillations in Delay Differential Equations of Popu-lation Dynamics. Kluwer Academic Publishers. 1992
    11 J.K. Hale, S.M.V. Lunel. Introduction to Functional Differential Equations.Springer-Verlag. 1993
    12 J.K. Hale. Theory of Functional Differential Equations. Springer-Verlag. 1993,245~247
    13 B.D. Hassard, N.D. Kazarinoff, Y.H. Wan. Theory and Applications of Hopf Bifu-ration. Cambridge University Press. 1981, 129~174 266~276
    14廖晓昕.动力系统的稳定性理论和应用.国防工业出版社. 2000
    15郑祖庥.泛函微分方程理论.安徽教育出版社. 1994
    16 Z.H. Liu, R. Yuan. Stability and Bifurcation in a Delayed Predator-Prey Systemwith Beddington-DeAngelis Function Response. J. Math. Anal. Appl. 2004, 296:521~537
    17马知恩.种群生态学的数学建模与研究.安徽教育出版社. 1996
    18 B. Lehman, S.P. Weibel. Averaging Theory for Functional Differential Equations.Control Tampa. Proceedings of the 37th IEEE conference on decision 8. FloridaUSA. December 1998
    19 H. Fang, J.B. Li. On the Existence of Periodic Solutions of a Neutral Delay Modelof a Single-Species Populations Growth. J. Math. Anal. Appl. 2001, 259: 8~17
    20 H. Fang, Z.C. Wang. Existence and Global Attractivity of Positive Periodic Solu-tions for Delay Lotka-Volterra Competition Patch Systems with Stocking. J. Math.Anal. Appl. 2004, 293: 190~209
    21 H.I. Freeman, J. Wu. Periodic Solutions of Single-Species Models with PeriodicDelay. SIAM J. Math. Anal. 1992, 23: 689~701
    22 Y.K. Li. Existence and Global Attractivity of a Positive Periodic Solutions for aClass of Delay Equations. Sci. China Ser. A-Math. 1998, 28(2): 108~118
    23 Y.K. Li, Y. Kuang. Periodic Solutions of Periodic Delay Lotka-Volterra Eqautionsand Systems. J. Math. Anal. Appl. 2001, 255: 260~280
    24 J. Mawhin. Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Regional Conf Ser in Math No.40 Amer Math Soc Providence RI. 1979
    25 J. Mawhin, M. Wilem. Critical Point Theory and Hamilton Systems. Springer-Verlag. 1989
    26 K. Wang. Periodic Solutions to a Class of Differential Equations with DeviatingArguments. Acta. Math. Sin.-English Ser. 1994, 37(3): 409~413
    27 J.D. Cao. Periodic Oscillation and Exponential Stability of Delayed CNN. Phys.Lett. A. 2000, 270: 157~163
    28曹进德.时延细胞神经网络的指数稳定性和周期解.中国科学(E辑). 2000, 30:541~549
    29 C.M. Marcus, R.M. Westervelt. Stability of Analog Neural Networks with Delay.Phy. Rev. A. 1989, 39: 347~359
    30董士杰,葛渭高.一类滞后型非自治的捕食者-食饵系统的周期解.系统科学与数学. 2003, 23: 461~466
    31 Y.M. Chen. Multiple Periodic Solutions of Delayed Predator-Prey System WithType IV Functional Response. Nonlinear Anal.-Real World Appl. 2004, 5: 45~53
    32 X.H. Ding, C. Lu, M.Z. Liu. Periodic Solutions for a Semi-Ratio-DependentPredator-Prey System with Nonmonotonic Functional Response and Time Delay.Nonlinear Anal.-Real World Appl. 2008, 9(3): 762~775
    33 S.N. Chow, J. Mallet. Integral Averaging and Bifurcation. J. Diff. Equns. 1977, 26:112~159
    34 N.D. Kazarinoff, Y.H. Wan, P.V. Driessche. Hopf Bifurcation and Stability of Peri-odic Solutions of Differential-Difference and Integro-Differential Equations. J. Inst.Math. Appl. 1978, 21: 461~477
    35 J. Wei, Q. Huang. Hopf Bifurcation of Sun?ower Equation Parametrized by Delay.Chin. Sci. Bull. 1995, 40(12): 981~983
