黄土高原地区几种灌木植物生理生态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分亏缺是制约树木生长的重要环境因子,尤其干旱、半干旱地区自然条件比较恶劣,干旱少雨,蒸发量大,影响树木的分布、生长和产量。因此,研究灌木植物在黄土高原干旱地区的生长、生理反应,探索这些地区植物的生理生态学特性,对区域植被的建设、保护和发展有重要的作用。本研究是在中国科学院寒区旱区环境与工程研究所皋兰生态农业研究站进行的,依据长期设立的试验观测场地,利用德国WALZ公司生产的GFS-3000便携式光合作用测定系统和德国WALZ公司生产的Mini-PAM光量子分析仪测定了供试植物的光合特性和叶子的叶绿素荧光,通过定期采样,研究了柽柳、拧条、红砂和珍珠叶子的水分生理特性,探讨了这几种灌木植物叶子的投影面积与其干重量之间的关系,对比研究了不同集雨方式对人工栽植的柽柳土壤水分及生理特性的影响,得出以下结论:
     (1)对自然条件下生长的柽柳和柠条光合速率、蒸腾速率和叶片的叶绿素荧光研究表明:柽柳的光合速率、蒸腾速率日变化都为一单峰曲线,水分利用效率变化曲线呈现双峰型。采用相关分析和多元逐步回归分析方法,得出了光合速率和蒸腾速率与大气CO2浓度、胞间CO2浓度、水汽压、水汽压亏缺等生理生态因子间的相关关系,并建立了相应的影响因子回归方程,与光合作用的相关系数分别可达0.99、0.95,与蒸腾速率的相关系数分别为0.998、0.994。
     (2)对不同集雨处理样地柽柳的光合速率、土壤含水量、水分特性和生长进行研究表明:柽柳在三种不同处理样地上的光合速率和蒸腾速率日变化都为一单峰曲线,但达到最大值的时间不同。且不同处理的集雨样地对柽柳的光合速率、蒸腾速率、土壤含水量、水分特性、叶片干重和面积的影响都不显著。地埂覆膜和水平沟铺砾石处理的样地表层土的土壤含水量大于对照,而水平沟和地埂均未覆盖处理样地与对照相差不明显。在不同的集雨及保墒处理中,柽柳生长增加比较显著。但在2004到2007年的三年时间,柽柳生长明显比2002到2004年的两年时间生长缓慢。
     (3)对柽柳和柠条叶片叶绿素荧光的研究表明:以太阳光为化学光,测定的叶绿素荧光参数日变化显示,柠条PSⅡ的非循环电子传递速率大于柽柳,柠条实际光化学量子产量与柽柳差异不大,日动态变化说明PSⅡ实际光化学量子产量对外界光强和气温条件的响应敏感。两种灌木光合机构在中午强光和高温下其光合活性受到了暂时的抑制。但未发生不可逆的光破坏,下午随着光强和温度的下降,其光合器官的功能得到恢复。柠条的光化学猝灭系数qP和NPQ非光化学猝灭系数的日变化可知,柽柳通过光化学猝灭转换光能的作用及非光化学猝灭方式耗散光能的作用都高于柠条。经充分暗适应后的柽柳、柠条的叶片叶绿素荧光参数初始荧光Fo随着光强的增加而增加,变化幅度较小,柠条比柽柳曲线变化平滑。光化学效率(Fv/Fm)随着光强上升而下降,到15:30左右降到最低值。之后,又随光强的减弱逐渐回升。在正常的生长条件下,经过一整夜充分暗适应后,柽柳、柠条叶片的FV/FM,即PSⅡ原初光能转换效率分别为0.76和0.77这一效率值明显低于过去许多研究中提到的0.80-0.85,对一些阳生植物而言,在光照强度远远未达到其光合所需能量时,FV/FM指标会下降。
     (4)对柽柳、拧条、红砂和珍珠的水分生理特性研究表明:四种植物中红砂和柽柳的抗旱性最强,柠条的最弱。
     (5)采用扫描图像与Photoshop图像处理软件结合的方法研究柽柳、柠条、红砂和珍珠的叶片投影面积与叶干重之间的关系,柽柳、柠条和红砂叶投影面积与叶干重呈线性相关,柽柳、柠条、红砂和珍珠的叶片投影面积与叶干重之间的关系,所得回归方程分别为:Y=0.055X+0.0085、R2=0.923,Y=0.0488X+0.0297、R2=0.80,Y=0.30X+0.0129、R2=0.53;珍珠的叶片是多浆汁叶,形状极不规则,不能利用目前的扫描仪计算出它的投影面积。
     (6)采用多元回归方法建立柠条生物量模型,得出了生物量和株高地径之间的关系,推算出每株柠条的生物量大约为:2383.7g。
Drought stress is an important environmental factor that affect survival plant and growth. Natural condition in the Semiarid Loess Region of China is badly, where is serious drought and wild evaporation. It is effect on plant distribution, growth and yield . Therefore, It,s play a very important role in ecological restoration and reconstruction, protecting and developing of regional vegetations.Growths and physiological responses and exploring ecophysiological characteristics was studied in the Semiarid Loess Region of China. This research basised for observation of long-term experiment field and made use of the GSF-3000 Portable Photosynthesis System and MINI-PAM Photosynthesis Yield .Analyzer were carried the research on water physiological characteristics of Tamarix ramosissma,Caragana microphylla, Reaumuria soongorica Maxim and Salsola passerina Bge by periodical sample. Studied the relationships between the leaf projection area and the leaf dryweight. Analied moisture physiology of shrubs and Comparative studied the soil water storage and moisture physiology under different environmental conditions in Ecological Agriculture Station Gaolan of Cold and Arid Regions Environmental and Engineering Research Istitute,China. On the basis of all above researches obtain conclusions as following:
