低剂量电离辐射对小鼠睾丸生精细胞凋亡的影响及其基因调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核电及核技术的广泛应用,电离辐射对人体健康的影响,尤其是低剂量辐射所致遗传效应问题成为放射医学领域的研究热点。近年来,我们开展了低剂量辐射诱导细胞遗传学适应性反应领域的研究,获得了一些可观的成果。实验中发现,低剂量电离辐射可以诱导生精细胞遗传适应性反应,不仅降低相继大剂量辐射造成的染色体损伤,明显降低子代遗传效应,而且这种效应具有明显的细胞种类规律性,即降低精原细胞和精母细胞的损伤效应,不降低精子细胞和精子的损伤效应。
    然而,近年来的研究证实,正常的大鼠和小鼠睾丸中存在自发的生精细胞凋亡现象,且随着年龄、生精细胞种类及生精上皮周期不同阶段而发生改变,具有一定规律性。小鼠睾丸生精细胞凋亡主要以有丝分裂前期的精原细胞和精母细胞自发凋亡为主,很少累及精子细胞和精子。已知减数分裂前期时间较长,有许多重要的生物学事件发生,因此这一期间出现自发的细胞凋亡,以淘汰在DNA合成及同源染色体交换遗传物质过程中出现差错的细胞,在调控生精细胞的质量和数量及维持内环境稳定方面具有重要意义。另外,睾丸生精细胞凋亡对电离辐射敏感,很低剂量照射就可引起小鼠生精细胞凋亡增加。并且已经证明,射线作为一种基因毒性因子造成细胞死亡的主要机制是细胞凋亡。由辐射引起的凋亡,不仅呈剂量依赖性特点,还取决于细胞种类和细胞周期。因此,深入探讨低剂量电离辐射对小鼠睾丸生精细胞凋亡的影响及其基因调控,具有重要的意义。本实验主要从整体水平,通过对细胞凋亡及其凋亡相关基因mRNA和其表达蛋白产物的变化分析,研究了低剂量电离辐射对小鼠睾丸生精细胞凋亡的影响及其分子调控机制和低剂量电离辐射诱导生精细胞凋亡适应性反应的规律,并初步探讨其调控机制。
    1 低剂量电离辐射对小鼠睾丸生精细胞凋亡的影响
    0.025~0.2 Gy X射线全身照射后0、6、12、18 和24 h分别处死动物,取睾丸,采用常规苏木精-伊红(HE)染色法和原位末端标记(TUNEL)法通过光镜观察小鼠睾丸在生精周期不同阶段各类生精细胞凋亡的剂量及时程效应关系;同时,应用不
    
    
    连续密度梯度离心法分离不同种类生精细胞,流式细胞术检测其细胞凋亡百分率。
    实验结果表明,0.075 Gy X射线全身照射诱导小鼠生精细胞凋亡具有明显的时程效应关系。照后6 h,精原细胞凋亡率即明显增加,12~18 h达峰值,随后逐渐回降;照后6~12 h精母细胞凋亡率即明显增加,18 h达峰值,随后逐渐回降。照射后各时间点精子细胞和精子凋亡率相对较少,与对照组比较未见显著性差异。提示,0.075 Gy照射诱导生精细胞DNA损伤同时选择性促进精原细胞和精母细胞凋亡增加,随后由于自身修复机制激活及周围组织细胞和巨噬细胞吞噬凋亡小体,异常细胞数明显减少,凋亡百分率逐渐下降。
    另外,0.025~0.2 Gy X射线全身照射12 h,精原细胞和精母细胞凋亡率变化呈明显的剂量效应关系,但为非线性,而且前者凋亡的峰值明显高于后者。0.025 Gy 照射后,精原细胞凋亡率即明显增高,0.075 Gy其凋亡率增高最为明显,0.2 Gy照射后仍明显高于假照组。0.075和0.1 Gy照射后精母细胞凋亡率明显增高并达峰值。照射后精子细胞和精子凋亡率较低,与对照组比较未见显著性差异。其结果同生精细胞自发凋亡规律即主要以有丝分裂前期精原细胞和精母细胞凋亡为主,很少累及精子细胞和精子相一致。提示,低剂量辐射选择性诱导生精细胞凋亡增加可能具有重要遗传学意义;这也同我们前期工作低剂量辐射诱导细胞遗传损伤适应性反应的结果相符。提示,低剂量辐射选择性诱导生精细胞凋亡可能是低剂量辐射诱导细胞遗传学适应性反应的重要机制之一。
    2 低剂量电离辐射选择性诱导生精细胞凋亡的基因调控
    采用免疫组化法分别观察小鼠睾丸发育各阶段各类生精细胞p53、Bcl-2、Bax和Fas蛋白表达和原位杂交法观察其p53 mRNA和Bcl-2 mRNA转录水平的变化。
    2.1 低剂量X射线照射对生精细胞p53基因表达的影响
    野生型p53作为细胞凋亡的诱导基因,在辐射及其他因素诱导细胞凋亡中倍受重视,处于“中心调控”地位,是线粒体和死亡受体信号传导途径的上游“核心”调控分子。本研究表明,0.075 Gy X射线全身照射后12 h,p53蛋白表达阳性的精原细胞明显增多并达峰值,随后逐渐回降;照后6 h,阳性精母细胞开始增多,12 h达峰值,随后逐渐回降;而精子细胞和精子低于精原细胞和精母细胞,与对照组比较未见显著性差异。提示,p53基因蛋白水平调控与低剂量辐射选择性诱导生精细胞凋亡早期反应相关联。同时,其剂量效应关系表明,0.025~0.2 Gy X射线全身照射12 h,p53蛋白表达阳性的精原细胞和精母细胞多呈剂量效应关系,但为非线性,而且前者峰值明显高于后者;精子细胞和精子阳性率较低,与对照组比较未见显著性差异。其结果同低剂量选择性诱导生精细胞凋亡规律相吻合,从而为其提供了分子调控的证据。
    为进一步探讨其基因调控机制,我们又检测了p53基因转录水平变化。0.075Gy X射线全身照射后3 h,p53表达阳性的精原细胞明显增多,并达峰值,一直持续到6 h;照后3 h,阳性精母细胞开始增多,6 h达峰值,随后逐渐回降,但照后12和18 h仍明显高于对?
