小麦花发育重要基因TaGI1与Ta MADS1的分离与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是一种重要的粮食作物。为了理解小麦花发育的分子调控机制,本研究分离了调节小麦开花时间的TaGI1(Triticum aestivum GIGANTEA 1)基因和调控小麦花发育的TaMADS1(Triticum aestivum MADS box gene 1)基因,并对它们的表达模式与生物学功能进行了深入研究。主要结果如下:
    1、TaGI1 基因的序列特征
    TaGI1 基因cDNA 的全长为4012 bp,其中包括长度为3522 bp 的开放阅读框,由此推测TaGI1 蛋白包含1174 个氨基酸残基,并且含有核定位保守序列。瞬时表达实验表明pBI121-TaGI1-GFP 融合蛋白定位于细胞核内。氨基酸序列比较分析与系统进化树分析表明TaGI1 蛋白与拟南芥GI 蛋白以及GI 在其它植物中的同系物高度同源,并且与单子叶植物的GI 蛋白亲缘关系较近,而与双子叶植物的GI 蛋白亲缘关系则相对较远。
    2、TaGI1 基因的表达分析
    为了研究TaGI1 基因的时空表达模式,我们利用Northern 杂交对其进行了分析。结果显示,除了胚乳之外,TaGI1 基因的转录物在根、茎、叶、穗原基、小穗和胚等组织器官中都能被检测到。在短日照和长日照条件下,虽然TaGI1 的转录水平不同,但是都呈现周期性变化。这说明TaGI1 基因的表达呈现昼夜节律性,而且这种周期性表达模式受到日照长度和昼夜节奏钟的调节。尽管在连续光照或连续黑暗条件下,TaGI1 基因转录物在小麦叶中有一定水平的积累,但是并没有检测到TaGI1 基因表达水平的周期性变化。此外,RT-PCR 结果还表明,种子萌发后TaGI1 基因和TaHd1-1 基因(拟南芥中CO 基因的同源基因)在幼叶中的周期性表达是对光周期快速响应的结果。
    由于植物感受光信号的部位在叶片,所以我们利用原位杂交技术分析了TaGI1 基因转录产物的细胞定位。结果显示,在苗端分生组织和叶原基中均检测到杂交信号,而且信号强度在0 小时和10 小时两个时间点很相似,这表明TaGI1 基因在苗端的表达不呈现周期性。有趣的是,TaGI1 mRNA 在叶内定位于近轴端表皮细胞中,而且这些细胞恰恰靠近维管束。同时,当光照10 小时的时候,TaGI1 基因在这些细胞中的表达信号要比在光照0 小时的信号强,这进一步证明了TaGI1 基因在叶片中具有节律性表达。以上结果表明,TaGI1 基因响应光周期的节奏性表达是发生在叶中的特异细胞内,而不是发生在苗端。此外,长日照条件下TaHd1-1 基因在叶片的维管束中被检测到,尤其在小的
Wheat (Triticum aestivum L.) is an important crop and requires long day and short night to flower. To study the molecular mechanism of flower development in this species, we isolated TaGI1 (Triticum aestivum GIGANTEA 1) gene regulating flowering time in wheat and TaMADS1 (Triticum aestivum MADS box gene 1) gene involved in the flower development of wheat. The results are as follows:
    1. Isolation and characterization of TaGI1
    The nearly full-length cDNA of TaGI1 is 4012 bp in length and it has an open reading frame of 3522 bp. The deduced amino acid sequence of TaGI1 contains 1174 amino acid residues. The conserved region for nuclear localization in TaGI1 was identified. The pBI121-TaGI1-GFP fusion protein is clearly targeted to the nucleus in a transient transfection assay. The clustering analysis reveals that the TaGI1 protein is closer to HvGI of barley and OsGI of rice in monocots than to BrGI of cabbage and GI of Arabidopsis in dicots. Thus, these data suggest that TaGI1 is a GI homolog.
    2. Expression analysis of TaGI1
    The expression pattern of TaGI1 was studied by RNA blot hybridization. The results revealed that TaGI1 transcripts were detectable in both vegetative and reproductive tissues, with the exception of endosperm. TaGI1 transcript levels cycle in both long and short day conditions, indicating that the circadian expression patterns of TaGI1 is regulated by daylengths and circandian clock. The results also show that the rhythmic cycling of TaGI1 transcript levels was not observed although the transcripts were accumulated in the leaves in continuous light or continuous dark for 6 days. In addition, the results of RT-PCR indicate that the rapid rhythmic expression of TaGI1 and TaHd1-1 (CO ortholog in Arabidopsis) in the leaves of seedling after germination occurs in response to photoperiods.
    In order to explore subcellular localization of TaGI1 transcrips, in situ hybridization was performed. The results show that hybridization signals were detected in the vegetative shoots which contained shoot apical meristems and leaf primordia at 10 h and 0 h, and the levels of signals were quite similar at both time points, suggesting the TaGI1 expression does not cycle in the shoots. Interestingly, TaGI1 mRNA in leaves was localized in the cells of adaxial
    epidermis and those cells were just above the vascular bundles. Signals in these cells were much stronger at 10 h than at 0 h. Thus, these results indicated that the TaGI1 rhythmic expression occurred in the specific cells of leaves rather than shoot apices in response to photoperiod conditions. In addition, it is interesting that hybridization signals of TaHd1-1 were detected only in the vascular bundles, in particular, in the small vascular bundles. Further observation indicates that the signals are mainly accumulated in the xylems of vascular tissues. Thus, the results indicate that the tissues of TaGI1 expression are close to those of TaHd1-1 mRNA accumulation in leaves. 3. Functional analysis of TaGI1 We not only analysised the expression pattern of TaGI1 but also explored the function of TaGI1. Early flowering occurred in overexpressed 35S::TaGI1 plants under both long and short day conditions. Variation of flowering times was observed in different transformants and most likely caused by differences in TaGI1 expression levels. The flowering time of gi-2 plants expressing TaGI1 gene is very similar to the wild type plants in long day photoperiod. These data demonstrate that expression of TaGI1 alters flowering time and complements gi mutant phenotype. Real-time PCR was carried out to investigate the expression level of CO in wild type Arabidopsis, 35S::TaGI1 transgenic plants, gi-2 mutants and 35S::TaGI1/ gi-2 cross progeny. The results show the mutation of GI resulted in lower levels of CO transcripts in gi-2 mutant. The transcript levels of CO are higher in plants overexpressing TaGI1 than in wild type plants under long day photoperiod. In contrast, in the gi-2 mutant plants, CO is expressed in the same phase as in wild type plants, but at lower amplitude. However, when 35S::TaGI1 was transferred into gi-2 mutant plants, the levels of CO transcripts were restored. 4. Sequence analysis of TaMADS1 The nearly full-length cDNA of TaMADS1 is 1197 bp and encodes one of the typical MIKC MADS proteins in plants. Sequence analysis shows that TaMADS1 shares higher homology with SEP3 and SEP-like proteins. Further, the phylogenetic tree was constructed based on the alignment of amino acid sequences of MADS box full-length proteins. The results indicate that TaMADS1 is closer to E function genes, in particular, SEP3 and SEP3 homologs. Thus, it is most likely that the TaMADS1 belongs to a SEP3 group. In addition, the results of Southern hybridization show that although a few bands were detected in wheat