     (1)Diurnal variations of photosynthesis of Tamarix ramosissma and Caragana microphylla were studied under natural conditions. The results indicated that the daily course of Tamarix ramosissima photosynthetic rate (Pn) and transpiration rate (E) were sing-peak curve. And the daily course of water use efficiency was two-peak curve. By the methods of correlation analysis and stepwise multiregression analysis, the correlations between them and environ mental factors were assessed. The related equations were also constructed in this paper, and the photosynthetic rate (Pn) correlation coefficients were 0.99 and 0.5, respectively.And ranspirationate (E) correlation coefficients were0.998, 0.994, respectively.
     (2)The photosynthesis characteristic, soil moisture content, water characteristics and plants growth of Tamarix ramosissima under different environments were researched. The results showed that the daily course of Tamarix ramosissima under different environments photosynthetic rate(Pn) and transpiration rate(E) were sing-peak curve. But the maximizing time was different. And it was not all significant differences in the photosynthesis characteristic of the special temporal pointers, soil moisture content, water characteristics and the relations between the leaf projection area and the leaf dry weight of Tamarix ramosissima under different environments. The moisture of surface soil was significantly higher for the C treatment than the control, but no significant differences in moisture of surface soil was found between B treatment and control treatment.Rainwater harvesting and moisture conservation treatments increased growth of Tramosissima, tree height was significantly higher for the rainwater harvesting and moisture conservation treatments than the control.It was obviously slow growth the in 2004 to 2007 than 2002 to 2004.
     (3) The measurement of daily chlorophyll fluorescence parameters with sunlight as the photochemical light indicated that the ETR of Cartagena microphylla was higher than that of Tamarix ramosissima but the qP and NPQ of the former was lower than that of the latter. The Yield was no significant difference between Caragana microphylla and Tamarix ramosissim.After sufficiently adapting to darkness, the chlorophyll fluorescence parameters such as Fo increasing along with the luminous intensity increase,and showed little change.The Caragana microphyll change was smoother than Tamarix ramosissim. The Fv/Fm of the two kinds of plants become lower with the increasing of light's intensity and reached the lowest at 15:30, then it begins to increase as the light become weak.Under normal conditions,making full dark adaptiong by all-night showed that FV/FM is 0.76 and 0.77 of Tamarix ramosissima and Caragana microphylla.Its lower than 0.80~0.85.Perhaps this is FV/FM decreased in the light intensity far away the energy photosynthesis of sun plants.