    36 Y. Song, J. Wei. Local Hopf Bifurcation and Global Periodic Solutions in a DelayPredator-Prey System. J. Math. Anal. Appl. 2005, 301: 1~21
    37 Y. Chen, C. Song. Stability and Hopf Bifurcation Analysis in a Prey-Predator Sys-tem with Stage-Structure for Prey and Time Delay. Chaos Solitons Fractals. 2008,38(4): 1104~1114
    38 D. Xu. Global Dynamics and Hopf Bifurcation of a Structured Population Model.Nonlinear Anal.-Real World Appl. 2005, 6: 461~476
    39 Z. Cheng, J. Cao. Bifurcation and Stability Analysis of a Neural Network Modelwith Distributed Delays. Nonlinear Dyn. 2006, 46: 363~373
    40林怡平.分支理论在时滞微分系统中的应用.上海大学博士论文. 2005
    41 T. Luzyanina, K. Engelborghs, S. Ehl, P. Klenerman, G. Bocharov. Low Level ViralPersistence After Infection with LCMV: a Quantitative Insight Through NumericalBifurcation Analysis. Math. Biosci. 2001, 173: 1~23
    42 X.H. Ding, W.X. Li. Local Hopf Bifurcation and Global Existence of Periodic So-lutions in a Kind of Physiological System. Nonlinear Anal.-Real World Appl. 2007,8(5): 1459~1471
    43 K. Cooke, P. van den Driessche, X. Zou. Interaction of Matiration Delay and Non-linear Birth in Population and Epidemic Models. J. Math. Biol. 1999, 39: 332~352
    44 Y.L. Song, J.J. Wei, Y. Yuan. Bifurcation Analysis on a Survival Red Blood CellsModel. J. Math. Anal. Appl. 2006, 316: 459~471
    45 J.J. Wei, M.Y. Li. Hopf Bifurcation Analysis in a Delayed Nicholson Blow?iesEquation. Nonlinear Anal.-Theory Methods Appl. 2005, 60(7): 1351~1367
    46 J.J. Wei, X.F. Zou. Bifurcation Analysis of a Population Model and the ResultingSIS Epidemic Model with Delay. J. Comput. Appl. Math. 2006, 197: 169~187
    47 K.J. In’t Hout, M.N. Spijker. Stability Analysis of Numerical Methods for DealyDifferential Equations. Numer. Math. 1991, 59: 807~814
    48 K.J. In’t Hout. A New Interpolation Procedure for Adapting Runge-Kutta Methodsto Delay Differential Equations. BIT. 1992, 32: 634~649
    49 M.Z. Liu, M.N. Spijker. The Stability of theθ-Methods in the Numerical Solutionof Delay Differential Equations. IMA Num. An. 1990, 10: 31~48
    50 M. Zennaro. P-Stability Properties of Runge-Kutta Methods for Delay DifferentialEquations. Numer. Math. 1986, 49: 305~318
    51 E. Hairer, S.P. N?rett, G. Wanner. Solving Ordinary Differential Equations: Vol. I.Nonstiff problems. Springer-Verlag. 1987, 286~300 130~217 288~289 418~419
    52 A. Bellen, M. Zennaro. Numerical Methods for Delay Differential Equations. Ox-ford University Press. 2003, 107~154 152~158
    53 A. Bellen, M. Zennaro. Stability Properties of Interpolants for Runge-Kutta Meth-ods. SIAM J. Numer. Anal. 1988, 25(2): 411~432
    54匡蛟勋.泛函微分方程的数值处理.科学出版社. 1999
    55 V.K. Barwell. Special Stability Problems for Functional Differential Equations.BIT. 1975, 15: 130~135
    56 A.N. AL-Multib. Stability Property of Numerical Methods for Solving Delay Dif-ferential Equations. J. Comput. Appl. Math. 1984, 10(1): 71~79
    57 A. Bellen, Z. Jackiewicz, M. Zennaro. Stability Analysis of One-Step Methods forNeutral Delay Differential Equations. Numer. Math. 1988, 52: 605~619
    58 K.J. In’t Hout. The Stability ofθ-Methods for Systems of Delay Differential Equa-tions. Ann. of Numer. Math. 1994, 1: 323~334