    genome, only one band shows a stronger signal. The result implies that there may be a single TaMADS1 gene in wheat genome. 5. Expression analysis of TaMADS1 gene Exression patterns of TaMADS1 were analyzed by Northern hybridization and in situ hybridization. Northern hybridization shows the transcripts of TaMADS1 were detected in carpels and stamens, but no signals were detectable in others tissues. Further, in situ hybridization results show that TaMADS1 transcripts begin to accumulate in the tissues of spikelet primordia after the formation of glume primordia, while the signals are weaker than those in floret primordial. In addition, TaMADS1 mRNA is accumulated in floret primordia and foral organ primordial. Thus, these data suggests that the activity of TaMADS1 could be involved in floret development. 6. Arabidopsis plants overexpressing TaMADS1 have the phenotypes of early flowering and abnormal floral organs In order to explore the function of TaMADS1, sense TaMADS1 was transferred to Arabidopsis. The phenotypes of transformants carrying sense TaMADS1 could be divided into mild phenotype and severe phenotype. Comparing with wild type plants, the transgenic plants with mild phenotype show reduced size and curled leaves, and these plants flower after the formation of three or four rosette leaves. Interestingly, the transgenic plants with severe phenotypes have two curled cotyledons and a solitary terminal flower. We did in situ hybridization to analyze the expression of LFY. The results show the strong signal is detected in the shoot apical meristem of the transgenic seedling at day 5 after germination, while the signal is very weak in the shoot apical meristem of the wild type seedling. The results indicate that the formation of flower primordia might occur in the embryos of transgenic plants with severe phenotype. Overexpression of TaMADS1 not only caused early flowering of transgenic plant but also altered the morphology of floral organs. Some sepals are converted into leaf-like structures, and the number of petals in most of transformants is reduced and the morphology of petals is altered. The number of stamens is also reduced, and they have short filaments and petaloid anthers that are sterile. Real-time quantitative PCR was performed to analyze the transcript levels of some genes
引文
Alabadi D., Oyama T., Yanovsky, M. J., Harmon, F. G., Mas, P., and Kay, S. A. 2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293: 880–883
    Alabadi D., Yanovsky M. J., Mas P., Harmer S. L., Kay S. A. 2002. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol., 12: 757–761
    Alvarez J., and Smyth D. R. 1999. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development, 126: 2356–2375
    Alvarez J., Guli C. L., Yu X. H., and Smyth, D. R. 1992. Terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J., 2: 103–116
    Alvarez-Buylla E. R., Pelaz S., Liljegren S. J., Gold S. E., Burgeff C., Ditta G. S., de Pouplana L. R., Martinez-Castilla L., and Yanofsky M. F. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA, 97: 5328–5333
    Amador V., Monte E., Garcia-Martinez J. L., and Prat S. 2001. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell, 106: 343–354
    Ambrose B. A., Lerner D. R., Ciceri P., Padilla C. M., Yanofsky M. F., and Schmidt R. J. 2000. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell, 5: 569-579
    Ampomah-Dwamena C., Morris B.A., Sutherland P., Veit B., and Yao J.L. 2002. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol., 130: 605-617
    An H., Roussot C., Suarez-Lopez P., Corbesier L., Vincent C., Pineiro M., Hepworth S., Mouradov A., Justin S., Turnbull C. G. N., and Coupland G. 2004. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 131: 3615–3626
    Angenent G. C., Franken J., Busscher M., van Dijken A., van Went J. L., Dons H. J., and van Tunen A. J. 1995. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell, 7: 1569–1582
    Angenent G. C., Franken J., Busscher M., Weiss D., and van Tunen A. J. 1994. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J., 5: 33-44
    Angenent G.C., Busscher M., Franken J., Mol J. N. M., and van Tunen A. J. 1992. Differential expression of two MADS box genes in wild type and mutant petunia flowers. Plant Cell, 4: 983-993
    Araki T. 2001. Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol., 4: 63–68
    Araki T., and Komeda Y. 1993. Analysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J., 3: 231-239
    Aubert D., Chen L., Moon Y. H., Martin D., Castle L. A., Yang C. H., and Sung Z. R. 2001. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell, 13: 1865-1875
    Aukerman M. J., Hirschfeld M., Wester L., Weaver M., Clack T., Amasino R. M., and Sharrock R. A. 1997. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell, 9: 1317–1326
    Ayre B., and Turgeon R. 2004. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol., 135: 1–8
    Batschauer A. 1999. Light perception in higher plants. Cell Mol. Life Sci., 55: 153–166 Bernier G. 1988. The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39: 175-219
    Bernier G., and Périlleux C. 2005. A physiological overview of the genetics of flowering time control. Plant Biotechnology J., 3: 3-16
    Bernier G., Havelange A., Houssa C., Petitjean A., and Lejeune P. 1993. Physiological signals that induce flowering. Plant Cell, 5: 1147–1155
    Bernier G., Kinet J. M., and Sachs R. M. 1981. The Physiology of Flowering, Vol. I. Boca Raton, FL: CRC Press.
