蒺藜内生真菌及其次生代谢产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生真菌(Endophytic fungus)能够合成与药用植物相同或相似的生物活性物质,或者影响药用植物某些活性物质的产量,具有良好的前景和开发利用价值。本论文以从植物内生真菌天然产物中寻找具有抗菌抗肿瘤活性的化合物为主线,选定传统药用植物蒺藜(Tribulus terrestris L.)作为研究对象,从蒺藜内生真菌的分离鉴定、活性及相关化合物的检测和活性菌株代谢产物的分离鉴定等几个方面展开了相关研究,得到以下结果:
     一、首次从蒺藜植株内分离纯化得到64株内生真菌,经形态学和分子生物学手段鉴定分为2门5纲8目10属。其中,以茎点属(Phoma)和链格孢属(Alternaria)为主,分别占分离到的总菌株数的39.06%和28.12%。选取其中21株代表性菌株作为研究的重点内容。
     二、从黄酮类皂苷类化合物的检测和生物学活性的检测两方面入手,筛选21株蒺藜内生真菌中的活性菌株。
     1.选取宿主植物蒺藜的主要药用成分——黄酮类和皂苷类化合物作为检测指标,筛选能够合成类似产物的蒺藜内生真菌。使用SPE-HPLC和GC-MS联用技术检测发酵液中的黄酮类和皂苷类化合物,建立了检测这两类化合物的技术路线。同时,实验结果显示发酵液中无与蒺藜相同的黄酮类化合物;在茎点霉属真菌几-16的发酵液中发现了皂苷的前体物质鲨烯和甾醇类化合物17-(1,5-dimethylhexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradeca hydro-1H-cyclopenta[a]phenanthren-3-ol,但是经反复传代培养后,JL-16不再合成这两种化合物。
     2.从抗细菌、抗真菌和抗肿瘤三个方面评价蒺藜内生真菌的生物学活性。以大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcus aureus)作为革兰氏阴性细菌和革兰氏阳性细菌的代表,评价了21株蒺藜内生真菌发酵产物的抗细菌活性。结果显示,PDB培养基发酵液对大肠杆菌和金黄色葡萄球菌都具有抑制作用(抑菌圈直径大于10mm)的菌株占总菌株数的19.05%;察氏培养基发酵液对大肠杆菌和金黄色葡萄球菌均具有抑制作用的菌株占总菌株数的23.81%。采用稻瘟菌(Magnaporthe oryzae)模型评价21株蒺藜内生真菌发酵产物的抗真菌活性。结果显示PDB培养基发酵液中MIC值相对较小(发酵液浓度低于10%)的菌株占总分离菌株的19.05%;察氏培养基发酵液中MIC值相对较小的菌株占总分离菌株的47.61%。以前列腺癌PC-3细胞株和乳腺癌4T1细胞株为模型,评价了21株蒺藜内生真菌发酵产物的细胞毒活性。对于4T1细胞株,经PDB发酵液处理抑制率高于50%的有9株,占总菌株数的42.86%;经察氏发酵液处理抑制率高于50%的有8株,占总菌株数的38.10%。对于PC-3细胞株,经PDB发酵液处理抑制率高于50%的有10株,占总菌株数的47.62%,;经察氏发酵液处理抑制率高于50%的有6株,占总菌株数的28.57%。其中,蒺藜内生真菌JL-3、JL-7w、JL-13、JL-14、JL-16和JL-17的细胞毒性最强,通过对它们的PDB发酵液进行分步萃取,并对所有粗提物进行细胞毒活性评价,结果发现,JL-7w的PDB发酵液的氯仿提取物对于PC-3细胞的抑制作用最强,IC50值为55.15μg/mL。通过以上三个指标发现JL-7w具有良好的生物学活性,需要进一步研究。
     三、针对具有良好生物学活性的JL-7w进行详细的菌种鉴定和代谢产物分析。
     1.通过孢子形态鉴定、特异性基因序列分析及紫外指纹图谱分析等手段对链格孢属真菌进行鉴定,确定JL-7w为细极链格孢菌(Altemaria tenuissima)。
     2.通过反复硅胶柱层析和凝胶柱层析等手段在JL-7w的发酵液中分离得到新化合物Altertoxin Ⅳ和己知化合物Altertoxin Ⅱ,并运用高分辨质谱、核磁共振和单晶衍射等方法确定了Altertoxin Ⅳ的绝对构型。通过Altertoxin Ⅱ和Altertoxin Ⅳ的细胞毒性检验发现,Altertoxin Ⅳ对肿瘤细胞PC-3无明显的抑制作用,而Altertoxin Ⅱ对于肿瘤细胞PC-3有强烈的抑制作用,ICso值为14.28μM。
Endophytic fungi can produce the same or similar bioactive agents as medicinal plants, or relay on the phytochemicals produced by the plants. It is urgent to isolate and study associated endophytes from the host plants. The main purpose of this dissertation was to investigate antimicrobial and anticancer compounds from the natural products of endophytes. To continue the previous work in our lab, Tribulus terrestris L., a traditional medicinal plant, was selected for further investigation. In the present study, the research was performed on several aspects including isolation and identification, activity detection, investigation on secondary metabolites of endophytic fungi from T. terrestris L.. The main contents of this dissertation are summarized as follow:
     1. A total of64endophytic fungi were isolated by culture-dependent method, identified by morphological and molecular methods and categorized into10genera. Among them, Phoma and Alternaria were the dominant genera, accounted for39.06%and28.12%respectively of the total strains. Among them,21strains were selected as representative strains for a further study.