With the development of nuclear power and nuclear technology, the effect of ionizing radiation on human health, especially genetic effect problems caused by low dose radiation (LDR) have become a research hotspot in radiomedical domain. In recent years, we have obtained some considerable results on the adaptive response induced by LDR in cell genetics. The adaptive response not only reduces the chromosome damage to subsequent larger dose irradiation, showing a better filial generation genetic effect, but also has significant regularity in cell types. Namely LDR can reduce the damage effect of spermatogonia and spermatocytes and not that of spermatids and spermatozoa. However, it was confirmed that there is a kind of spontaneous spermatogenic cell apoptotic phenomena in normal rat and mouse testis, and it can vary with ages, cell types and different cycles of seminiferous epithelium. The spontaneous apoptosis of spermatogonia and spermatocytes were taken as the main during mitosis prophase in mouse testis. We have known many important biological events taken place in mitosis prophase, so this kind of spontaneous apoptosis had an important significance in eliminating abnormal cells during DNA synthesis and homologous chromosome exchanging genetic materials, controling the quality and quantity of spermatogenic cells and maintaining the homeostasis. Moreover, spermatogenic cell apoptosis is very sensitive to ionizing radiation and very low dose irradiation can induce it to increase. The main mechanisms of rays as a kind of genetic toxicity factor causing cell death was regarded as apoptosis, which not only had dose-dependent characters, but it also depended on cell types and cell cycle. Therefore, it is very important to further explore the effect of LDR on mouse spermatogenic cell apoptosis and its molecular mechanisms. In this dissertation through analyzing the apoptosis and its related gene mRNA and protein expressions, we studied the effect of LDR on mouse spermatogenic cell apoptosis and its molecular mechanisms and the apoptotic adaptive response induced by LDR and its rudiment mechanisms.
    
    
    
    Effects of LDR on mouse spermatogenic cell apoptosis
    The Kunming mice were sacrified and testis was got 0, 6, 12, 18 and 24 h after 0.025~0.2 Gy irradiation. The apoptotic dose and time course effect relationships during the different stages of seminous epithelium cycles were observed using hematoxylin- eosin (HE) staining and TdT-mediated dUTP nick end labeling (TUNEL) methods; discontinuity density gradient centrifugation to separate different types spermatogenic cells and flow cytometry method (FCM) to detect its apoptotic percentage.