    Birve A., Sengupta A. K., Beuchle D., Larsson J., Kennison J.A., Rasmuson-Lestander A., and Muller J. 2001. a novel Drosophila Polycomb group gene that is conserved in
    vertebrates and plants. Development, 128: 3371–3379
    Blázquez M. A. 2000. Flower development pathways. J. Cell Sci., 113: 3547-3548
    Blazquez M. A., and Weigel D. 2000. Integration of floral inductive signals in Arabidopsis. Nature, 404: 889–892
    Blazquez M. A., Green R., Nilsson O., Sussman M. R., and Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 10: 791–800
    Blazquez M. A., Soowal L. N. Lee I., and Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development, 124: 3835-3844
    Blazquez M. A., Trenor M., and Weigel D. 2002. Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol., 130: 1770-1775
    Blázquez M., Ahn J. H., and Weigel D. 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet., 33: 168–171
    Boile C., Koncz C., and Chua N. H. 2000. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev., 14: 1269–1278
    Borden K. L. B. 1998. RING fingers and B-boxes: Zinc-binding protein-protein interaction domains. Biochem. Cell Biol., 76: 351–358
    Borner R., Kampmann G., Chandler J., Gleissner R., Wisman E., Apel K., and Melzer S. 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J., 24: 591–599
    Boss P. K., Bastow R. M., Mylne J. S., and Dean C. 2004. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 16: S18-S31
    Bowman J. L., Alvarez J., Weigel D., Meyerowitz E. M., and Smyth D. R. 1993. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119: 721–743
    Bowman J. L., Smyth D. R., and Meyerowitz E. M. 1989. Genes directing flower development in Arabidopsis. Plant Cell, 1: 37–52
    Bowman J. L., Smyth D. R., and Meyerowitz E. M. 1991. Genetic AGAMOUS homologs from cucumber and petunia differ in their interactions among floral homeotic genes of
    Arabidopsis. Development, 112: 1–20
    Bradley D., Carpenter R., Copsey L., Vincent C., Rothstein S., and Coen E. 1996. Control of inflorescence architecture in Antirrhinum. Nature 379: 791–797
    Bradley D., Carpenter R., Sommer H., Hartley N., and Coen E. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 72: 85-95
    Bradley D.J., Ratcliffe O., Vincent C., Carpenter R., and Coen E. 1997. Inflorescence commitment and architecture in Arabidopsis. Science, 275: 80-83
    Bünning E. 1936. Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. Dtsch. Bot. Ges., 54: 590-607
    Burn J. E., Smyth D. R., Peacock W. J., and Dennis E. S. 1993a. Genes conferring late flowering in Arabidopsis thaliana. Genetica., 90: 147–155
    Cashmore A. R., Jarillo J. A., Wu Y. J., Liu D. 1999. Cryptochromes: blue light receptors for plants and animals. Science, 284: 760-765
    Cerdan P. D., and Chory J. 2003. Regulation of flowering time by light quality. Nature, 423: 881-885
    Chelsky D., Ralph R., and Jonak G. 1989. Sequence requirements for peptide-mediated translocation to the nucleus. Mol. Cell. Biol., 9: 2487-2492
    Chen L. J., Cheng J. C., Castle L., and Sung Z. R. 1997. EMF genes regulate Arabidopsis inflorescence development. Plant Cell, 9: 2011-2024
    Clarke J. H., and Dean C. 1994. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol. Gen. Genet., 242: 81–89
    Clough S. J.,and Bent A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16: 735-743
    Coen E. S., Meyerowitz E. M. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature, 353: 31-37
    Coen E. S., Romero J. M., Doyle S., Elliot R., Murphy G., and Carpenter R. 1990. Floricula: A homeotic gene required for flower development in Antirrhinum majus. Cell, 63: 1311–1322
    Colasanti J., Yuan Z., Sundaresan V. 1998. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell, 93: 593-603
    Coles J. P., Phillips A. L., Croker S. J., Garcia-Lepe R., Lewis M. J., and Hedden P. 1999. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J., 17: 547–556
    Coles J. P., Phillips A. L., Croker S. J., Garcia-Lepe R., Lewis, M.J., and Hedden P. 1999. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J., 17: 547–558
    Colombo L., Franken J., Koetje E., van Went J., Dons H., Angenent G., and van Tunen A. 1995. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 7: 1859–1868
    Corbesier L., and Coupland G. 2005. Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell and Environment, 28: 54-66
    Corbit K. C., Trakul N., Eves E. M., Diaz B., Marshall M., and Rosner M. R. 2003. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J. Biol. Chem., 278: 13061–13068
    Coupland G. 1995. Flower development. LEAFY blooms in aspen. Nature, 377: 482-483
    Covington M. F., Panda S., Liu X. L., Strayer C. A., Wagner D. R., and Kay S. A. 2001. ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell, 13: 1305–1315
    Curtis I. S., Nam H. G., Yun J. Y., and Seo K. H. 2002. Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res., 11: 249-256
    David R. S. 2005. Morphogenesis of flowers-our evolving view. Plant Cell, 17: 330-341 de Bodt S., Raes J., Florquin K., Rombauts S., Rouze P., Theissen G., and Van der Peer Y. 2003. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J. Mol. Evol., 56: 573–586
    de Folter S., Immink R. G. H., Kieffer M., ParenicováL., Henz S. R., Weigel D., Busscher M., Kooiker M., Colombo L., Kater M.M., Davies B. and Angenent G.C., 2005. Comprehensive interaction map of the arabidopsis mads box transcription factors. Plant
    Cell 10.1105/tpc.105.031831
    Deng X.W., Matsici M., and Wei N. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motify and a G beta homologous domain. Cell, 1992. 71: 791
    Devlin P. F., and Kay S. A. 2000. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12: 2499–2510
    Devlin P. F., Patel S. R., and Whitelam G. C. 1998. Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell, 10: 1479–1487
    Devlin P. F., Robson P. R., Patel S. R., Goosey L., Sharrock R. A., and Whitelam G. C. 1999. Phytochrome D acts in the shadeavoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol., 119: 909–915
    Dill A., and Sun T. P. 2001. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics, 159: 777–785
    Dill A., Jung H. S., and Sun T. P. 2001. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl. Acad. Sci. USA, 98: 14162–14167
    Ditta G., Pinyopich A., Robles P., Pelaz S., and Yanofsky M. F. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol., 14: 1935-1940
    Dunford R. P., Griffiths S., Christodoulou V., and Laurie D. A. 2005. Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet., 110: 925-931
    Egea-Cortines M., Saedler H., and Sommer, H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J., 18: 5370–5379
    Eriksson M. E., and Millar A. J. 2003. The circadian clock. a plant’s best friend in a spinning world. Plant Physiol., 132: 732-738
    Evans L T. The Induction of Flowering. Melbourne: Macmillan;1969
    Evans L. T. Flower induction and the florigen concept. 1971. Annu. Rev. Plant Physiol. Plant Mol. Biol., 22: 365-394
    Fan H. Y., Hu Y., Tudor M., and Ma H. 1997. Specific interactions between K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J., 12: 999–1010
    Fanchauser C., Yeh K. C., and Lagarias J. C. 1999. PKS1, a substrate phospharylated by phytochrome that modulates light signaling in Arabidopsis. Science, 284: 1589
    Fankhauser C., and Staiger D. 2002. Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta, 216: 1-16
    Favaro R., Pinyopich A., Battaglia R., Kooiker M., Borghi L., Ditta G.., Yanofsky, M. F., Kater M. M., and Colombo L. 2003. MADSbox protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15, 2603–2611.
    Ferrandiz C., Gu Q., Martienssen R., and Yanofsky M.F. 2000. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 127: 725–734
    Ferrario S., Immink R. G., Shchennikova A., Busscher-Lange J., and Angenent G. C. 2003. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 15: 914–925
    Flanagan C. A. and Ma H. 1994. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol., 26: 581-595
    Fowler S., Lee K., Onouchi H., Samach A., Richardson K., Morris B., Coupland G., and Putterill J. 1999. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J., 18: 4679-4688
    Fridborg I., Kuusk S., Moritz T., and Sundberg E. 1999. The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell, 11: 1019–1031
    Fridborg I., Kuusk S., Robertson M., and Sundberg E. 2001. The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. Plant Physiol., 127: 937–948
    Furuya M., and Schafer E. 1996. Photo perception and signaling of induction reactions by different phytochromes. Trends Plant Sci., 1: 301-307
    Garner W. W., and Allard H. A.1920. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res., 18: 553-606
    Gendall A. R., Levy Y. Y., Wilson A., and Dean C. 2001. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 107: 525–535
    Gocal G. F., Sheldon C. C., Gubler F., Moritz T., Bagnall D. J., MacMillan C. P., Li S. F., Parish R. W., Dennis E. S., Weigel D., and King R. W. 2001. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol., 127: 1682–1693
    Goodrich J., Puangsomlee P., Martin M., Long D., Meyerowitz E. M., and Coupland G. 1997. A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 386: 44-51
    Goremykin V. V., Hansmann S., Martin W. F. 1997. Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times. Plant Syst. Evol. 206: 337-351
    Goto K., and Meyerowitz E. M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev., 8: 1548–1560
    Goto K., Kyozuka J., and Bowman J. L. 2001. Turning floral organs into leaves, leaves into floral organs. Curr. Opin. Genet. Dev., 11: 449–456
    Greco R., Stagi L., Colombo L., Angenent G. C., Sari-Gorla M., and Pe M. E. 1997. MADS box genes expressed in developing inflorescences of rice and sorghum. Mol. Gen. Genet., 253: 615-623
    Green R. M., and Tobin E. M. 1999. Loss of the circadian clockassociated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA, 96: 4176–4179
    Gu Q., Ferrandiz C., Yanofsky M. F., and Martienssen R. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125: 1509–1517.