     2. Screening strains by detection of flavonoids and saponins compounds and biological activities.
     (1) Flavonoids and saponins were selected as test indicators, as which were the main active ingredients of T. terrestris L. Analysis of the products from21endophytic fungi using SPE-HPLC and GC-MS showed that JL-16could produce squalene and17-(1,5-dimethylhexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-lH-cyclopenta[a]phenanthren-3-ol, both of which are precursors of saponins. However, on subculturing the fungus JL-16in axenic medium, the endophyte tended to lose their ability to produce the two secondary metabolites.
     (2) Antibacterial, antimycotic and cytotoxic activities of the endophytes were also evaluated. Antibacterial activity of21endophytic fungi was evaluated by Staphylococcus aureus and Escherichia coli, which are the representative of Gram-negative and Gram-positive bacteria. The strains with their inhibition zone diameter of the PDB and Czapek broth greater than10mm were accounted for19.05% (4/21) and23.81%(5/21) respectively of the total strains. Antimycotic activity of21endophytic fungi was evaluated by Magnaporthe oryzae model. The strains, of which the PDB broth and the Czapek broth with the MIC (minimum inhibitory concentration) of Magnaporthe oryzae lower than10%, were accounted for19.05%(4/21) and47.61%(10/21) respectively of the total strains. Cytotoxic activities of21endophytic fungi were evaluated by PC-3(CRL-1435) and4T1(CRL-2539) cells. The PDB fermentation broth with the inhibitory action on4T1cancer cells over50%was accounted for42.86%of the total PDB broth (9/21). And the Czapek fermentation broth with the inhibitory action on4T1cancer cells over50%was accounted for38.10%of the total Czapek broth (8/21). The PDB fermentation broth with the inhibitory action on PC-3cancer cells over50%was accounted for47.62%of the total PDB broth (10/21). And the Czapek fermentation broth with the inhibitory action on PC-3cancer cells over50%was accounted for28.57%of the total Czapek broth (6/21). JL-3, JL-7w, JL-13, JL-14, JL-16and JL-17exhibited strongly cytotoxic effect. Crude extracts were obtained by fractional extraction and evaluated in PC-3cancer cells. Trichloromethane (TCM) extracts of JL-7w had the most effective activity against PC-3cells with the IC50value of55.15μg/mL. In summary, JL-7w exhibited strongly biological activities.
     3. Particular identification and chemical analysis of JL-7w.
     (1) The test of JL-7w resulted to be Alternaria tenuissima, which was confirmed by morphological characterization, endopolygalacturonase gene analysis and UV fingerprint spectra.
     (2) A new secondary metabolite, named altertoxin IV, together with altertoxin II, were isolated from the fermentation broth of JL-7w using repeated silica gel column and gel column chromatography. The new structure was characterized by HR-ESI-MS, multinuclear NMR spectroscopy, and single crystal X-ray diffraction method. Altertoxin II and Altertoxin IV were tested for their anti-cancer activities in vitro on the PC-3cells. Altertoxin IV had little anti-cancer activity at the tested (highest) concentration of2.67mM; however, Altertoxin Ⅱ showed moderate anti-cancer activity with the IC50value of14.28μM.
引文
[1]Arnold A E, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?[J]. Ecology,2007,88(3):541-549.
    [2]Bacon C W, White J. Microbial Endophytes[M]. CRC Press,2000.
    [3]Gaylord E S, Preszler R W, Boecklen W J. Interactions between host plants, endophytic fungi, and a phytophagous insect in an oak (Quercus grisea x Q. gambelii) hybrid zone[J]. Oecologia,1996,105(3):336-342.
    [4]Faeth S H, Hammon K E. Fungal endophytes in oak trees. I. Long-term patterns of abundance and associations with leafminers[J]. Ecology,1997, 78(3):810-819.
    [5]Arnold A e., Maynard Z, Gilbert G, et al. Are tropical fungal endophytes hyperdiverse?[J]. Ecology Letters,2000,3(4):267-274.
    [6]Carroll G. Fungal endophytes in stems and leaves:from latent pathogen to mutualistic symbiont[J]. Ecology,1988,69(1):2-9.
    [7]Schulz B, Boyle C, Draeger S, et al. Endophytic fungi:a source of novel biologically active secondary metabolites[J]. Mycological Research,2002, 106(9):996-1004.
    [8]Bae H, Sicher R C, Kim M S, et al. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao[J]. Journal of Experimental Botany, 2009,60(11):3279-3295.
    [9]Arnold A E, Meji'a L C, Kyllo D, et al. Fungal endophytes limit pathogen damage in a tropical tree[J]. Proceedings of the National Academy of Sciences, 2003,100(26):15649-15654.
    [10]Vega F E, Simpkins A, Aime M C, et al. Fungal endophyte diversity in coffee plants from Colombia, Hawai'i, Mexico and Puerto Rico[J]. Fungal Ecology, 2010,3(3):122-138.
    [11]Arnold A E. Understanding the diversity of foliar endophytic fungi:progress, challenges, and frontiers[J]. Fungal Biology Reviews,2007,21(2-3):51-66.
    [12]Schardl C L, Liu J-S, Jr J F W, et al. Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens[J]. Plant Systematics and Evolution,1991,178(1-2):27-41.
    [13]Moricca S, Ragazzi A. Fungal endophytes in mediterranean oak forests:a lesson from Discula quercina[J]. Phytopathology,2008,98(4):380-386.
    [14]Christensen M J, Bennett R J, Schmid J. Growth of Epichloe/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses[J]. Mycological Research,2002,106(1):93-106.