    The results showed that the apoptosis of spermatogenic cells had a significant time-course relationship after 0.075 Gy X-ray whole body irradiation (WBI) in mice. Spermatogone cell apoptosis increase 6 h after irradiation with 0.075 Gy X-rays, reached its peak 12~18 h and subsequently decrease; spermatocyte cell apoptosis began to increase 6~12 h after irradiation with the same dose irradiation, reached its peak 18 h, and subsequently began to decrease. The apoptotic percentages of spermatids and spermatozoa at every time point after irradiation were relatively lower than those of spermatogonia and spermatocytes, and the apoptotic percentages didn’t have significant difference between every time point and 0 h point. The results indicate that 0.075 Gy irradiation could cause the DNA damage of spermatogenic cells, selectively promote the spermatogone and spermatocyte apoptosis, and subsequently significantly decrease the abnormal cell number because of the activation of self-repair mechanisms and swallowing effects of macrophages and nearby cell.
    In addition, the apoptotic percentages of spermatogonia and spermatocytes had a significant dose-effect relationship 12 h after LDR WBI, but nonlinear, and the former apoptotic peak obviously higher than that of the latter. Spermatogone cell apoptotic percentages significantly increased after 0.025 Gy irradiation. The apoptotic percentage
引文
Blanco RJ, Martinez GC. Apoptosis precedes detachment of germ cells from the seminiferous epithelium after hormone suppression by short oestradiol treatment of rats. Int J Androl, 1998, 2(3): 109-115
    Dekretser DM, Loveland KL, Meinhardt A, et al. Spermatogenesis. Hum Reprod, 1998, 13(supply1): 1-8
    Russell LD, Ettlin RA, Hikim AP, et al. Histological and histopathological evaluation of the testes. Clearwater. Florida: Cache River Press, 1990
    Haywood M, Spaliviero J, Jimemez M, et al. Sertoli and germ cell development in hypogonadal mice expression transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology, 2003, 144(2): 509-517
    Cooke HJ, Saunders PT. Mouse models of male infertility. Nat Rev Genet, 2002, 3(10): 790-801
    Maeda Y, Shiratsuchi A, Namiki M, et al. Inhibition of sperm production in mice by annexin V microinjected into seminiferous tubules: possible etiology of phagocytic clearance of apoptotic spermatogenic cells and male infertility. Cell Death Differ, 2002, 9 (7): 742-749
    Pierantoni R, Cobellis G, Meccariello R, et al. The amphibian testis as model to study germ cell apoptosis during spermatogenesis. Comp Biochem Physiol B Biochem Mol Biol, 2002, 132(1): 131-139
    Adriana AM, Barbara FH, Bernard R. Expression of stress response genes in germ cells during spermatogenesis. Biol of reprod, 2001, 65(2): 119-127
    Sukhacheva TV, Bogush TA, Kolomiets OL. Damaging effect of taxol on mouse spermatogenesis. Bull Exp Biol Med, 2001, 132(5): 1087-1092
    Eddy EM. Regulation of gene expression during spermatogenesis. Cell Dev Bio, 1998, 9 (11): 451-457
    朱培元, 黄宇烽. 支持细胞功能和分化的激素调控. 中华男科学, 2001, 27(1): 13-15
    Hecat NB. Molecular mechanisms of male germ cell differentiation. Bioessys, 1998, 20(6): 555-561
    Belve AR, Cavicchia JC, Millette CF, et al. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol, 1997, 74(3): 88-85
    魏小民, 刘以训. 孤儿受体TR2 mRNA在恒河猴睾丸中表达的研究. 科学通报,1999,4 (2):292-294
    
    陈咏梅, 叶世隽, 黄玉苓, 等. 细胞内Retinoid 结合蛋白mRNA水平在生精过程中的周期性变化. 解剖学报, 2000, 3(4): 256-261
    Schwartz LM, Ovsorne BA. Programmed cell death, apoptosis and killer gene. Immunol Today, 1993, 14(2): 582-585
    Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with ranging implocations in tissue kinetics. Br J Cancer, 1972, 26(1): 239-242.