    Guo H. W., Yang W. Y., Mockler T. C., and Lin C. T. 1998. Regulations of flowering time by Arabidopsis photoreceptors. Science, 279: 1360–1363
    Gustafson-Brown C., Savidge B., and Yanofsky M. F. 1994. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell, 76: 131–143
    Halliday K. J. Hudson M., Ni M., Qin M., and Quail P. H. 1999. poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interactiong bHLH protein. Proc. Natl. Acad. Sci. USA, 96: 5832-5837
    Halliday K. J., Salter M. G., Thingnaes E., and Whitelam G. C. 2003. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J., 33: 875–885
    Hama E., Takumi S., Ogihara Y., and Murai K. 2004. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta, 218: 712-720
    Harmer S. L., Hogenesch L. B., Straume M., Chang H. S., Han B., Zhu T., Wang X., Kreps J. A., and Kay S. A. 2000. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290: 2110–2113
    Hartman U., H?hmann S., Nettesheim K., Wisman E., Saedler H., and Huijser P. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J., 21: 351-360
    Hayama R., Izawa T., and Shimamoto K. 2002. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol., 43: 494-504
    Hayama R., Yokoi S., Tamaki S., Yano M., and Shimamoto K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 422: 719-722
    He Y., Michaels S. D., and Amasino R. M. 2003. Regulation of flowering time by histone acetylation in Arabidopsis. Science, 302: 1751–1754
    Hepworth S. R., Valverde F., Ravenscroft D., Mouradov A., and Coupland G.. 2002. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promotor motifs. EMBO J., 21: 4327-4337
    Hicks K. A., Albertson T. M., and Wagner D. R. 2001. EARLY FLOWERING 3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell, 13: 1281–1292
    Hill T. A., Day C. D., Zondlo S. C., Thackeray A. G., and Irish V. F. 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic
    gene APETALA3. Development, 125: 1711–1721
    Honma T., and Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409: 525 –529
    Huang H., Mizukami Y., Hu Y., and Ma H. 1993. Isolation and characterization of the binding sequences or the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucleic Acids Res., 21: 4769-4776
    Huang H., Tudor M., Su T., Zhang Y., Hu Y., and Ma H. 1996. DNA binding properties of two Arabidopsis MADS domain proteins: Binding consensus and dimer formation. Plant Cell, 8: 81–94
    Huang H., Tudor M., Weiss C. A., Hu Y., and Ma H. 1995. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol., 28: 549-567
    Huang S. S., Raman A. S., Ream J. E., Fujiwara H., Cerny R. E., and Brown S. M. 1998. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol., 118: 773–781
    Huijser P., Klein J., L?nnig W. E., Meijer H., Saedler H., and Sommer H. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J., 11: 1239–1249
    Huq E., and Quail P. H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J., 2002. 21: 2441
    Huq E., Tepperman J. M., and Quail P. H. 2000. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA, 97: 9789-9794
    Imaizumi T., Tran H. G., Swartz T. E., Briggs W. R., Kay S. A. 2003. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426: 302-306
    Imlau A., Truernit E., and Sauer N. 1999. Cell-to-cell and longdistance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell, 11: 309–322
    Immink R. G., Ferrario S., Busscher-Lange J., Kooiker M., Busscher M., and Angenent G. C. 2003. Analysis of the petunia MADS-box transcription factor family. Mol. Genet. Genomics, 268: 598–606
    Immink R. G., Gadella T. W., Ferrario S., Busscher M., and Angenent G. C. 2002. Analysis of MADS box protein-protein in Arabidopsis flower development. Science, 303: 2022–2025
    Irish V. F., and Sussex I. M. 1990. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 2: 741–753
    Jack T. 2001. Plant development going MADS. Plant Mol. Biol., 46: 515-520
    Jack T. 2004. Molecular and genetic mechanisms of floral contol. Plant Cell, 16: S16-S17
    Jack T., Brockman L. L., Meyerowitz E. M. 1992. The homeotic gene APETALA3 of the Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68: 683-697
    Jack T., Fox G. L., and Meyerowitz E. M. 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and post-transcriptional regulation determine floral organ identity. Cell, 76: 703–716
    Jacobsen S. E., and Olszewski N. E. 1993. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell, 5: 887–896
    Jarillo J. A., Capel J., Tang R. H., Yang H. Q., Alonso J. M., Ecker J. R., and Cashmore A. R. 2001. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 410: 487–490
    Jeddeloh J. A., Stokes T. L., and Richards E. J. 1999. Maintenance of genomic methylation requires a SW12/SNF2-like protein. Nat. Genet., 22: 94–97
    Jeon J. S., Jang S., Lee S., Nam J., Kim C., Lee S. H., Chung Y. Y., Kim S. R., Lee Y. H., Cho Y. G., and An G. 2000. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 12: 871-884
    Jofuku K. D., den Boer B. G. W., Van Montagu M., and Okamuro J. K. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 6: 1211–1225
    Johanson U., West J., Lister C., Michaels S., Amasino R., and Dean C. 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 290: 344–347
    Kakutani T., Jeddeloh J. A., Flowers S. K., Munakata K., and Richards E. J. 1996. Developmental abnormalities and epimutations associated with DNA hypomethylation
    mutations. Proc. Natl. Acad. Sci. USA, 93: 12406–12411
    Kang H. G., Jeon J. S., Lee S., and An G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol., 38: 1021-1029
    Kang H. G., Noh Y. S., Chung Y. Y., Costa M., An K., and An G. 1995. Phenotypic alterations of petals and sepals by ectopic expression of a rice MADS box gene in tobacco. Plant Mol. Biol., 29: 1-10
    Kang H., Jang S., Chung J., Cho Y., and An G. 1997. Characterization of two rice MADS box genes that control flowering time. Mol. Cells, 7: 559-566
    Kania T., Russenberger D., Peng S., Apel K., and Melzer S. 1997. FPF1 promotes flowering in Arabidopsis. Plant Cell, 9: 1327–1338
    Kardailsky I., Shukla V. K., Ahn J. H., Dagenais N., Christensen S. K., Nguyen J. T., Chory J., Harrison M. J., and Weigel D.1999. Activation tagging of the floral inducer FT. Science, 286: 1962–1965
    Kempin S. A., Savidge B., and Yanofsky M. F. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science, 267: 522–525
    Kevei E., and Nagy F. 2003. Phytochrome controlled signaling cascades in higher plant. Physiologia Plantarum, 117: 305
    Kim J. Y., Song H. R., Taylor B. L. and CarréI. A. 2003. Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J., 22: 935-944
    Kinet J. M. 1993. Environmental, chemical and genetic control of flowering. Horticultural Reviews, 15: 279–334
    King K. E., Moritz T., and Harberd N. P. 2001. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics, 159: 767–776