    [15]Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J\. Science,1993,260(5105): 214-216.
    [16]Amna T, Puri S C, Verma V, et al. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin[J]. Canadian Journal of Microbiology,2006,52(3):189-196.
    [17]Eyberger A L, Dondapati R, Porter J R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin[J]. Journal of Natural Products,2006,69(8):1121-1124.
    [18]Kusari S, Zuhlke S, Kosuth J, et al. Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis[J]. Journal of Natural Products,2009,72(10):1825-1835.
    [19]Kusari S, Zuhlke S, Spiteller M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues [J]. Journal of Natural Products,2009,72(1):2-7.
    [20]Shweta S, Zuehlke S, Ramesha B T, et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin,10-hydroxycamptothecin and 9-methoxycamptothecin[J]. Phytochemistry,2010,71(1):117-122.
    [21]Shweta S, Gurumurthy B R, Ravikanth G, et al. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine[J]. Phytomedicine,2013,20(3-4):337-342.
    [22]Shweta S, Bindu J H, Raghu J, et al. Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd. (Icacinaceae)[J]. Phytomedicine,2013,20(10):913-917.
    [23]Kumara P M, Zuehlke S, Priti V, et al. Fusarium proliferation, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity [J]. Antonie van Leeuwenhoek,2012,101(2):323-329.
    [24]Barrow J R, Osuna P. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt[J]. Journal of Arid Environments,2002,51(3):449-459.
    [25]Varma A, Verma S, Sudha, et al. Piriformospora indica, a cultivable plant-growth-promoting root endophyte[J]. Applied and Environmental Microbiology,1999,65(6):2741-2744.
    [26]Verma S, Varma A, Rexer K H, et al. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus[J]. Mycologia,1998,90(5):896.
    [27]Singh A, Sharma J, Rexer K H, et al. Plant productivity determinants beyond minerals, water and light:Piriformospora indica-A revolutionary plant growth promoting fungus[J]. Current Science-Bangalore,2000,79(11):1548-1554.
    [28]Sherameti I, Shahollari B, Venus Y, et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. Journal of Biological Chemistry,2005,280(28): 26241-26247.
    [29]Barazani O, Benderoth M, Groten K, et al. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance inNicotiana attenuata[J]. Oecologia,2005,146(2):234-243.
    [30]Waller F, Achatz B, Baltruschat H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(38):13386-13391.
    [31]Andrews J H, Hirano S S. Microbial Ecology of Leaves[M]. Springer New York, 1991:179-197.
    [32]Schulz B, Boyle C. The endophytic continuum[J]. Mycological research,2005, 109(6):661-686.
    [33]Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses[J]. Crop Science,2000,40(4):923.
    [34]Redman R S, Sheehan K B, Stout R G, et al. Thermotolerance generated by plant/fungal symbiosis[J]. Science,2002,298(5598):1581-1581.
    [35]Rodriguez R J, Redman R S, Henson J M. The role of fungal symbioses in the adaptation of plants to high stress environments[J]. Mitigation and Adaptation Strategies for Global Change,2004,9(3):261-272.
    [36]Mandyam K, Jumpponen A. Seeking the elusive function of the root-colonising dark septate endophytic fungi[J]. Studies in Mycology,2005,53(1):173-189.
    [37]Carroll G C, Wicklow D T. The Fungal Community:Its Organization and Role in the Ecosystem, Second Edition[M]. CRC Press,1992:243-263.
    [38]Bolwerk A, Lagopodi A L, Lugtenberg B J J, et al. Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot[J]. Molecular Plant-Microbe Interactions, 2005,18(7):710-721.
    [39]Rai M K, Varma A, Pandey A K. Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica[J]. Mycoses,2004,47(11-12):479-481.
    [40]Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, et al. Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi[J]. New Phytologist,1996,133(1):45-57.
    [41]Koide R T, Schreiner R P. Regulation of the vesicular-arbuscular mycorrhizal symbiosis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992,43(1):557-581.
    [42]Van der Heijden M G A, Sanders I R. Mycorrhizal Ecology[M]. Springer Berlin Heidelberg,2003:295-320.
    [43]Schulz B, Rommert A-K, Dammann U, et al. The endophyte-host interaction:a balanced antagonism?[J]. Mycological Research,1999,103(10):1275-1283.
    [44]Clay K. Fungal endophytes of grasses [J]. Annual Review of Ecology and Systematics,1990,21:275-297.
    [45]Hallman J, Sikora R A. Influence of Fusarium oxysporum, a mutualistic fungal endophyte, on Meloidogyne incognita infection of tomato [J]. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz (Germany),1994,101:475-481.
    [46]Ma Y, Prasad M N V, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances,2011,29(2):248-258.
    [47]Tan R X, Zou W X. Endophytes:a rich source of functional metabolites (1987 to 2000)[J]. Natural Product Reports,2001,18(4):448-459.
    [48]Gunatilaka A A L. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence[J]. Journal of Natural Products,2006,69(3):509-526.
    [49]Zhang H W, Song Y C, Tan R X. Biology and chemistry of endophytes[J]. Natural Product Reports,2006,23(5):753-771.
    [50]Rubini M R, Silva-Ribeiro R T, Pomella A W V, et al. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches'Broom Disease[J]. International Journal of Biological Sciences,2005,1(1):24-33.
    [51]Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products[J]. Microbiology and Molecular Biology Reviews,2003,67(4):491-502.
    [52]Zhao J, Zhou L, Wang J, et al. Endophytic fungi for producing bioactive compounds originally from their host plants[J]. In:Mendez-Vilas A (ed) Current Research, Technology Education in Tropics Applied Microbiology and Microbial Biotechnology, Microbiology book series-Number 2,2010,1:567-576.