     (4)Comparison of water physiological characteristics in four species, the results indicated that doughty resistance of four species Tamarix ramosissima and Reaumuria soongorica Maxim were the strongest, and Caragana microphyll was lowest.
     (5) The relationships between the leaf projection area and leaf dry weight of Tamarix ramosissima,Caragana microphylla,Reaumuria soongorica Maxim and Salsola passerina Bge were studied using scanning image processing system and image processing software Photoshop. The relations between the leaf projection area and the leaf dry weight of Tamarix ramosissima、Caragana microphylla and Reaumuria soongorica Maxi were linear. The regression equation were Y=0.055X+0.0085; R2=0.92; Y=0.0488X+0.0297,R2=0.80;Y=0.30X+0.0129,R2=0.53;respectively.The Salsola passé- rine Bge leaf is the multi- thick liquid juice leaf, and the shape is extremely irregular, so its projected area cannot be calculated using the present scanning technology.
     (6) By the methods of stepwise multiregression analysis to establish the biomass model of Caragana microphylla.The relations between the biomass and the high ground diameter had obtained. The biomass of Solola passerina Bge and Reaumuria soongorica Maxim were 135g, 43.5g, respectively. It was showed that the Solola passerina Bge capacity accumulated dry matter higher that Reaumuria soongorica.
引文
[1]山仑,陈国良.黄土高原旱地农业的理论与实践[M].科学出版社,1993.1-10.
    [2]Hu X-Sh(胡新生),Wan s-J(王世绩).1998.A reveiew of studies on water stress and drought tolerance in trees species.Scientla Silvae Sinicae (林业科学),32(2):77-89(in Chinese).
    [3]张鹏云,张耀甲.中国植物志[M].北京:科学出版社,1979,50(2):142-143.
    [4]刘铭庭.柽柳属植物综合研究及大面积推广应用[M].兰州:兰州大学出版社,1995:100-103.
    [5]中国植被编辑委员会.中国植被[M].北京:科学出版社,1980.554-555.580-588,597-600.
    [6]刘家琼,邱明新,蒲锦春,等.我国荒漠典型超旱生植物-红砂[J].植物学报,1982,24(5):485-488.
    [7]中国饲用植物志编辑委员会.中国饲用植物志(第一卷)[M].北京:农业出版社,1987.303-306,510-513.
    [8]黄培佑.荒漠区耐旱树种在异质生境中完成生活周期现象初探[J].新疆大学学报,1988,5(4):87-93.
    [9]马茂华,孔令韶.新疆呼图壁外缘的琵琶柴生物生态学特性研究[J].植物生态报,1998,22(3):237-244.
    [10]丘明新,刘家琼.珍珠植物群落的研究[J].生态学报,1982,2(4).311-318.
    [11]杜林方.光合作用研究的一些进展[J].世界科技研究与发展,1992,21(1):58-62.
    [12]ChenS-G(陈绍光),Li Y-N(李燕南).1986 Effect of drought of air and sill on the growth and photosynthesis of different poplars dons J Beijing For Univ (北京林业大学学报),18(3):35-41(in Chinese).
    [13]Liu Y-R(刘雅荣),Liu F-J(刘奉觉),Wang Sh(王爽)etal.1983.A study on the growth and photosynthesis of 4 poplars.Scientla Silvae Sinicae (林业科学),19(3):269-276(in Chinese).
    [14]李吉跃,张建国.北京主要造林树种耐旱机理及其分类模型的研究[J].北京林业大学学报,1993,15(3):1-11.