    King R. W., and Evans L. T. 2003. Gibberellins and flowering of grasses and creals: prizing open the lid of the florigen black box. Annu. Rev.Plant Biol., 54: 307-328
    King R. W., and Zeevaart J. A. D. 1973. Floral stimulus movment in Perilla and flower inhibition caused by noninduced leaves. Plant Physiol., 51:727-738
    King R. W., Evans L. T. and Wardlaw I. F. 1968. Translocation of the floral stimulus in Pharbitís níl in relation to that of assimilates. Z. Pflanzenphysiol. 59: 377-388
    Kinoshita T., Harada J. J., Goldberg R. B., and Fischer R. L. 2001. Polycomb repression of flowering during early plant development. Proc. Natl. Acad. Sci. USA, 98: 14156–14161
    Klebs G. 1913. Uber das Verhaltnis der Aussenwelt zur Entwicklung der Pflanze. Sber. Akad. Wiss. Heidelberg, 5:1-47
    Klejnot J., and Lin C. Plant sciences. 2004. A CONSTANS experience brought to light. Science, 303: 965-966
    Knott J. E. 1934. Effect of a localized photoperiod on spinach. Proc. Am. Soc. Hort. Sci., 31: 152-154
    Kobayashi Y., Kaya H., Goto K., Iwabuchi M. and Araki T. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 286: 1960-1962
    Kohler C., Hennig L., Spillane C., Pien S., Gruissem W., and Grossniklaus U. 2003. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADSbox gene PHERES1. Genes Dev., 17: 1540–1553
    Komeda Y. 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol., 55: 521-535
    Koornneef M., and van der Veen J. H. 1980. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theor. Appl. Genet., 58: 257–263
    Koornneef M., Blankestijn-de Vries H., Hanhart C., Soppe W., and Peeters T. 1994. The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J., 6: 911–919
    Koornneef M., Hanhart C. J., and van der Veen J. H. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet., 229: 57-66
    Kreppel L. K., Blomberg M. A., and Hart G. W. 1997. Dynamic glycosylation of nuclear and cytosolic proteins—cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem., 272: 9308–9315
    Kreps J. A., and Simon A. E. 1997. Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis. Plant Cell, 9: 297–304
    Krizek B. A., and Meyerowitz E. M. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 112: 11–22
    Kurup S., Jones H. D., and Holdsworth M. J. 2000. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J., 21: 143–155
    Kyozuka J., and Shimamoto K. 2002. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol. 43: 130-135
    Kyozuka J., Kobayashi T., Morita M., and Shimamoto K. 2000. Spatially and temporally regulated expression of rice MADS box genes with similarity to Araidopsis class A, B and C genes. Plant Cell Physiol., 41: 710-718
    Lang A. 1952. Physiology of flowering. Annu. Rev. Plant Physiol., 3: 265-306
    Lang, A. 1965. Physiology of flower initiation. In: Encyclopedia of Plant Physiology, Vol. XV, Part 1 (Ruhland, W., ed.), pp. 1380–1536. Berlin: Springer Verlag.
    Langridge J. 1957. Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature, 180: 36–37
    Laurie D. A. 1997. Comparative genetics of flowering time. Plant Mol. Biol., 35: 167-177
    Lee H., Suh S. S., Park E., Cho E., Ahn J. H., Kim S. G., Lee J. S., Kwon Y. M., and Lee I. 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev., 14: 2366–2376
    Lee I. A. B., and Amasino R. 1993. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol. Gen. Genet., 237: 171–176
    Lee I., Aukerman M. J., Gore S. L., Lohman K. N., Michaels S. D., Weaver L. M., John M. C., Feldmann K. A., and Amasino R. M. 1994b. Isolation of LUMINIDEPENDENS: A gene involved in the control of flowering time in Arabidopsis. Plant Cell, 6: 75–83
    Lee I., Michaels S. D., Masshardt A. S., and Amasino R. M. 1994a. The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the
    Landsberg erecta strain of Arabidopsis. Plant J., 6: 903–909
    Lenhard M., Bohnert A., Jürgens G., and Laux T. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell, 105: 805-814
    Levy Y. Y. and Dean C. 1998. The transition to flowering. Plant Cell, 10: 1973-1989
    Li J. R., Wang F., Zhao X. Y., Dong Y. X., Zhang L. Y., An B. Y., and Zhang X. S. 2004. Analysis of seed-expressed sequence tags in Triticum aestivum. Acta. Bot. Sin., 46: 363-370
    Liljegren S. J., Ditta G. S., Eshed Y., Savidge B., Bowman J. L., and Yanofsky M. F. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404: 766–770
    Liljegren S. J., Gustafson-Brown C., Pinyopich A., Ditta G. S., and Yanofsky M. F. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 11: 1007-1008
    Lin C. 2000a. Plant blue-light receptors. Trends Plant Sci., 5: 337–342
    Lin C. 2000b. Photoreceptors and regulation of flowering time. Plant Physiol., 123: 39–50
    Lin C. 2002. Blue light receptors and signal transduction. Plant Cell. 14 (suppl.): S207–S225
    Lin H. X., Yamamoto T., Sasaki T., and Yano M. 2000. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor. Appl. Genet., 101: 1021–1028
    Liu X. L., Covington M. F., Fankhauser C., Chory J., and Wanger D. R. 2001b. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 13: 1293–1304
    Lohmann J. U., and Weigel D. 2002. Building beauty: the genetic control of floral patterning. Development Cell, 2: 135-142
    Lohmann J. U., Hong R. L., Hobe M., Busch M. A., Parcy F., Simon R., and Weigel D. 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell, 105: 793-803
    Luo M., Bilodeau P., Koltunow A., Dennis E. S., Peacock W. J., and Chaudhury A. M. 1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 96: 296–301
    Ma H. 1994. Genes Dev., 8: 745-756
    Ma H., Yanofsky M. F., and Meyerowitz E. M. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral hometic and transcription factor genes. Genes Dev., 5: 484-495
    Macknight R., Bancroft I., Page T., Lister C., Schmidt R., Love K., Westphal L., Murphy G., Sherson S., Cobbett C., and Dean C. 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell, 89: 737–745
    Makino S., Kiba T., Imamura A., Hanaki N., Nakamura A., Suzuki T., Taniguchi M., Ueguchi C., Sugiyama T., and Mizuno T. 2000. Genes encoding pseudo-response regulators: Insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol., 41: 791–803
    Malcomber S. T., and Kellogg E. A. 2004. Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell, 16: 1692-1706
    Mandel M. A., and Yanofsky M. F. 1995. A gene triggering flower formation in Arabidopsis. Nature, 377: 522–524
    Mandel M. A., and Yanofsky M. F. 1998. The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod., 11: 22-28
    Mandel M. A., Gustafson-Brown C., Savidge B., and Yanofsky M. F. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360: 273–277
    Martinez-Garcia J. F., Huq E., and Quail P. H. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. Science, 288: 859–863
    Martínez-Zapater J. M. Coupland G., Dean C., and Koornneef M. 1994. The transition to flowering in Arabidopsis. In: Arabidopsis (Meyerowitz, E.M. and Somerville C.R. eds), 403-433. Cold Spring Harbor: Cold Spring Harbor Press.