    [53]杨显志,张玲琪,郭波等.一株产长春新碱内生真菌的初步研究[J].中草药,2004,35(1):79-81.
    [54]Puri S C, Nazir A, Chawla R, et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans[J]. Journal of Biotechnology,2006,122(4):494-510.
    [55]Zhu D, Wang J, Zeng Q, et al. A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slfl4, isolated from Huperzia serrata[J]. Journal of Applied Microbiology,2010,109(4):1469-1478.
    [56]Puri S C, Verma V, Amna T, et al. An endophytic fungus from Nothapodytes foetida that produces camptothecin[J]. Journal of Natural Products,2005, 68(12):1717-1719.
    [57]Rehman S, Shawl A S, Kour A, et al. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin[J]. Applied Biochemistry and Microbiology,2008,44(2):203-209.
    [58]Ramesha B T, Suma H K, Senthilkumar U, et al. New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India[J]. Phytomedicine,2013,20(6):521-527.
    [59]Priti V, Ramesha B T, Singh S, et al. How promising are endophytic fungi as alternative sources of plant secondary metabolites[J]. Current Science,2009, 97(4):477-478.
    [60]Li J Y, Sidhu R S, Ford E J, et al. The induction of taxol production in the endophytic fungus-Periconia sp. from Torreya grandifolia[J]. Journal of Industrial Microbiology and Biotechnology,1998,20(5):259-264.
    [61]Gurudatt P S, Priti V, Shweta S, et al. Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae)[J]. Current Science,2010,98(8):1006-1010.
    [62]Heinig U, Scholz S, Jennewein S. Getting to the bottom of Taxol biosynthesis by fungi[J]. Fungal Diversity,2013,60(1):161-170.
    [63]Gurudatt P S, Priti V, Shweta S, et al. Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae)[J]. Current Science,2010,98(8):1006-1010.
    [64]Kumara P M, Zuehlke S, Priti V, et al. Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity [J]. Antonie van Leeuwenhoek,2012,101(2):323-329.
    [65]Cordell G A. The biosynthesis of indole alkaloids.[J]. Lloydia,1974,37(2): 219-298.
    [66]Wall M E, Wani M C, Cook C E, et al. Plant Antitumor Agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminatal,2[J]. Journal of the American Chemical Society,1966,88(16):3888-3890.
    [67]Govindachari T R, Viswanathan N. Alkaloids of Mappia foetida[J]. Phytochemistry,1972,11(12):3529-3531.
    [68]Ramawat K G, Merillon J M. Bioactive Molecules and Medicinal Plants[M]. Springer Berlin Heidelberg,2008:197-213.
    [69]Yamazaki Y, Sudo H, Yamazaki M, et al. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila:Cloning, characterization and differential expression in tissues and by stress compounds[J]. Plant and Cell Physiology, 2003,44(4):395-403.
    [70]Yamazaki Y, Kitajima M, Arita M, et al. Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]Glucose[J]. Plant Physiology,2004, 134(1):161-170.
    [71]McKnight T D, Roessner C A, Devagupta R, et al. Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus[J]. Nucleic Acids Research,1990,18(16):4939-4939.
    [72]Kutchan T M, Hampp N, Lottspeich F, et al. The cDNA clone for strictosidine synthase from Rauvolfia serpentina DNA sequence determination and expression in Escherichia coli[J]. FEBS Letters,1988,237(1-2):40-44.
    [73]Sun Y, Luo H, Li Y, et al. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport[J]. BMC Genomics,2011,533(12):1-11.
    [74]Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research,2004,32(suppl 1):D277-D280.
    [75]Khaldi N, Seifuddin F T, Turner G, et al. SMURF:Genomic mapping of fungal secondary metabolite clusters[J]. Fungal Genetics and Biology,2010,47(9): 736-741.
    [76]GrossetSte S, Labedan B, Lespinet O. FUNGI path:a tool to assess fungal metabolic pathways predicted by orthology[JJ. BMC Genomics,2010,11(1): 81.
    [77]Sachin N, Manjunatha B L, Kumara P M, et al. Do endophytic fungi possess pathway genes for plant secondary metabolites?[J]. Current Science,2013, 104(2):178-182.
    [78]Kusari S, Zuhlke S, Spiteller M. Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis [J]. Journal of Natural Products,2011,74(4):764-775.
    [79]Suffness M. Taxol:Science and Applications[M]. CRC Press,1995.
    [80]Schiff P B, Horwitz S B. Taxol stabilizes microtubules in mouse fibroblast cells[J]. Proceedings of the National Academy of Sciences,1980,77(3):1561-1565.
    [81]Xiong Z Q, Yang Y Y, Zhao N, et al. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media[J]. BMC Microbiol,2013,13(1):71.
    [82]Zhang P, Zhou P P, Yu L J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2[J]. Current Microbiology,2009, 59(3):227-232.
    [83]Staniek A, Woerdenbag H, Kayser O. Taxomyces andreanae:a presumed paclitaxel producer demystified?[J]. Planta Medica,2009,75(15):1561-1566.
    [84]Bomke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria[J]. Phytochemistry,2009,70(15-16):1876-1893.
    [85]Griffiths A J. Natural plasmids of filamentous fungi.[J]. Microbiological Reviews,1995,59(4):673-685.
    [86]Hoffman M T, Arnold A E. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes[J]. Applied and Environmental Microbiology,2010,76(12):4063-4075.