    59 Y.K. Liu. Stability Analysis of theθ-methods for Neutral Functional DifferentialEquations. Numer. Math. 1995, 70: 473~483
    60 L.H. Lu. The Stability of the Block Theta-Methods. IMAJ. Numer. Anal. 1993,13(1): 101~114
    61 L. Qiu, T. Mitsui, J.X. Kuang. The Numerical Stability of theθ-methods for theDelay Differential Equations with Many Variable Delay. J. Comput. Math. 1999, 5:523~532
    62 T. Koto. Stability ofθ-Methods for Delay Integro-Differential Equations. J. Com-put. Appl. Math. 2003, 161: 393~404
    63 Y. Xu, M.Z. Liu. H-Stability of Linearθ-Method with General Variable Stepsizefor System of Pantograph Equations with Two Delay Terms. Appl. Math. Comput.2004, 156: 817~829
    64 D.S. Li, M.Z. Liu. Runge-Kutta Methods for the Multi-Pantogragh Delay Equation.Appl. Math. Comput. 2005, 163: 383~395
    65丛玉豪,张媛颖,项家祥. RK-方法求解广义时滞微分方程的GPL-稳定性.系统仿真学报. 2005, 17(3): 587~589
    66 N. Guglielmi. On the Asymptotic Stability Properties of Runge-Kutta Methods forDelay Differential Equations. Numer. Math. 1997, 77: 467~485
    67 T. Koto. A Stability Property of A-Stable Natural Runge-Kutta Methods for Sys-tems of Delay Differential Equations. BIT. 1994, 34(2): 262~267
    68 J.X. Kuang, H.J. Tian, T. Mitsuic. Asymptotic and Numerical Stability of Systemsof Neutral Differential Equations with Many Delays. J. Comput. Appl. Math. 2009,223: 614~625
    69 Y.H. Cong, J.N. Cai, J.X. Kuang. The GPL-Stability of Rosenbrock Methods forDelay Differential Equation. Appl. Math. Comput. 2004, 150: 533~542
    70 P. Hu, C.M. Huang, S.L. Wu. Asymptotic Stability of Linear Multistep Methodsfor Nonlinear Neutral Delay Differential Equations. Appl. Math. Comput. 2009,doi:10.1016/j.amc.2009.01.028
    71 C.M. Huang, H.Y. Fu, S.F. Li, G.G. Chen. Stability Analysis of Runge-Kutta Meth-ods for Non-Linear Delay Differential Equations. BIT. 1999, 39(2): 270~280
    72 C.M. Huang, S.F. Li, H.Y. Fu, G.G. Chen. Stability and Error Analysis of One-LegMethods for Nonlinear Delay Differential Equations. J. Comput. Appl. Math. 1999,103: 263~279
    73 S.Q. Gan. Asymptotic Stability of Rosenbrock Methods for Systems of FunctionalDifferential and Functional Equations. Math. Comput. Model. 2006, 44: 144~150
    74 W.S. Wang, S.F. Li. Stability Analysis ofθ-Methods for Nonlinear Neutral Func-tional Differential Equations. SIAM J. Sci. Comput. 2008, 30(4): 2181~2205
    75 Q. Zhu, A.G. Xiao. Parallel Two-Step ROW-Methods for Stiff Delay DifferentialEquations. Appl. Numer. Math. 2009, doi:10.1016/j.apnum.2009.01.005
    76 A.G. Xiao, Y.F. Tang. Regularity Properties of One-Leg Methods for Delay Differ-ential Equations. Comput. Math. Appl. 2001, 41: 363~372
    77 C.J. Zhang, S.Z. Zhou. Nonlinear Stability and D-Convergence of Runge-KuttaMethods for Delay Differential Equations. J. Comput. Appl. Math. 1997, 85(2):225~237
    78 C.J. Zhang, G. Sun. The Discrete Dynamics of Nonlinear Infinite-Delay-Differential Equations. Appl. Math. Lett. 2002, 15: 521~526
    79 J.D. Lambert. Numerical Methods for Ordinary Differential Systems. John Wiley& Sons. 1991, 149~213 199~204
    80 K. Dekker, J.G. Verwer. Stability of Runge-Kutta Methods for Stiff Nonlinear Dif-ferential Equations. North-Holland. 1984, 50~51
    81李寿佛.刚性微分方程算法理论.湖南科学技术出版社. 1997