    [15]郭连生,田有亮.运用PV技术对华北常见造林树种耐旱性评价的研究[J].内蒙古林学院学报,1998,20(3):1-8.
    [16]杜景周.荒漠植物的水分生理特征与耐旱特性[J].甘肃科技,2006,22(1):169-173.
    [17]牛书丽,蒋高明.内蒙古浑善达克沙地97种植物的光合生理特征[J].植物生态学报,2003,27(3):318-324.
    [18]Ma C C,Gao Y B,Guo H Y,e al.Interspecific t ransit ion among caragana m icrophylla,C.avaz am cii and C.korsh in ski along geographic gradientê.Characteristics of photo-synthesis and water metabolism[J].Acta B tunica Sonica,2003,45(10):1228-1237.
    [19]Terwilliger V J,ZeroniM.Gas exchange of a desert shrub(Zygophyllum duosum Boiss.) under different soil moisture regimes during summer drought[J].Vegetatio,1994,115:133-144.
    [20]FilellaI,Liusia J,Piol J.Leaf gas exchange and the fluorescence of Phillgralatifolia,Pistacia lentiscus and Quercusilex sump lings in severe drought and high temperature conditions [J].Environmental and Experimental Botany,1998,39:213-219.
    [21]Jiang G M,Dong M.A comparative study on photosynthesis and water use efficiency between clonally and Nonclonal plant species along the northeast China Transect(NECT)[J].Acta Botanica Sinica,2000,42(8):855-863.
    [22]Zheng W J,Zheng X P,Zhang C L.A survey of Photosynthetic carbon metabolism in 4 eco types of Phragmites communism in northwest China:leaf anatomy,ultra structure,and activities of ribulose1,52bisphosphate carbolated,phosphor enopyruvate carboxylase and glycol late oxidize [J].Physiol Plant,2000,110:201-208.
    [23]李卫华,张承烈.泡泡刺叶磷酸烯醇式丙酮酸羧化酶季节性聚态变化[J].植物生态学报,2000,24(3):284-288.
    [24]Zhu X Y,Chen G C,Zhang C L.Photosynthetic electron transport,photophosphorylation and antioxidants in two ecotypes of reed(Phragmites communism Trin.)from different habitats[J].Pho tosynthetica,2001,39(2):183-189.
    [25]Pyankov V I,Guinn P D.C4 plants in the vegetation of Mongolia:their natural occurrence and geographical distribution in relation to climate[J].Oecologia,2000,123:15-31.
    [26]殷立娟,李美荣.中国C4植物的地理分布与生态学研究[J].中国C4植物及其与气候环境的关系[J].生态学报,1997,17(4):350-363.
    [27]Ehleringer J R,Cerling T E,Helliker B R.C4 photosynthesis,atmospheric CO2,and climate[J].Oecologia,1997,112:285-299.
    [28]Zhao CH M,Wang G X.Effects of drought stress on photo protection in Ammopiptanthus m ongolicus leaves[J].Acta Botanica Sinica,2002,44(11):1309-1313.
    [29]肖春旺,周广胜.毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿素荧光对模拟降水量变化的响应[J].应用生态学报,2001,12(5)∶692-696.
    [30]Jay E A.Factorscont rolling transpiration and photosynthesis in Tamarixch inensis Lour [J].Ecology,1982,63(1):46-50.
    [31]Fernandez R J,Reynolds J F.Potential growth and drought to elegance of eight desert grasses: lack of at ride off[J].Oecologia,2000,123:90-98.
    [32]杨文斌,任建民,姚建成.柠条、沙柳人工林水分特性及其在固沙造林中的应用[J].内蒙古林业科技,1993,(2):4-8.
    [33]刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学,1994,30(1):83-87.
    [34]任勇,王佑民.渭北旱塬大官杨水分生理综合分析[J].西北林学院学报,1991,6(3):63-69.