    [87]Bianciotto V, Bandi C, Minerdi D, et al. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. [J]. Applied and Environmental Microbiology,1996,62(8):3005-3010.
    [88]Bertaux J, Schmid M, Hutzler P, et al. Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N[J]. Environmental Microbiology,2005,7(11):1786-1795.
    [89]Medema M H, Trefzer A, Kovalchuk A, et al. The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways[J]. Genome Biology and Evolution,2010,2:212-224.
    [90]Smith M A, Bidochka M J. Bacterial fitness and plasmid loss:the importance of culture conditions and plasmid size[J]. Canadian Journal of Microbiology, 1998,44(4):351-355.
    [91]顾关云,蒋昱.蒺藜及其同属植物的化学与药理学研究进展[J].现代药物与临床,2009,24(4):198-202.
    [92]李明娟,瞿伟菁,王熠非等.蒺藜皂苷的降血糖作用[J].中药材,2002,25(6):420-422.
    [93]褚书地,瞿伟菁,逢秀凤等.蒺藜皂苷对高脂血症的影响[J].中药材,2003,26(5):341-344.
    [94]杨煌建,瞿伟菁,孙斌.蒺藜皂苷对肾癌细胞的实验影响[J].中国中药杂志,2005,30(16):1271-1274.
    [95]孙斌,瞿伟菁,张晓玲等.蒺藜皂苷对人肝癌细胞BEL-7402生长抑制和诱导凋亡作用的研究[J].中国中药杂志,2004,29(7):681-684.
    [96]孙斌,瞿伟菁,柏忠江.蒺藜皂苷对乳腺癌细胞Bcap-37的体外抑制作用[J].中药材,2003,26(2):104-106.
    [97]孙国珍,张洁,马百平.蒺藜中甾体皂苷类化学成分及其药理活性研究进展[J].中草药,2007,38(7):1111-1115.
    [98]任智,张晓喻,祝凯等.产薯蓣皂甙华重楼内生菌的筛选与鉴定[J].微生物学杂志,2007(02):6-9.
    [99]Amaral L S, Murgu M, Rodrigues-Fo E, et al. A saponin tolerant and glycoside producer xylariaceous fungus isolated from fruits of Sapindus saponaria[J]. World Journal of Microbiology and Biotechnology,2008,24(8):1341-1348.
    [100]Wu H, Yang H, You X, et al. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China[J]. International Journal of Molecular Sciences,2012,13(12):16255-16266.
    [101]牛伟.蒺藜皂昔对代谢综合征的影响及其有效成分分析[D].华东师范大学,2005.
    [1]Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products[J]. Microbiology and Molecular Biology Reviews,2003,67(4):491-502.
    [2]Arnold A, Maynard Z, Gilbert G, et al. Are tropical fungal endophytes hyperdiverse?[J]. Ecology Letters,2000,3(4):267-274.
    [3]郭良栋.内生真菌研究进展[J].菌物系统,2001,20(1):148-152.
    [4]刘蕴哲,何劲,张杰等.植物内生真菌及其活性代谢产物研究进展[J].菌物研究,2005,3(4):30-36.
    [5]邓墨渊,王伯初,杨再昌等.分子生物学技术在植物内生菌分类鉴定中的应用[J].氨基酸和生物资源,2006,28(3):9-14.
    [6]项勇,崔京霞,吕安国.东北红豆杉内生真菌的分离和筛选[J].东北林业大学学报,2002,30(2):30-34.
    [7]罗利娟,习平根,姜子德等.纯培养拟茎点霉属真菌的产孢条件[J].菌物学报,2004,23(2):219-225.
    [8]Kour A, Shawl A S, Rehman S, et al. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva[J]. World Journal of Microbiology and Biotechnology,2008, 24(7):1115-1121.
    [9]陈苹,戴好富,解修超等.海南粗榧内生真菌的分离与初步鉴定[J].微生物学通报,2008,35(9):6.
    [10]钟志宏,李启星,唐小异等.甘油保存菌种方法的改良[J].实用预防医学, 2005,12(3):670-671.
    [11]何月秋.真菌菌丝体培养和提取DNA方法的改进[J].菌物系统,2000,19(3):434.
    [12]Yuan Z, Chen Y, Yang Y. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile):estimation and characterization[J]. World Journal of Microbiology and Biotechnology,2009, 25(2):295-303.
    [13]Thompson J D, Higgins D G, Gibson T J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research,1994,22(22):4673-4680.
    [14]Kumar S, Nei M, Dudley J, et al. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings in Bioinformatics,2008,9(4):299-306.
    [15]郭春秋,罗永兰,张志元.几种真菌的诱导产孢试验[J].海南大学学报自然科学版,2003,21(1):74-77.
    [16]魏景超.真菌鉴定手册[M].上海科学技术出版社,1979.
    [17]陈剑山.来自海南岛的镰刀菌的种类鉴定[D].海南大学,2007.
    [18]Sun X, Guo L D, Hyde K D. Community composition of endophytic fungi in Acer truncatum and their role in decomposition[J]. Fungal Diversity,2011,47(1): 85-95.
    [19]Unterseher M, Schnittler M. Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica)[J]. Fungal Ecology,2010,3(4):366-378.
    [20]文才艺,吴元华,田秀玲.植物内生菌研究进展及其存在的问题[J].生态学杂志,2004,23(2):86-91.
    [21]Garbeva P, Overbeek L S van, Vuurde J W L van, et al. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments[J]. Microbial Ecology,2001,41(4):369-383.
    [22]Chelius M K, Triplett E W. The diversity of archaea and bacteria in association with the roots of Zea mays L.[J]. Microbial Ecology,2001,41(3):252-263.