    82 K. In’t Hout, C. Lubich. Periodic Orbit of Delay Differential Equations under Dis-cretization. BIT. 1998, 38(1): 72~91
    83 A. Bellen. Contractivity of Continuous Runge-Kutta Methods for Delay Differen-tial Equations. Appl. Numer. Math. 1997, 24: 219~232
    84 H.J. Tian, N. Guo. Asymptotic Stability, Contractivity and Dissipativity of One-Legθ-Method for Non-Autonomous Delay Functional Differential Equations. Appl.Math. Comput. 2008, 203: 333~342
    85 W.S. Wang, S.F. Li. Conditional Contractivity of Runge–Kutta Methods for Non-linear Differential Equations with Many Variable Delays. Commun. Nonlinear Sci.Numer. Simul. 2009, 14: 399~408
    86 W.S. Wang, S.F. Li. Dissipativity of Runge-Kutta Methods for Neutral Delay Dif-ferential Equations with Piecewise Constant Delay. Appl. Math. Lett. 2008, 21:983~991
    87 S.Q. Gan. Dissipativity ofθ-Methods for Nonlinear Delay Differential Equationsof Neutral Type. Appl. Numer. Math. 2009, 59: 1354~1365
    88 J.R. Claeyssen. The Integral-Averaging Bifurcation Method and General One-Delay Equation. J. Math. Anal. Appl. 1980, 78: 429~439
    89 J.C. Fernandes de Oliveira, J.K. Hale. Dynamic Behavior from Bifurcation Eqau-tions. Tohoku Math. J. 1980, 32: 577~592
    90 H.W. Stech. Nongeneric Hopf Bifurcation Infunctional Differential Eqautions.SIAM J. Math. Anal. 1985, 16: 1134~1151
    91 J.M. Franke, H.W. Stech. Extensions of an Algorithm for the Analysis of Non-generic Hopf Bifurcation with Applications to Delay-Differential Equations. InBusenberg, S., and Martelli, M. (eds.), 1990. Delay Differential Equations and Dy-namical Systems, Springer-Verlag, 1991, 161~175
    92 T. Luzyanina, D. Roose. Numerical Stability Analysis and Computation of HopfBifurcation Points for Delay Differential Equations. J. Comput. Appl. Math. 1996,72: 379~392
    93 K. Engelborghs, T. Luzyanina, D. Roose. Numerical Bifurcation Analysis of DelayDifferential Equations. J. Comput. Appl. Math. 2000, 125: 265~275
    94 R. Rand, A. Verdugo. Hopf Bifurcation Formular for First Order Differential-DelayEquations. Comm. Nonlinear Sci. Numer. Simulat. 2007, 12: 859~864
    95 T. Koto. Naimark-Sacker Bifurcations in the Euler Method for a Delay DifferentialEquations. BIT. 1998, 39(1): 110~115
    96 N.J. Ford, V. Wulf. The Use of Boundary Locus Plots in the Identification of Bi-furcation Points in Numerical Approximation of Delay Differential Equations. J.Comput. Appl. Math. 1999, 111: 153~162
    97 V. Wulf, N.J. Ford. Numerical Hopf Bifurcaiton for a Class of Delay DifferentialEquaitons. J. Comput. Appl. Math. 2000, 115: 601~616
    98 V. Wulf. Numerical Analysis of Delay Differential Equations Undergoing a HopfBifurcation. University of Liverpool doctor thesis. 1999, 67~77 64~65
    99 C.R. Zhang, M.Z. Liu, B.D. Zheng. Hopf Bifurcation in Numerical Approximationof a Class Delay Differential Equations. Appl. Math. Comput. 2003, 146: 335~349
    100 C.R. Zhang, B.D. Zheng. Hopf Bifurcation in Numerical Approximation of a n-Dimension Neural Network Model with Multi-Delays. Chaos Solitons Fractals.2005, 25: 129~146
    101 C.R. Zhang, M.Z. Liu, B.D. Zheng. Hopf Bifurcation in Numerical Approximationfor Delay Differential Equations. J. Appl. Math. Computing. 2004, 14: 319~328