    [35]邓瑞文,冯梅,陈天杏.三种相思(Acacia)的光合作用与蒸腾作用的研究[J].生态学报,1989,9(2):128-131.
    [36]李吉跃,TERENCE J B.多重复干旱循环对苗木气体交换和水分利用效率的影响[J].北京林业大学学报,1999,21(3):1-8.
    [37]贺康宁,张光灿,田阳,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1):10-16.
    [38]翟红波,李吉跃.SPAC中油松栓皮栎混交林水分特征与气体交换[J].北京林业大学学报,2004,24(1):30-34.
    [39]黄占斌,山仑.不同供水下作物水分利用效率合光合速率日变化的时段性及其机理研究[J].华北农学报,1999,14(1):47-52.
    [40]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报,2005,27(3):53-56.
    [41]邓雄,李小明,张希明,等.4种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5):605-612.
    [42]蒋进,高海峰.study on the order of drought resistance of some Tamarix species[J].干旱区研究,1992(9):41-44.
    [43]柴宝峰,李毳.甘蒙柽柳与沙棘抗旱性研究[J ] .应用与环境生物学报,1998 ,4 (1) :24 - 27.
    [44]姚晓玲,黄培祐.短穗柽柳幼苗形态解剖结构观察[J].新疆大学学报,1998,3(1):77-82.
    [45]李向义,赵强,何兴元,等.策勒绿洲前沿两种植物的水分生理生态特征[J].干旱区研究,2004,21(2):171-174.
    [46]张海清,常金宝.额济纳旗柽柳气体交换与水分利用效率日变化研究[J].内蒙古师范大学学报(自然科学汉文版),2006,35(2),229-233.
    [47]林伟宏.植物光合作用对大气C02浓度升高的反应[J].生态学报,1998,18:529-538.
    [48]Gifford R M.Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity:implications for the global carbocycle.Advances in Bioclimatology,1992,1:24-58.
    [49]Allen L H J r,Baker J T,Albrech S L.Carbon dioxide and temperature Fects on rice.Berlin Springer,1995.258-277.
    [50]Kellomaki S,Wang Kai-Yun. Effects of long-term CO2 and temperature lavation on crown nitrogen distribution and daily photosynthetic per for mince of Scots pine.Forest Ecology and Management,1997,99:309-326.
    [51]Tjoelker M G,Reich P B,Oleksyn J.Changes in leaf nitrogen and carbon Hydrates under lie temperature and CO2 acclimation of dark respiration in five boreal tree species.Plant ,Cell&Environment,1999,22:767-778.
    [52]Usami T,Lee J,Oikawa T.Interactive effects of increased temperature and CO2 on the growth ofquercus myrsina efolia saplings.Plant,Cell and Environment, 2001, 24: 1007-1019.
    [53]张小全,徐德应,赵茂盛,等.CO2增长对杉木中龄林针叶光合生理生态的影响[J].生态学报,2000,20(5):390-396.
    [54]蒋高明,渠春梅.北京山区辽东栋林中几种木本植物光合作用对CO2浓度升高的响应[J].植物生态学报,2000,24(2)204-208.
    [55]张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠,2000,20(4):363-368.
    [56]Levitt J.Response of plants to environmental stess.Academic press[M].New York,1972.
    [57]乌日汗.额济纳胡杨光合和水分生理特性的研究[D],2005.
    [58]赵文智,常学礼.樟子松针叶气孔运动与蒸腾强度关系研究[J].中国沙漠,1995,15(3):241-243.
    [59]张国盛,王林和,董智等.毛乌素沙地几种植物蒸腾速率的季节变化特征[J].内蒙古林学院学报(自然科学版),1998,20(1):7-12.
    [60]周海燕,黄子琛.不同时期毛乌素沙区主要植物种光合作用和蒸腾作用的变化.植物生态学报,1996,20(2) :120-131.
    [61]王孟本,柴宝峰,李洪建等.黄土区人工林的土壤持水力与有效水状况[J].林业科学,1999,35(2):7-14.