    [23]Guo L D, Hyde K D, Liew E C Y. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences[J]. New Phytologist,2000,147(3):617-630.
    [24]Guo L D, Huang G R, Wang Y, et al. Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis[J]. Mycological Research,2003,107(6):680-688.
    [25]Guo L D, Hyde K D, Liew E C Y. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences[J]. Molecular Phylogenetics and Evolution,2001,20(1):1-13.
    [26]Ainsworth G C, Bisby G R. Ainsworth & Bisby's Dictionary of the Fungi[M]. World Book Publishing,1995:54-56.
    [27]Lou J, Fu L, Peng Y, et al. Metabolites from Alternaria fungi and their bioactivities[J]. Molecules,2013,18(5):5891-5935.
    [28]Wang L W, Xu B G, Wang J Y, et al. Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens[J]. Applied Microbiology and Biotechnology,2012,93(3):1231-1239.
    [29]朱国胜,桂阳,黄永会等.中国种子植物内生真菌资源及菌植协同进化[J].菌物研究,2005,3(2):6-13.
    [30]徐亚军.植物内生菌资源多样性研究进展[J].广东农业科学,2011(24):149-152.
    [31]孙辉.植物内生真菌多样性及其共生作用[J].现代农业科技,2012(18):143-145.
    [32]李文英,庄文颖.座囊菌目及相关类群属间关系的系统学初探[J].菌物学报,2009,28(02):161-170.
    [33]陈婕,李会平,黄大庄.杨树内生真菌群落多样性[J].东北林业大学学报,2013(07):115-117+133.
    [34]刘爱荣,吴晓鹏,徐同.红树林内生真菌研究进展[J].应用生态学报,2007(04):912-918.
    [1]Tan R X, Zou W X. Endophytes:a rich source of functional metabolites[J]. Natural Product Reports,2001,18(4):448-459.
    [2]Guo L, Wu J, Han T, et al. Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme[J]. Molecules,2008,13(9):2114-2125.
    [3]曹惠玲,陈浩宏,许士凯.蒺藜及其有效成分的药理与临床研究进展[J].中成药,2001,23(8):602-605.
    [4]牛伟.蒺藜皂苷对代谢综合征的影响及其有效成分分析[D].华东师范大学,2005.
    [5]王晓婧,孙伟,曾珂等.不同产地苦瓜中苦瓜皂苷的闪式提取及HPLC测定[J].中草药,2011(12):2471-2473.
    [6]张海军,李琳,李景文等.大豆异黄酮提取及纯化工艺研究进展[J].粮食与饲料工业,2011(10):33-35.
    [7]张勇,薛昆鹏,何美等.固相萃取/超高效液相色谱法测定龙胆泻肝丸中栀子苷、龙胆苦苷与黄芩苷[J].分析测试学报,2013(01):122-126.
    [8]陈雯,方宝霞,李鹏等.固相萃取技术在中成药质量控制中的应用[J].医药导报,2009(06):764-766.
    [9]关翠林,王尚芝.气-质联用技术的应用[J].天津化工,2004,18(1):25-27.
    [10]吉宏武,丁霄霖.百合甾体皂苷元的气-质联用分析及其结构鉴定[J].无锡轻工大学学报,2003,22(3):84-88.
    [11]黄新健,陈圣平,李天麟等.市售西洋参和三七保健品皂苷类成分的气质联用分析[J].福州大学学报,2008,36(6):880-883.
    [12]Li T, Zhang Z, Zhang L, et al. An improved facile method for extraction and determination of steroidal saponins in Tribulus terrestris by focused microwave-assisted extraction coupled with GC-MS[J]. Journal of Separation Science,2009,32(23-24):4167-4175.
    [13]项勇,崔京霞,吕安国.东北红豆杉内生真菌的分离和筛选[J].东北林业大学学报,2002,30(2):30-34.
    [14]Guo L, Wu JZ, Han T, et al. Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme[J]. Molecules,2008,13(9):2114-2125.
    [15]潘一峰.越桔黄酮及其生物学活性的研究[D].华东师范大学,2005.
    [16]周计生,陈晓青,蒋新宇.固相萃取-反相高效液相色谱法分析粗裂地钱中的黄酮类化合物[J].天然产物研究与开发,2012(02):191-194.
    [17]牛伟,瞿伟菁,曹群华等.RP-HPLC比较蒺藜全草和果实中的主要甾体皂苷元成分[J].中成药,2005(04):88-90.
    [18]牛伟,瞿伟菁,曹群华等.RP-HPLC比较蒺藜全草和果实中的主要甾体皂昔元成分[J].中草药,2005,27(4):456--458.
    [19]Damrong Kongduang J W. Biosynthesis of b-sitosterol and stigmasterol proceeds exclusively via the mevalonate pathway in cell suspension cultures of Croton stellatopilosus[J]. Tetrahedron Letters,2008,49:4067-4072.
    [20]Lu H, Zou W X, Meng J C, et al. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua[J]. Plant Science, 2000,151(1):67-73.
    [21]魏美燕,李尚德,陈须堂等.南海红树林内生真菌Cephalosporium sp.(2090#)次级代谢产物研究[J].化学研究与应用,2008(06):790-792.
    [22]李尚德,魏美燕,李志华等.一株红树内生真菌Penicillium sp.(ZZF29#)次级代谢产物的分离与鉴定[J].应用化学,2012(06):727-729.
