植入式左心室辅助装置控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工心脏作为有效治疗心脏病的一种手段,相关技术的研究日益为国内外医学界所重视。植入式左心室辅助装置作为人工心脏研究中的一个分支,由于其自身特点被视为未来人工心脏的主流。本课题以左心室辅助装置为研究对象,通过分析左心辅助泵的结构与工作原理,在参考国内外研究经验基础上,改进了血泵驱动技术与控制算法。论文主要研究内容如下:
     针对现有血泵的特性,对血泵电机驱动线圈进行设计。通过与现有左心室辅助装置血泵进行对比,分析了本文所用血泵的特定性能指标与结构特征;初步确定了驱动线圈的相关参数,包括形状、匝数、尺寸、安装位置及部分电磁参数,使得血泵电机既满足了驱动要求又解决了温升问题。
     设计了血泵电机控制系统的硬件配置与软件架构。硬件配置包括控制器选择、电源管理、报警指示和紧急情况应对,特别针对血泵电机进行了驱动电路的设计;软件部分在经过需求分析后,设计了图形用户界面中的LCD显示和进行了上位机软件的开发。
     针对常规血泵控制系统只是对血泵电机转速的控制,提出了基于血泵输出压力和流量的工作点控制算法。根据受体不同的生理特征,以血压和供血量作为控制目标,实现血泵的自动控制。围绕所建立的控制系统,结合血流动力学和生理学,解决了不同受体控制参数的计算问题;利用神经网络算法对尚不能进行在线测定的血泵输出血压和流量进行了估算;对血泵三种工作状况提出了工作点控制算法、恢复控制算法和解除抽吸控制算法;为血泵转速控制设计了双闭环调速控制系统。
     对血泵及控制系统进行了一系列实验和仿真。包括驱动线圈反电势波形分析、血泵相电流与端电压分析、驱动线圈温升情况分析和控制系统性能仿真分析。结果表明,血泵性能达到要求,控制算法具备一定可行性。
As a means of effective treatment of heart disease, artificial heart research has been paid great attention by the medical profession at home and aboard. Left Ventricular Assist Device (LVAD) as a branch of artifical heart research has been regarded as the mainstream of the future artifical heart due to its advantages. With LVAD as the research subject, this paper focuses on the drive technology and control strategy of blood pump. The results obtained include the following four parts:
     In the first part, the motor drive coil have been designed in terms of the characteristics of the blood pump. By comparison with traditional blood pump of LVAD, a new blood pump has been analysed with respect to specified performance and structural characteristics; The relevant parameters of the drive coil including shape, number of turns, size, installation location, and part of the electromagnetic parameters have been determined which not only meet the demand of drive capability but aiso overcome the temperature rise problem.
     In the second part, the hardware configuration and software structure of the blood pump motor control system have been built up. The hardware configuration includes the controller election, power management, alarm indication and emergency response, especially involving design of driver circuit for blood pump motor; On the other hand, after a detailed requirement analysis, the LCD display in the graphical user interface as well as upper machine software have been developed respectively.
     In the third part, a control algorithm has been provided base on operating point of both blood pump output pressure and flow rate in view of conventional control system for blood pump only dealing with blood pump motor speed. According to the physiological characteristics of different subjects, blood pressure and blood supply have been set which can be regarded as a control target to achieve automatic control for blood pump. By using knowledge of hemodynamics and physiology, the computation problem of different operating point for different subjects has been solved; Then blood pump output pressure and flow rate which is unavailable online are estimated in terms of neural network algorithms; Operating point control algorithm, recovering control algorithm and releasing suction control algorithm are represented for three different working conditions; Finally, double close-loop control system has been design to control the blood pump speed.
     In the fourth part, a series of blood pump experiments and control system simulations have been carried out, including the drive coil back EMF waveform analysis, the phase current and terminal voltage analysis, the drive coil temperature rise analysis and three control algorithms simulation. It has been shown that the blood pump performance and the control algorithms have meet the requirements.
引文
[1]武文芳,吴兵.人工心脏的历史及研究进展[J].中国医学装备, 2008, 5(3): 55-58.
    [2]尹邦良.人工心脏地历史及研究现状[J].中国医师杂志, 2002, 4(7): 769-680.
    [3]刘艳芬翻译.完整人工心脏[J].中国分子心脏病学杂志, 2003, 3(5): 309-311.
    [4] Michelle LB. A ventricular assist device bridges the way to a new life[J]. crit care nurs Q. 2004, 27(1): 78-86.
    [5] Cooley DA, Frazier OH. The past 50 years ofcardiovascular surgery[J]. Circulation, 2000, 102(4): 87-93.