    [62]刘广全,孟水平,等.影响沙棘苗木蒸散耗水的生理生态要素[J].国际沙棘研究与开发,2005,3(2):26-32.
    [63]李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究[J].生态学报, 2000,20(3):417-422.
    [64]王进鑫,黄宝龙,等.不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正[J].应用生态学报,2005,16(3):419-425.
    [65]田晶会,贺康宁,等.不同土壤水分下黄土高原侧柏生理生态特点分析[J].水土保持学报,2005,19(2):175-183.
    [66]郭连生,田有亮.4种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性研究[J].应用生态学报,1994,5(1):32-36.
    [67]郭惠清,田有亮.杨幼树水分生理指标和光合强度与土壤含水量关系的研究[J].干旱区资源与环境,1998,12(2):101-106.
    [68]刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报,1999,14(4):27-30.
    [69]Liu M-T(刘铕庭). A Comprebensive Study on Plants of Tamarilr Genus and Application on a Large Sale.1995.Lanzbou,Lanzbou University Press.(in Chanese).
    [70]朱震达.中国土地沙质荒漠化,科学出版社.北京.1994,16-47.
    [71]Walter H,Box E O.The desert of central Asia[M].Elsevier.1982,193-236.
    [72]Deng X,Li X M,Zhang X M.The studies about the photosynthetic response of the four desertplants.Acta Ecologica Sinica,2003,23(3):598-605.
    [73]董学军,杨宝珍,郭柯,等.几种沙生植物水分生理生态的研究[J].植物生态学报,1994,18(1):86-94.
    [74]邓雄,李小明,张希明.4种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5):605-612.
    [75]Jay E A 1982 Factors controlling transpiration photosynthesis in Tamarix chinensis Lour ,Ecology.63(1):46-50.
    [76]Warsel Y.The glands of Tamaril aphhylla:A system for salt secrecion or for carbon concentration,Physiol Plant.1991,83:506-510.
    [77]黄占斌,山仑.水分利用效率及其生理生态机理研究进展[J].生态农业研究,1998,6(4):19-23.
    [78]蒋高明,林光辉,MaIiIlo B D V.美国生物圈二号内生长在高CO2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化[J].植物学报,1997,39(6):546-553.
    [79]蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异[J].植物学报,1999,41(10):l1l4-l124.
    [80]Morecroft M D,Woodward F I.Experimental investigations on the enviromnental determination ofδ13C at difermt altitude[J].Jonmal of Experimental Botany,1990,41(231):1303-1308.
    [81]樊巍.农林复合系统的林网对冬小麦水分利用效率影响的研究[J].林业科学,2000,36(4):16-20.
    [82]Farquhar G D,O, Leary M H,Berry J A.On the relationship betweet carbon isotope discrimination and intercerllular carbon dioxide concentration in leaves [J].Austr J Plant Physiol,1982,9:121-137.
    [83]渠春梅,韩兴国,苏波,等.云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示[J].植物学报,2001,43(2):l86-192.
    [84]Schuze ED.dioxide and water vapor exchange in response to drought in the atmosphere and in the soil [J].Ann.Rev.Plant Physio1,1986,37:247-274.
    [85]严昌荣,韩兴国,陈灵芝,等.温带落叶林叶片δ13C的空间变化和种间变化[J].植物学报,1998,40(8):853- 859.
    [86]Damesin C,Rambal S,Joffre R.Betweet-tree variations in leafδ13C of Quercus pubescens and Quercus ilex Mediterranean habitats with diferentwater availability[J].Oecologia,1997,111:26-35.
    [87]Huber,S.C.,H.H.Rogers,D.W.Israel.Effect of CO2 enrichment on photosynthesis and photoSynthate partitioning in soybean(Glycine max)leaves[J].Physiologia Plantarum,1984,62:95-101.
    [88]Bowes,G.Growth at elevated CO2:Photosynthetic responses mediated through Rubisco[J].Plant,Cell and Environment,1991,14:795-806.