    [23]Y H, J Z, L Z, et al. Antimicrobial compounds from the endophytic fungus Fusarium sp. Ppf4 isolated from the medicinal plant Paris polyphylla var. yunnanensis.[J]. Natural product communications,2009,4(11):1455-1458.
    [24]Cao S, Ross L, Tamayo G, et al. Asterogynins:Secondary Metabolites from a Costa Rican Endophytic Fungus[J]. Organic Letters,2010,12(20):4661-4663.
    [26]Kumara P M, Shweta S, Vasanthakumari M M, et al. Endophytes and Plant Secondary Metabolite Synthesis:Molecular and Evolutionary Perspective [A]. 见:V.C. Verma, A.C. Gange. Advances in Endophytic Research[M]. Springer India,2014:177-190.
    [27]Sachin N, Manjunatha B L, Kumara P M, et al. Do endophytic fungi possess pathway genes for plant secondary metabolites?[J]. Current Science,2013, 104(2):178.
    [1]Phongpaichit S, Rungjindamai N, Rukachaisirikul V, et al. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species[J]. FEMS Immunology & Medical Microbiology,2006,48(3):367-372.
    [2]Ramasamy K, Lim S M, Abu Bakar H. Antimicrobial and cytotoxic activities of malaysian endophytes[J]. Phytotherapy Research,2010,24(5):640-643.
    [3]吕泰省,易杨华,武晓娟等.利用稻瘟霉模型筛选铁刀木生物活性成分[J].解放军药学学报,2006,22(4):251-253.
    [4]李路怡,易建华,李敏.大肠杆菌最佳感受态细胞制备的探讨[J].生命科学研究,1998,2(3):194-198.
    [5]Guo L, Wu J Z, Han T, et al. Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme[J]. Molecules,2008,13(9):2114-2125.
    [6]刘冬梅,李理,杨晓泉等.用牛津杯法测定益生菌的抑菌活力[J].食品研究与开发,2006,27(3):110-111.
    [7]郭蕾,吴锦忠,许强芝等.利用稻瘟霉模型筛选粗疣合叶苔内生真菌中的活性菌株[J].中草药,2009,7(7):1090-1094.
    [8]郭文,蒋继志.利用稻瘟霉模型初级筛选抗肿瘤物质研究进展[J].生物学通报,2010,45(4):1-3.
    [9]王国平,罗宽.稻瘟病菌产孢培养基的筛选[J].湖南农业大学学报(自然科学版),1989,2:009.
    [10]Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening[J]. Nature Protocols,2006,1(3):1112-1116.
    [11]Lou J, Fu L, Peng Y, et al. Metabolites from Alternaria fungi and their bioactivities[J]. Molecules,2013,18(5):5891-5935.
    [12]Wang L W, Xu B G, Wang J Y. Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens[J]. Applied Microbiology and Biotechnology,2012,93(3):1231-1239.
    [13]Liu Z, Jensen P R, Fenical W. A cyclic carbonate and related polyketides from a marine-derived fungus of the genus Phoma[J]. Phytochemistry,2003,64(2): 571-574.
    [14]Ondeyka J G, Zink D L, Young K, et al. Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy[J]. Journal of Natural Products,2006,69(3):377-380.
    [15]Alvi K A, Nair B, Pu H, et al. Phomacins:Three Novel Antitumor Cytochalasan Constituents Produced by a Phoma sp.[J]. The Journal of Organic Chemistry,1997,62(7):2148-2151.
    [16]Mohamed I E, Gross H, Pontius A, et al. Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp.[J]. Organic Letters,2009,11(21):5014-5017.
    [17]Yano T, Aoyagi A, Kozuma S, et al. Pleofungins, Novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899[J]. The Journal of Antibiotics,2007,60(2):136-142.
    [18]Bean GA, Fernando T, Jarvis BB, et al. The isolation and identification of trichothecene metabolites from a plant pathogenic strain of Myrothecium Roridum[J]. Journal of Natural Products,1984,47(4):727-729.
    [19]Abbas H, Johnson B, Shier W, et al. Phytotoxicity and mammalian cytotoxicity of macrocyclic trichothecene mycotoxins from Myrothecium verrucaria[J]. Phytochemistry,2002,59(3):309-313.
    [20]Shen L, Wang J S, Shen H J, et al. A new cytotoxic trichothecene macrolide from the endophyte Myrothecium roridum[J]. Planta Medica,2010,76(10): 1004-1006.
    [21]Moon J Y, Mosaddik A, Kim H, et al. The chloroform fraction of guava (Psidium cattleianum sabine) leaf extract inhibits human gastric cancer cell proliferation via induction of apoptosis[J]. Food Chemistry,2011,125(2):369-375.
    [22]Yu J, Liu H, Lei J, et al. Antitumor activity of chloroform fraction of Scutellaria barbata and its active constituents[J]. Phytotherapy Research,2007,21(9):817-822.
    [23]曹惠玲,陈浩宏,许士凯.蒺藜及其有效成分的药理与临床研究进展[J].中成药,2001,23(8):602-605.
    [24]刘雅莉,黄一泓,武文斌等.蒺藜内生真菌抗氧化活性菌株的筛选[J].天然产物研究与开发,2013,25(4):435-439,478.
    [1]李永,岳志强,朴春根等.链格孢属真菌的分子复核鉴定及系统发育研究[J].中国农学通报,2013(27):165-169.
    [2]Dini-Andreote F, Pietrobon V C, Andreote F D, et al. Genetic variability of Brazilian isolates of Alternaria alternata detected by AFLP and RAPD techniques[J]. Brazilian Journal of Microbiology,2009,40(3):670-677.