    [6] DeBakey ME. Left ventricular bypass pump for cardiac assistance: clinical experience[J]. Am J Cardiol, 1971, 27: 3-11.
    [7] Michael E.DeBakey. The odyssey of the artificial heart[J]. Artif organs, 2000, 24(6): 405-411
    [8]陆颂芳,杨子彬.人工心脏及心室辅助研究的进展[J].国外医学生物医学工程分册, 1998, 21(5): 280-286.
    [9] Takashi Y. The present and future state of nonpulsatile artificial heart technology[J]. J Artif Organs, 2002, 5: 149-155.
    [10] Sharp MK. An orbiting scroll blood pump without valves or rotating seals[J]. ASAIO J, 1994, 40: 41.
    [11]孙图成,孙宗全.心脏外科学的新进展[J].临床外科杂志, 2010, 18(1): 22-26.
    [12] Taenaka Y, Wakisaka Y, Masuzawa T, et a1. Development of a centrifugal pump with improved antithrombogenicity and hemolytic property for chronic circulatory support[J]. Artifical Organs, 1996, 20(6): 491-496.
    [13] Schima H, Schlusche C, Jeremejev BV, et a1. Influence of centrifugal blood pumps On the elasticity of erythrocytes[J]. ASAIO Trans, 1991, 37(4): 658-661.
    [14] Takeshi N. A bioartificial ventricle used as a totally implantable circulatory assist device[J]. ASAIO J, 1992, 38: 167.
    [15] http://worldheart.com
    [16] http://terumoheart.com
    [17] Kiyotaka F. New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagSrew technologies[J]. J Artif Organs, 2004, 7: 45-57.
    [18] Qian KX, Wang SS, Chu SH, et a1. In vivo study of pulsatile implantable impeller assist and total heart[J]. Artificial Organs, 1995, 19(4): 328-333.
    [19]陆柳,李景锡.心率对每搏输出量和心输出量的影响的讨论[J].中国医学物理学杂志, 2002, 19(4): 237-238.
    [20]丁光宏,张心忠,李惜惜.心脏与血管的动力学原理一分布参数模型[J].水力学研究与进展, 1996, l 1(1): 14-17.
    [21] Abe Y, Chinzei T, Mabuehi K, et a1. Physiological control of a total artificial heart: conductance and arterial pressure-based contrl[J]. Journal of applied physiology, 1998, 84: 868-876.
    [22] Abe Y, Imachi K, Chinzei T, et a1. Reciprocal of peripheral vascular resistance (1/R)control method for total artificial heart[J]. Artificial heart 4 Tokyo: Spring-Verlag, 1993: 349-351.
    [23] Abe Y, Chinzei T, Isoyama T, et al. Present status of the total artificial heart at the university of Tokyo[J]. Artificial organs, 1999, 23(3): 221-228.
    [24] Tomoyuki Y, Noboru T, Akira T, et a1. A future prediction type artificial heart system[J]. Artif organs, 1999, 23(3):268-273.
    [25]何瑞荣.心血管生理学[M]:人民卫生出版社, 1987: 112.
    [26] Makoto N, Tom M, Esiuke T, et a1. The development of a control method for a total artificial heart using mixed venous oxygen saturation[J]. Artificial organs, 1999, 23(3): 235-241.
    [27] Yoshinari W, Yasuki O, Yoshiyuki T, et a1. Development of a flow estimation and control system of all implantable centrifugal blood pump for circulatory assist[J]. Artifical organs, 1998, 22(6): 488-492.
    [28] Nobuhisa H, Taro I, Masamichi N, et a1. Ultracompact completely implantable permanent use electromechanieal ventricular assist device and totaI artificial heart[J]. Artificial organs, 1999, 23(3): 253-261.
    [29] Wang XZ, Makoto Y, Akira T, et a1. Automatic detection and classification of abnormal for artificial hearts using a hierarchical self-organizing map[J]. Artif Organs, 2001, 25(2): 150-153.
    [30] Giridharan GA, Skliar M. Control strategy for maintaining physiological perfusion with rotary blood pumps[J]. Artif organs, 2003, 27(7): 639-648.
    [31] Guruprasad AG, George MP, Kevin JG, et a1. Physiological control of rotary blood pumps: an in vitro study. ASAIO J, 2004: 403-409.
    [32] Nakata K, Ohtsuka G, Yoshikawa M, et a1. A new control method that estimates the backflow in centrifugal pump[J]. Artificial organs, 1999, 23(6): 538-541.