    Martinez-Zapater J. M., and Somerville C. R. 1990. Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol., 92: 770–776
    McClung C. R. 2001. Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52:139-162
    McGonigle B., Bouhidel K., and Irish V. F. 1996. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev., 10: 1812–1821
    McWatters H. G., Bastow R. M., Hall A., and Millar A. J. 2000. The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature, 408: 716–720
    Meguro A., Takumi S., Ogihara Y., and Murai K. 2003. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod., 15: 221-230
    Meier C., Bouquin T., Nielsen M. E., Raventos D., Mattsson O., Rocher A., Schomburg F., Amasino R. M., and Mundy J. 2001. Gibberellin response mutants identified by luciferase imaging. Plant J., 25: 509–519
    Melzer S., Kampmann G., Chandler J., and Apel K. 1999. FPF1 modulates the competence to flowering in Arabidopsis. Plant J., 18: 395–405
    Mena M., Ambrose B. A., Meeley R. B., Briggs S. P., Yanofsky M. F., and Schmidt R. J. 1996. Diversification of C-function activity in maize flower development. Science, 274: 1537-1540
    Michaels S. D., and Amasino R. M. 1999a. The gibberellic acid biosynthesis mutant ga1–3 of Arabidopsis thaliana is responsive to vernalization. Dev. Genet., 25: 194–198
    Michaels S. D., and Amasino R. M. 1999b. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11: 949–956
    Michaels S. D., and Amasino R. M. 2000. Memories of winter vernalization and the competence to flower. Plant Cell Environ., 23: 1145-1153
    Michaels S. D., and Amasino R. M. 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 13: 935–941
    Michaels S. D., Ditta G., Gustafson-Brown C., Pelaz S., Yanofsky M., and Amasino R. M. 2003. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J., 33: 867–874
    Millar A. J., Carre I. A., Strayer C. A., Chua N. H., and Kay S. A. 1995a. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science, 267: 1161–1163
    Millar A. J., Straume M., Chory J., Chua N. H., and Kay S. A. 1995b. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science, 267: 1163–1166
    Mimida N., Goto K., Kobayashi Y., Araki T., Ahn J. H., Weigel D., Murata M., Motoyoshi F., and Sakamoto W. 2001. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells, 6: 327–336
    Mitchell P. J., and Tjian R. 1989. Transcription regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 245: 371-378
    Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., Song H. R., Carre I. A., and Coupland G. 2002. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell, 2: 629–641
    Mockler T., Yang H., Yu X., Parikh D., Cheng Y. C., Dolan S., and Lin C. 2003. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA ,100: 2140–2145
    Moon J., Suh S. S., Lee H., Choi K. R., Hong C. B., Paek N. C., Kim S. G., and Lee I. 2003a. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J., 35: 613-623
    Moon Y. H., Chen L., Pan R. L., Chang H. S., Zhu T., Maffeo D. M., and Sung Z. R. 2003b. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell, 15: 681-693
    Moon Y. H., Jung J. Y., Kang H. G., and An G. 1999. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol. Biol., 40: 167-177
    Moon Y. W., Kang H. G., Jung J. Y., Jeon J. S., Sung S. K., and An G. 1999. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol., 120: 1193–1203
    Mouradov A., Cremer F., and Coupland G. 2002. Control of flowering time:interacting pathways as a basis for diversity. Plant Cell Suppl. 14: S111-S130
    Mueller C.G. and Nordheim A. 1991. A protein domain conserved between yeast MCM1 and human SRF directs ternary complex formation. EMBO J.,10: 4219-4229
    Münster T., Deleu W., Wingen L. U., Ouzunova M., Cacharrón J., Faigl W., Werth S., Kim J. T. T., Saedler H. and Theissen G. 2002. Maize MADS-box genes galore. Maydica, 47: 287-301
    Murai K., Miyamae M., Kato H., Takumi S., and Ogihara Y. 2003. WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol., 44: 1255-1265
    Murai K., Murai R., Takumi S., and Ogihara Y. 1998. Cloning and characterization of cDNAs corresponding to the wheat MADS box genes. Proc 9th Int Wheat Genet Symp 1: 89-94
    Murai K., Takumi S., Koga H., and Ogihara Y. 2002. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J., 29: 169-181
    Nagasawa N., Miyoshi M., Sano Y., Satoh H., Hirano H., Sakai H., and Nagato Y. 2003. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130: 705-718
    Nam J., Kim J., Lee S., An G., Ma H., and Nei M. 2004. Type ? MADS-box genes have experienced faster birth-and-death evolution than type ?? MADS-box genes in angiosperms. Proc Natl Acad Sci USA, 101: 1910-1915
    Neff M. M., Chory J. 1998. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol., 118: 27-35
    Nelson D. C., Lasswell J., Rogg L. E., Cohen M. A., and Bartel B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell, 101: 331–340
    Nemoto Y., Kisaka M., Fuse T., Yano M., and Ogihara Y. 2003. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J., 36: 82-93
    Ng M., and Yanofsky M. F. 2001. Function and evolution of the plant MADS-box genes. Nat. Rev. Genet., 2: 186-195
    Ni M., and Tepperman J. 1999. M. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature, 400: 781
    Nilsson O., Lee I., Blazquez M. A., and Weigel D. 1998. Flowering-time genes modulate the response of LEAFY activity. Genetics, 150: 403–410
    Noh Y. S., and Amasino R. M. 2003. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell, 15: 1671–1682
    Okamuro J. K., Caster B., Villarroel R., Van Montagu M., and Jofuku K. D. 1997a. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA, 94: 7076–7081
    Okamuro J. K., den Boer B. G., Lotys-Prass C., Szeto W., and Jofuku K. D. 1996. Flowers into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis. Proc. Natl. Acad. Sci. USA, 93: 13831–13836
    Okamuro J. K., Szeto W., Lotys-Prass C., and Jofuku K. D. 1997b. Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1. Plant Cell, 9: 37–47
    Onouchi H., Igeno M. I., Perilleaux C., Graves K., and Coupland G. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell, 12: 885–900