    [89]Mousseau,M.,B.Saugier.The effect of increased CO2 on gas exchang and growth of forest tree species[J].Journal of Experimental Botany,1992,43:1121-1130.
    [90]王韶唐.植物水分利用效率与旱地农业生产[J].干旱地区农业研究,1987,(2):67-80.
    [91]刘友良.植物水分逆境生理[M].北京:农业出版社,1992.128-138.
    [92]王克勤.集水造林与水分生态[M].北京:中国林业出版社,2002.16:225.
    [93]Zhao CH M,Wang G X. Effects of drought stress on photoprotection in Ammopiptanthus mongolicus leaves[J].Acta Botanica Sinica,2002,44(11):1309-1313.
    [94]肖春旺,周广胜.毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿素荧光对模拟降水量变化的响应[J].应用生态学报,2001.12(5):692-696.
    [95]温晓刚,林世青.植物体ms级叶绿素荧光诱导动力学数据采集和分析软件[J].植物学通报,1997,14(4):51-54.
    [96]Krause GH,Weis E (1991).Chlorophyll fluorescence and photosynthesis:the basics.Annu Rev Plant Physiol Plant Mol Biol,42:3l3-349.
    [97]Strasser RJ,Srivastava A,Govindjee(1995).Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.Photochem Photobio1.61:32-42.
    [98]Strasser RJ.Srivastava A,Tsimilli-Michael M (2000).The fluorescence transient as a tool to characterize and screen photosynthetic samples . In : Yunus M , Pathre U , M ohanty P(eds).Probing Photosynthesis:Mechanism,Regulation and Adaptation.London:Taylor and Francis Press,445-483.
    [99]Strasser RJ,Tsimill-Michael M,Srivastava A(2004).Analysis of the chlorophyll a fluorescence transient . In : Papage0rgi0u G , Govindjee(eds) . Advances in Photosynthesis and Respiration.Netherlan ds:KAP Press,l-42.
    [100]Eggenberg P,Rensburg LV,Kriiger H J, Strasser RJ (1995).Screening criteria for drought tolerance in Nicotiana tabacum L derived from the polyphasic rise of the chlorophyll a fluorescence transient(O-J . I-P) . In : Mathis P(ed) . Photosynthesis : from Light to Biosphere.Dordrecht:KAP Press.4:66l-664.
    [101]Lu CM,Zhang JH (1998b).Effects of water stress on photosynthesis,chlorophyll fluorescence and photoinhibition in wheat plants.Aust J Plant Physiol,25:883-892.
    [102]Maxwell K,Johnson GN(2000).Chlorophyll fluorescence-a practical guide.J Exp Bot,51:659-668.
    [103]Jiang CD,Gao HY,Zou Q (2003).Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves.Photosynthetica.41:267-27l.
    [104]贾荣亮,周海燕,谭会娟.超旱生植物红砂与珍珠光合生理生态日变化特征初探[J].中国沙漠,2006,26(4):631-636.
    [105]张旺锋,樊大勇,谢宗强.濒危植物银杉幼树对生长光强的季节性光合响应[J].生物多样,2005,13(5):387-397.
    [106]A.A.沙霍夫著,韩国骁译.植物的抗盐性[M].北京:科学出版社,1959.117-118.
    [107]高海峰.柽柳属植物水分状况的研究[J].植物生理学通讯,1988,2:20-24.
    [108]Sala A,Smith S D.Devitt D A.Water use by Tamarixramosissima and associated phreatophytes in Mojavedesert floodplain[J].Ecological Applications,1996,6(3):888-898.
    [109]Busch D E,Ingraham N L,Smith S D.Water uptake in woody riparian phreatophytes of the southwestern United States:a stable isotope study[J]. Ecological A pplication ,1992,2:450-459.
    [110]Busch D E,Smith S D.Mechanisms associated with decline of woody species in riparian ecosystems of the Southwestern US[J].Ecological Monography,1995,65:347-370.