    [3]Harteveld D O C, Akinsanmi O A, Drenth A. Multiple Alternaria species groups are associated with leaf blotch and fruit spot diseases of apple in Australia[J]. Plant Pathology,2013,62(2):289-297.
    [4]项勇,崔京霞,吕安国.东北红豆杉内生真菌的分离和筛选[J].东北林业大学学报,2002,30(2):30-34.
    [5]黄世文,余柳青,Alan K W.影响链格孢菌生长及产孢的因子[J].中国生物防治,2001,17(1):16-19.
    [6]罗利娟,习平根,姜子德等.纯培养拟茎点霉属真菌的产孢条件[J].菌物学报,2004,23(2):219-225.
    [7]Peever T L, Su G, Carpenter-Boggs L, et al. Molecular systematics of citrus-associated Alternaria species[J]. Mycologia,2004,96(1):119-134.
    [8]Konstantinova P, Bonants P J M, Van Gent-Pelzer M P E, et al. Development of specific primers for detection and identification of Altevnavia sp. in carrot material by PCR and comparison with blotter and plating assays[J]. Mycological Research,2002,106(1):23-33.
    [9]于占晶,侯晓杰,崔建州等.壶瓶枣褐斑病病原菌的鉴定[J].植物病理学报,2010,40(1):7-13.
    [10]魏景超.真菌鉴定手册[M].上海科学技术出版社,1979.
    [11]陈剑山.来自海南岛的镰刀菌的种类鉴定[D].海南大学,2007.
    [12]张天宇.中国真菌志(第十六卷)链格孢属[M].北京:科学出版社,2003.
    [13]何月秋.真菌菌丝体培养和提取DNA方法的改进[J].菌物系统,2000,19(3):434.
    [14]肖欢,王奕文,吴玲清等.柿果黑腐病发病情况调查及病原菌的分离鉴定 [J].食品科学,.
    [15]谭梅英,谭志灿,孙冬梅等.基于紫外光谱和聚类分析法结合的布渣叶鉴别研究[J].海峡药学,2012,24(7):62-64.
    [16]聂晶,田颂九,王国荣.中药指纹图谱的研究现状[J].中草药,2000,31(12):881-884.
    [1]Strobel G, Stierle A, Stierle D, et al. Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia).[J]. Mycotaxon,1993,47:71-80.
    [2]张玲琪,郭波,李海燕等.长春花内生真菌的分离及其发酵产生药用成分的初步研究[J].中草药,2000,31(11):805-807.
    [3]Shweta S, Zuehlke S, Ramesha B T, et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Am (Icacinaceae) produce camptothecin,10-hydroxycamptothecin and 9-methoxycamptothecin[J]. Phytochemistry,2010,71(1):117-122.
    [4]杨欣.063链格孢霉毒素研究进展[J].国外医学:卫生学分册,2000,27(3):182-188.
    [5]Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening[J]. Nature Protocols,2006,1(3):1112-1116.
    [6]Mehdi F S, Dawar S, Sarwar S. Mycotoxin production by Alternaria alternata[J]. International Journal of Biology and Biotechnology,2004, v.1(1) p.75-77.
    [7]Stack M E, Prival M J. Mutagenicity of the Alternaria metabolites altertoxins Ⅰ, Ⅱ, and Ⅲ.[J]. Applied and Environmental Microbiology,1986,52(4):718-722.
    [8]Suhas S, Ramesha B T, Ravikanth G, et al. Chemical profiling of Nothapodytes nimmoniana populations in the Western Ghats, India for anti-cancer compound, camptothecin[J]. Current science,2007,92(8):1142-1147.
    [9]Korkina L G. Phenylpropanoids as naturally occurring antioxidants:from plant defense to human health[J]. Cell Mol Biol,2007,53(1):15-25.
    [10]Chapela I H, Petrini O, Hagmann L. Monolignol glucosides as specific recognition messengers in fungus-plant symbioses[J]. Physiological and Molecular Plant Pathology,1991,39(4):289-298.
    [11]Fernandes M dos R V, Silva T A, Pfenning L H, et al. Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L.[J]. Brazilian Journal of Pharmaceutical Sciences,2009, 45(4):677-685.
    [12]Davis V M, Stack M E. Mutagenicity of stemphyltoxin III, a metabolite of Alternaria alternata.[J]. Applied and Environmental Microbiology,1991,57(1): 180-182.
    [13]Pero R W, Posner H, Blois M, et al. Toxicity of metabolites produced by the "Alternaria".[J]. Environmental Health Perspectives,1973,4:87-94.
    [14]Stinson E E. Mycotoxins-their biosynthesis in Alternaria[J]. J Food Prot,1985, 48:80-91.
    [15]Chen C T, Nakanishi K, Natori S. Biosynthesis of elsinochrome A, the perylenequinone from Elsinoe spp. I.[J]. Chemical & harmaceutical ulletin, 1966,14(12):1434.
    [16]Allport D C, Bu'Lock J D.134. Biosynthetic pathways in Daldinia concentrica[J]. Journal of the Chemical Society (Resumed),1960,134:654-662.
    [17]Cai Y-S, Guo Y-W, Krohn K. Structure, bioactivities, biosynthetic relationships and chemical synthesis of the spirodioxynaphthalenes[J]. Natural Product Reports,2010,27(12):1840-1870.
    [18]Guo L, Wu JZ, Han T, et al. Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme[J]. Molecules,2008,13(9):2114-2125.
    [19]Araujo W L, Maccheroni Jr. W, Aguilar-Vildoso C I, et al. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks[J]. Canadian Journal of Microbiology,2001,47(3):229-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700