    Parcy F., Bomblies K., and Weigel D. 2002. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development, 129: 2519-2527
    Parcy F., Nilsson O., Busch M. A., and Weigel D. 1998. A genetic framework for floral patterning. Nature, 395: 561-566
    ParenicováL., de Folter S., Kieffer M., Horner D. S., Favalli C., Busscher J., Cook, H. E., Ingram R. M., Kater M. M., Davies B., Angenent G. C., and Colombo L. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell, 15: 1538–1551
    Park D. H., Somers D. E., Kim Y. S., Choy Y. H., Lim H. K., Soh M. S., Kim H. J., Kay S. A. and Nam H. G. 1999. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA Gene. Science, 285:1579-1582
    Pelaz S., Ditta G. S., Baumann E., Wisman E., and Yanofsky M. F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405: 200-203
    Pelaz S., Gustafson-Brown C., Kohalmi S. E., Crosby W. L., and Yanofsky M. F. 2001a. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J., 26: 385-394
    Pelaz S., Tapia-Lopez R., Alvarez-Buylla E. R., and Yanofsky M. F. 2001b. Conversion of leaves into petals in Arabidopsis. Curr Biol., 11: 182-184
    Pelucchi N., Formara F., Favalli C., Masiero S., Lago C., Pe M. E., Colombo L., and Kate M. M. 2002. Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod., 15: 113-122
    Peng J. R., Carol P., Richards D. E., King K. E., Cowling R. J., Murphy G. P., and Harberd N. P. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev., 11: 3194–3205
    Pineiro M., Gomez-Mena C., Schaffer R., Martinez-Zapater J. M., and Coupland G. 2003. EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell, 15: 1552–1562
    Pinyopich A., Ditta G. S., Savidge B., Liljegren S. J., Baumann E., Wisman E., and Yanofsky M. F. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424: 85–88
    Pittendrgh C. S., and Minis D. H. 1964. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Nat., 98: 261-322
    Pnueli L., Abu-Abeid M., Zamir D., Nacken W., Schwarz-Sommer Z., and Lifschitz E. 1991. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1: 255-266
    Pnueli L., Hareven D., Broday L., Hurwitz C., and Lifschitz E. 1994. The TM5 MADS box gene mediates organ differentiation in three inner whorls of tomato flowers. Plant Cell, 6: 175-186
    Putterill J., Robson F., Lee K., Simon R., and Coupland G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80: 847–857
    Pysh L. D., Wysocka-Diller J. W., Camilleri C., Bouchez D., and Benfey P. N. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J., 18: 111–119
    Quail P. H.2002. Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol., 3: 85-93
    Quesada V., Macknight R., Dean C., and Simpson G. G. 2003. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J., 22: 3142–3152
    Ratcliffe O. J., Amaya I., Vincent C. A., Rothstein S., Carpenter R., Coen E. S., and Bradley D. J. 1998. A common mechanism controls the life cycle and architecture of plants.
    Development, 125: 1609–1615
    Ratcliffe O. J., Nadzan G. C., Reuber T. L., and Riechmann J. L. 2001. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol., 126: 122–132
    Reed J. W., Nagatani A., Elich T. D., Fagan M. and Chory J.1994. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol., 104:1139-1149
    Reeves P. H., and Coupland G. 2000. Response of plant development to environment: Control of flowering by daylength and temperature. Curr. Opin. Plant Biol., 3: 37–42
    Reeves P. H., and Coupland G. 2001. Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol., 126: 1085–1091
    Riechmann J. L., and Meyerowitz E. M. 1997. MADS domain proteins in plant development. Biol. Chem., 378: 1079-1101
    Riechmann J. L., and Meyerowitz E. M. 1998. The AP2/EBEBP family of plant transcription factors. Biol. Chem., 379: 633–646
    Riechmann J. L., Krizek B. A., and Meyerowitz E. M. 1996a. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA, 93: 4793–4798
    Riechmann J. L., Wang M., and Meyerowitz E. M. 1996b. DNA binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res., 24: 3134–3141
    Robson F., Costa M. M. R., Hepworth S., Vizir I., Pineiro M., Reeves P. H., Putterill J., and Coupland G. 2001. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J., 28: 619–631
    Roden L. C., Song H. R., Jackson S., Morris K., and Carre I. A.2002. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc. Natl. Acad. Sci. USA, 99: 13313-13318
    Roenneberg T., and Merrow M. 2000. Circadian clocks: Omnes viae Romam ducunt. Curr. Biol., 10: R742–R745
    Rounsley S. D., Ditta G. S., and Yanofsky M. F. 1995. Diverse roles for MADS box genes in Arabidopsis development Plant Cell, 7: 1259-1269
    Rouse D. T., Sheldon C. C., Bagnall D. J., Peacock W. J., and Dennis E. S. 2002. FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J., 29: 183–191
    Ruiz-Garcia L., Madueno F., Wilkinson M., Haughn G., Salinas J., and Martinez-Zapater J. M. 1997. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 9: 1921–1943
    Sachs R., and Hackett W. 1983. Source-sink relationships and flowering. In Strategies of Plant Reproduction. Beltsville Symposium Agric. Res. (Meudt, W.J., ed.). Totowa: Allanheld, Osmun, pp. 263-272
    Sakai H., Krizek B. A., Jacobsen S. E., and Meyerowitz E. M. 2000. Regulation of SUP expression identifies multiple regulators involved in Arabidopsis floral meristem development. Plant Cell, 12:1607-1618
    Sakai H., Medrano L. J., and Meyerowitz E. M. 1995. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 378: 199-203
    Samach A., and Coupland G. 2000. Time measurement and the control of flowering in plants. Bioessays 22: 38–47
    Samach A., and Gover A. 2001. Photoperiodism: The consistent use of CONSTANS. Curr. Biol., 11: R651–R654
    Samach A., Onouchi H., Gold S. E., Ditta G. S., Schwarz-Sommer Z., Yanofsky M. F. and Coupland G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 288:1613-1616
    Sambrook J., Fritsch E. F., and Maniatis T. 1989. Molecular cloning: a Laboratory Manual. 2nd ed. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York.