    [111]Everitt B L.Ecology of saltcedar-aplea for research[J].Environmental Geology,1980,3:77-84.
    [112]Horton J L,Clark J L.Water table decline alters growth and survival of S ali x gooddi ngii and Tamari x chi nensis seedlings[J].Forest Ecology and Management,2001,140(2-3):239-247.
    [113]王霞.土壤缓慢水分胁迫对柽柳属植物组织相对含水量和细胞膜透性的影响[J].干旱区研究,1999,16(2):6-11.
    [114]涂璟,王克勤。干旱地区造林树种的水分生理生态的研究进展[J].西北林学院学报,2003,18(3)26-30。
    [115]孙向阳,杨跃军,乔杰,等.黄泛区泡桐人工林土壤2植物系统水分特征及关系[A].见:杨承栋.森林土壤质量演化与调控[M].北京:中国科学技术出版社,2002:87-94.
    [116]Li,X.Y.,Gong,J.D.,2002.Compacted catchment with local earth materials for rainwater harvesting in the semiarid region of China.J.Hydrol.257(1-4),134-144.
    [117]Xiao-Yan Li,Pei-Jun Shi,Yong-Liang Sun,Jia Tang,Zhi-Peng Yang, Influence of various in situ rainwater harvesting methods on soil moisture and growth of Tamarix ramosissima in the semiarid loess region of China[J].Forest Ecology and Management.233(2006):143-148.
    [118]中国科学院兰州沙漠研究所编.中国沙漠志(2).北京:科学出版社,1987.
    [119]王英典,刘宁,等.《植物生物学实验指导》[M].高教出版社出版.2001年6月第一版.
    [120]冯金朝,周宜君,李国刚,等.沙漠常绿植物沙冬青气体交换特性的初步研究[J].中央民族大学学报(自然科学版).2001.10(1):38-41.
    [121]许大全.光合作用速率[M].上海:上海科技出版社.2002.
    [122]金则新,柯世省.云锦杜鹃叶片光合作用日变化特征[J].植物研究,2004,24(4):447-452.
    [123]ZHANG SH R,(张守仁).A discussion on chlorophyll fluorescence kinetics parameters and their significance[J].Chinese Bulletin of Botany.植物学通报.1999,16(4):444-448(in Chinese).
    [124]Bilger W,B j rkman O Photosynth.Res.1990,25:173-85.
    [125]GILMORE A M KYAMAMOTO H Y. Zeaxanth in formation and energy dependent fluo rescence quenching in pea chloroplasts[J].Plant Physiol,1996,96:636-643.
    [126]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-17.
    [127]文华,刘钰华,朱玉伟等.丝绵木抗旱耐盐性能的研究[J].干旱区研究,1996:67-69.
    [128]王海珍.黄土高原四个乡土树种耗水规律与抗旱特性的研究[D].西北农林科技大学硕士学位论文,2003.
    [129]中国科学院兰州沙漠研究所编.中国沙漠志(2).北京:科学出版社,1987.
    [130]魏岩,谭敦炎,尹林克.中国柽柳科植物叶解剖特征与分类关系的探讨[J].西北植物学报.1999,19(1):113-118.
    [131]马成仓,高玉葆,郭宏宇等.内蒙古高原西部荒漠区锦鸡儿属(Caragana)优势种的形态适应特征[J].生态学报.2006,26(7):2308-2312.
    [132]U sóJ L,M ateu J.A llometric regression equations to determ ine aerial biomasses of Mediterranean shrubs[J].Plant Ecoogy,1997,132(1):59-69.
    [133]陈遐林,马钦彦.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002,15(3):304-309.
    [134]郑金双,曹永慧.茶秆竹生物量模型研究[J].竹子研究汇刊,2001,20(4):67-71.
    [135]N avar J,M endez E.Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico[J].Arid Environments,2004,59:657-674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700