    [33] Yuhki A, Hatoh E, Nogawa M, et a1. Detection of suction and regurgitation of the implantable centrifugal based on the motor current waveform analysis and its application to optimization of pump flow. Artificial organs, 1999, 23(6): 532-537.
    [34] Katsuhiro O, Daiki K, Kiyofumi T, et a1. Control strategy for rotary blood pumps. Artificial organs, 2001, 25(5): 366-370.
    [35] Oshikawa M, Araki K, Endo G, et a1. Sensorless controlling method for a continuous flow left ventricular assist device. Artificial organs, 2000, 24(8): 600-605.
    [36] Kawahito S, Kinichi N, Kenji N, et a1. Analysis of the arterial blood pressure waveform using fast Fourier transform technique during left ventricular nonpulsatile assistance: in vitro study[J]. Artif organs, 2000, 24(7): 580-583.
    [37] Akutsu T, Kolff WJ. Permanent substitotes for valves and heart[J]. Trans Am Soc Artif Intern Organs. 1958, 4: 230-234
    [38] Yukihiko N. Design and development strategy for the rotary blood pump. Artificial organs, 1998, 22(6): 438-446.
    [39] Toshio H, Yoshiaki O, Takao Y, et a1. Pulmonary pressure-flow as a determinant factor of exercise eapacity and symptoms in patients with regurgitant valular heart diserse[J]. International journal of cardiology, 2005, 99: 403-407.
    [40] Soccorso C, Oreste F, Gianpaolo G, et a1. Invasive and non-invasive determinants of pulmonary hypertension in patients with chronic heart failure[J]. The Journal of heart and lung transplantation, 2000, 19(5): 426-438.
    [41] Fernando B, Andres V, Cindy T, et a1. Relations among heart failure severity, lett ventricular loading conditions and repolariztiion length in advanced heart failure secondary to ischemic or idiopathic dilated cardiomyopathy[J]. The American journal of cadiology, 2003, 92(9): 544-547.
    [42]范晔,徐志飞,翁渝国,左心辅助装置及其进展[J].中华胸心血管外科杂志, 2008, 24(1): 14-17.
    [43]李立环.左心室辅助装置[J].中华麻醉学杂志, 2001, 21(10): 595-596.
    [44]陈长志,陆佩中.左心辅助装置(HeartMate)的临床应用[J].透析与人工器官, 2003, 14(3): 27-30.
    [45]徐先懂,谭建平,龙东平,左心室辅助装置技术现状及未来展望[J].生物医学工程研究, 2006, 26(1): 88-91.
    [46] Robbins RC, Oyer PE. Bridge to transplant with the Novacor left ventricular assist system[J]. The annals of thoracic surgery, 1999, 68(7): 695-697.
    [47] Noon GP, Morley D, Irwin S, et a1. Development and clinical application of the MicroMed DeBakey VAD[J]. Curr Opin Cardiol, 2000, 15(3): 166-171.
    [48] Yambe T, Abe Y, Imachi K, et a1. Development of an implantable undulation type ventricular assist device for control of organ circulation[J]. Artif Organs, 2004, 28(10): 940-944.
    [49]李国荣,朱晓东.人工心脏和心脏辅助装置[J].中华胸心血管外科杂志, 2007, 23(6): 427-429.
    [50] Song X, Throckmorton AL, Untaroiu A, et a1. Axial flow blood pumps[J]. ASAIO J, 2003, 49(4): 355-364.
    [51] Junichi A, Tadahiko S, Hideo H, et a1. A new design for a compact centrifugal blood pump with a magnetically levitated rotor [J]. ASAIO J, 2004, 72(8): 550-556.
    [52]胡波,王铁萍,李培睿,血液净化治疗慢性心力衰竭合并急性肾损伤的临床观察[J].中国医学创新, 2010, 7(16): 3-5.
    [53]华琦,刘力松,高血压治疗中收缩压与脉压的意义[J].中华医学信息导报, 2005, 20(3): 38-39.
    [54]徐先懂,谭建平,血泵驱动电机的生理控制策略研究[J].生物医学工程与临床, 2001,11(6): 415-419.
    [55]金卫良,郑卫红,邵根富.基于xc866的无位置传感器无刷直流电机的控制系统设计[J].中国水运, 2008, 8(11): 34-35.
    [56]卢航远,薛凌云,严志焜.一种新的无位置传感器无刷直流电机起动方法[J].中国水运, 2008. 12(1): 39-41.
    [57]杨成忠,张辉.特殊无位置传感器无刷直流电机的反电势检测[J].微特电机, 2010, 38(6): 31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700