    Sanchez-Fernandez R., Ardiles-Diaz W., Van Montagu M., Inze D., and May M. J. 1998. Cloning of a novel Arabidopsis thaliana RGA-like gene, a putative member of the VHIID-domain transcription factor family. J. Exp. Bot., 49: 1609–1610
    Savidge B., Rounsley S. D. and Yanofsky M. F. 1995. Temporal relationships between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell, 7: 721-733
    Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carre I. A., and Coupland G. 1998. The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 93: 1219–1229
    Schfer E., and Bowler H. 2002. Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO Reports, 3: 1042
    Schmid M., Uhlenhaut N.H., Godard F., Demar M., Bressan R., Weigel D., and Lohmann J. U. 2003. Dissection of floral induction pathways using global expression analysis. Development, 130: 6001-6012
    Schmidt R. J., Veit B., Mandel M. A., Mena M., Hake S., and Yanoksky M. 1993. Identification and molecular characterization of ZAG1, the maize honolog of the Arabidopsis floral honeotic gene AGAMOUS. Plant Cell, 5: 729-737
    Schomburg F. M., Patton D. A., Meinke D. W., and Amasino R. M. 2001. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell, 13: 1427–1436
    Schultz E. A., and Haughn G. W. 1991. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell, 3: 771–781
    Schultz T. F., Kiyosue T., Yanovsky M., Wada M., and Kay S. A. 2001. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell, 13: 2659-2670
    Scortecci K. C., Michaels S. D., and Amasino R. M. 2001. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J., 26: 229–236
    Shannon S., and Meeks-Wagner D. R. 1991. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell, 3: 877-892
    Sheldon C. C., Burn J. E., Perez P. P., Metzger J., Edwards J. A., Peacock W. J., and Dennis E. S. 1999. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11: 445–458
    Sheldon C. C., Rouse D. T., Finnegan E. J., Peacock W. J., and Dennis E. S. 2000b. The molecular basis of vernalization: The central role of FLOWERING LOCUS C. Proc. Natl. Acad. Sci. USA, 97: 3753–3758
    Silverstone A. L., Ciampaglio C. N., and Sun T. P. 1998. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell,
    10: 155–169
    Silverstone A. L., Jung H. S., Dill A., Kawaide H., Kamiya Y., and Sun T. P. 2001. Repressing a repressor: Gibberellininduced rapid reduction of the RGA protein in Arabidopsis. Plant Cell, 13: 1555–1565
    Simpson G. G. 2003. Evolution of flowering in response to day length: flipping the CONSTANS switch. Bioessays, 25: 829-832
    Simpson G. G. and Dean C. 2002. Arabidopsis, the Rosetta stone of flowering time? Science, 296: 285-289
    Simpson G. G., Dijkwel P. P., Quesada V., Henderson I., and Dean C. 2003. FY is an RNA 39 end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell, 113: 777–787
    Simpson G. G., Gendall A. R., and Dean C. 1999. When to switch to flowering. Annu. Rev. Cell Dev. Biol., 15: 519–550
    Somers D. E., Devlin P. F., and Kay S. A. 1998a. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 282: 1488–1494
    Somers D. E., Schultz T. F., Milnamow M., and Kay S. A. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 101: 319–329
    Somers D. E., Webb A. A. R., Pearson M., and Kay S. A. 1998b. The short-period mutant, toc1–1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development, 125: 485–494
    Spillane C., MacDougall C., Stock C., Kohler C., Vielle-Calzada J. P., Nunes S. M., Grossniklaus U., and Goodrich J. 2000. Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr. Biol., 10: 1535–1538
    Staiger D. and Apel K. 1999. Circadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterization of a minimal promoter element. Mol. Gen. Genet. 261: 811-819
    Staiger D., Allenbach L., Salathia N., Fiechter V., Davis S. J., Millar A. J., Chory J. and Fankhauser C. 2003. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes Dev., 17: 256-268
    Stockinger E. J., Gilmour S. J. and Thomashow M. F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water dificit. Proc. Natl. Acad. Sci. USA, 94: 1035-1040
    Strayer C., Oyama T., Schultz T. F., Raman R., Somers D. E., Mas P., Panda S., Kreps J. A., and Kay S. A. 2000. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 289: 768–771
    Suárez-López P., Wheatley K., Robson F., Onouchi H., Valverde F. and Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410: 1116-1120
    Sun T. P., and Kamiya Y. 1994. The Arabidopsis ga1 locus encodes the cyclase ent-kaurene synthetase-A of gibberellin biosynthesis. Plant Cell, 6: 1509–1518
    Sung Z. R., Belachew A., Shunong B., and Bertrand-Garcia R. 1992. EMF, an Arabidopsis gene required for vegetative shoot development. Science, 258: 1645–1647
    Takada S., and Goto K. 2003. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1 , counteracts the activation of FLOWERING LOCUS
    T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell, 15: 2856-2865
    Talon M., Koornneef M., and Zeevaart J. A. D. 1990. Accumulation of C19-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana (L) Heynh. Planta, 182: 501–505
    Theiβen G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85
    Theiβen G., and Saedler H. 2001.Plant biology. Floral quartets. Nature, 409: 469-471
    Theiβen G., Becker A., Di Rosa A., Kanno A., Kim J. T., Münster T., Winter K. U., and Saedler H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149
    Thomas B., and Vince-Prue B. 1997. Photoperiodism in Plants, 2nd ed. (San Diego, CA: Academic Press).
    Tilly J. et al. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development, 125: 1647–1657
    Tournois J. 1912. Influence de la lumière sur la floraison du houblon japonais et du chanvre déterminées par des semis haitifs. C.R. Hebd. Séanc. Acad. Sci. Paris 155: 179-300
    Tournois J. 1914. ětudes sur la sexualitédu houblon. Annis. Sci. Nat. (Bot.) 19: 49-191
    Trobner W., Ramirez L., Motte P., Hue I., Huijser P., Lonnig W.E., Saedler H., Sommer H., Schwarz-Smmer Z. 1992. GLOBOSA: a homeotic gene,which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J., 11: 4693-4704
    Truernit E., and Sauer N. 1995. The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of b-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta, 196: 564–570
    Tzeng T. Y., Hsiao C. C., Chi P. J., and Yang C. H. 2003. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol., 133: 1091-1101
    Valverde F., Mouradov A., Soppe W., Ravenscroft D., Samach A. and Coupland G. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 303: 1003-1006
    Vandenbussche M., Zethof J., Souer E., Koes R., Tornielli G. B., Pezzotti M., Ferrario S., Angenent G. C., and Gerats T. 2003. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15: 2680-2693
    Wagner D., Sablowski R. W. M., and Meyerowitz E. M. 1999. Transcriptional activation of APETALA1 by LEAFY. Science, 285: 582–584
    Wang Z. Y., and Tobin E. M. 1998. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 93: 1207-1217
    Weigel D, and Meyerowitz E. M. 1993. Activation of floral homeotic genes in Arabidopsis. Science, 261: 1723-1726
    Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F., and Meyerowitz E. M. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell, 69: 843–859
    Weigel D., and Nilsson O. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature, 377: 495-500
    Wen C. K., and Chang C. 2002. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell, 14: 87–100
    Whipple C. J., Ciceri P., Padilla C. M., Ambrose B. A., Bandong S. L. and Schmidt R. J. 2004. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 131: 6083-6091
    Wilson R. N., Heckman J. W., and Somerville C. R. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol., 100: 403–408
    Wolfe K. H., Gouy M., Yang Y. W., Sharp P. M. and Li W. H. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA, 86: 6201-6205
    Xu Y. L., Gage D. A., and Zeevaart J. A. D. 1997. Gibberellins and stem growth in Arabidopsis thaliana—effects of photoperiod on expression of the GA4 and GA5 loci. Plant Physiol., 114: 1471–1476
    Xu Y. L., Li L., Wu K. Q., Peeters A. J. M., Gage D. A., and Zeevaart J. A. D. 1995. The ga5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase—molecularcloning and functional expression. Proc. Natl. Acad. Sci. USA, 92: 6640–6644
    Yadegari R., Kinoshita T., Lotan O., Cohen G., Katz A., Choi Y., Nakashima K., Harada J. J., Goldberg R. B., Fischer R. L., and Ohad N. 2000. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell, 12: 2367–2381
    Yamamoto T., Kuboki Y., Lin S. Y., Sasaki T., and Yano M. 1998. Fine mapping of quantitative trait loci, Hd-1, Hd-2, and Hd-3, controlling heading date of rice, as single Mendedian factors. Theor. Appl. Genet., 97: 37-44
    Yang C. H., Chen L. J., and Sung Z. R. 1995. Genetic regulation of shoot development in Arabidopsis: Role of the EMF genes. Dev. Biol., 169: 421–435
    Yang Y., Fanning L., and Jack T. 2003a. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins APETALA3 and PISTILLATA. Plant J., 33: 47–59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700