    102 X.H. Ding, D. Fan, M.Z. Liu. Stability and Bifurcation of a Numerical Discretiza-tion Mackey-Glass System. Chaos Solitons Fractals. 2007, 34: 383~393
    103 X.H. Ding, W.X. Li. Stability and Bifurcation of Numerical Discretization Nichol-son Blow?ies Equation with Delay. Discrete Dyn. Nat. Soc. 2006, Article Number:19413
    104 Y.A. Kuznetsov. Elements of Applied Bifurcation Theory. Second Edition.Springer-Verlag. 1998, 57~63 79~104
    105 S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.Spring-Verlag. 1990, 253~381 374~381
    106 http://www.scholarpedia.org/article/Neimark-Sacker bifurcation
    107 X. Wang, E.K. Blum, Q.N. Li. Consistency of Local Dynamics and Bifurcationof Continuous-Time Dynamical Systems and Their Numerical Discretizations. J.Differ. Equ. Appl. 1998, 4(1): 29~57
    108 C.R. Zhang, Y.G. Zu, B.D. Zheng. Stability and Bifurcation of a Discrete Red BloodCell Survival Model. Chaos Solitons Fractals. 2006, 28: 386~394
    109 A. Beuter. J. Belair, C. Labrie. Feedback and Delays in Neurological Diseases: aModeling Study Using Dynamical Systems. Bull. Math. Biol. 1993, 55: 525~541
    110 R. Valle′e, M. Dubois, M. Cote′, C. Delisle. Second-Order Differential-Delay Equa-tion to Describe a Hybrid Bistable Device. Phys. Rev. A. 1987, 36: 1327~1332
    111 U. an der Heiden, A. Longtin, M. C. Mackey, J. G. Milton, R. Scholl. OscillatoryModes in a Nonlinear Second-Order Differential Equation With Delay. J. Dyn. Diff.Eq. 1990, 2: 423~449
    112 S.A. Campbell, J. Belair, T. Ohira, J. Milton. Limit Cycles, Tori and Complex Dy-namics in a Second-Order Differential Equation with Delayed Negative Feedback.J. Dyn. Diff. Eq. 1995, 7(1): 213~236
    113 E. Boe, H.C. Chang. Dynamics of Delayed Systems under Feedback Control.Chem. Eng. Sci. 1989, 44: 1281~1294
    114 K.L. Cooke, Z. Grossman. Discrete Delay, Distributed Delay and StabilitySwitches. J. Math. AnaL. Appl. 1982, 86: 592~627
    115 F.G. Boese. The Stability Chart for the Linearized Cushing Equation with a Dis-crete Delay and with Gamma-Distributed Delays. J. Math. Anal. Appl. 1989, 140:510~536
    116 W. Rudin. Real and Complex Analysis. Third Edition. Amer Math Soc. Providence,RI. 2004: 225~229
    117 M.C. Mackey, L. Glass. Oscillation and Chaos in Physiological Control Systems.Science. 1977, 197: 287~289
    118 M.A. Kramer, B.A. Lopour, H.E. Kirsch, A.J. Szeri. Bifurcation Control of a Seiz-ing Human Cortex. Phys. Rev. E. 2006, 73: 041928
    119 J.J. Wei. Bifurcation Analysis in A Scalar Delay Differential Equation. Nonlinear-ity. 2007, 20(11): 2483~2498
    120 K.C. Patidar. On the Use of Nonstandard Finite Difference Methods. J. Differ. Equ.Appl. 2005, 11(8): 735~758
    121 D.T. Dimitrov, H.V. Kojouharov. Nonstandard Finite-Difference Methods forPredator-Prey Models with General Functional Response. Math. Comput. Simul.2008, 78: 1~11
    122 S.M. Moghadas, M.E. Alexander, B.D. Corbett. A Non-Standard NumericalScheme for a Generalized Gause-Type Predator-Prey Model. Physica D. 2004, 188:134~151
    123 E. Hairer, C. Lubich, G. Wanner. Geometric Numerical Integration. Springer-Verlag. 2002, 120~121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700