    Cohen JJ. Apoptosis. Immunol Today, 1993, 14(3): 126-147
    Squier MKT, Sehnert AJ, Cohen JJ. Apoptosis in lerkolytes. J Leukoc Biol, 1995, 57(3): 2-5
    Kerr JFT, Winterford CM, Harmon BY. Apoptosis: its significance in cancer and cancer therapy. Cancer, 1994, 73(2): 2013-2015
    Arends MJ, Morris TG, Wyllie AH. Apoptosis: the role of the endonuclease. Am J Path, 1990, 136(1): 593-595
    Brown DG, Sun XM, Cohen GM. Dexamethasone induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem, 1993, 268 (7): 3037-3040
    Oberhammer F, Wilson JW, Dive C, et al. Apoptotic death in epithelial cells: clevage of DNA to 300 and 50 kb fragments prior to in the absence of internuclaosomal fragmentation. EMBO J, 1993, 12(3): 3679-3682
    Sellins KS, Cohen JJ. Cytotoxic T lymphocytes induce different type of DNA damage in target cells of different origins. J Immunol, 1991, 147(2): 795-797
    Bursch W, Pafe S, Putz B, et al. Determination of the length of the histological stages of apoptosis hepatic foci of rats. Cancigenesis, 1990, 11(2): 847-851
    Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol, 1980, 68(3): 251-253
    Negoesu A, Lorimier P, Labat MF, et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem Cytochem. 1996, 44 (3): 959-963
    Umemrra S, Yasuda M, Osamurra RT, et al. Enhancement of TdT mediated Dutp-biotin nick end labeling (TUNEL) method using mung bean nuclease, a single-stranded DNA digestion enzyme. J Histochem Cytochem, 1996, 44 (3): 125-131
    谭晓华, 张亚历, 姜泊, 等. 常规组织切片凋亡细胞原位末端标记方法. 细胞生物学杂志, 1997, 19(3): 48-52
    刘光伟, 龚守良. 细胞凋亡的信号传导途径研究进展. 吉林大学报(医学版), 2004, 22(3): 516-520
    Krueger A, Baumann S, Krammer PH. FLICE inhibitory proteins: regulators of death receptor mediated apoptosis. Mol Cell Biol, 2001, 21(24): 8247-8254
    
    Stewart jh, Nguyen D, Chen GA, et al. Induction of apoptosis in malignant pleural mesothelioma cells by activation of the Fas(Apo-1/ CD95) death signal pathway. J Thorac Cardiovasc Surg, 2002, 123(2): 295-302
    刘光伟, 龚守良. Fas基因与细胞凋亡. 吉林大学学报(医学版), 2002, 28(1): 95-97
    Ledgerwood EC, Pober JG, Bradley JR, et al. Recent advances in the molecular basis of TNF signal transduction. Lab Invest, 1999, 79(13): 1041-1050
    Oliveira PL, Garcia S, Lecoeur H, et al. Increased sensitivity of T lymphocytes to tumor necrosis factor receptor (TNFR1) and TNFR2 medicated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase 8 and caspase 3. Blood, 2002, 99(5): 1666-1675
    Park KJ, Chai SH, Kim DJ, et al. Hepatitis C virus core protein potentiates c-Jun N-terminal kinase activation through a signaling complex involing TRADD and TRAF2. Virology, 2001, 74 (1-2): 89-98
    Gupta S. Molecular steps of tumor necrosis factor receptor mediated apoptosis. Curr Mol Med, 2001, 1(3): 317-324
    Sartorius U, Schmitz I, Krammer PH, et al. Molecular mechanisms of death receptor mediated apoptosis. Biochem, 2001, 2(1): 20-29
    Snearwin WL, Harvey NL, Kumar S. Subcelular localization and CARD dependent oligomerization of the death adaptor RAIDD. Cell Death Differ, 2000, 7(21): 155-165
    Yeh WC, Dompa JL, Mccarrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducer of apoptosis. Science, 1998, 279(5): 1954-1958
    Kuang AA, Diehl GE, Zhang J, et al. FADD is required for DR4- and DR5-mediated apoptosis: lack of trail induced apoptosis in FADD deficied mouse embryonic fibroblasts. Biochem Biophys Res Commun, 2000, 60(1): 4119-4147
    Kim IK, Gupta S. Expression of TRAIL, DR4 (TRAIL receptor 1), DR5 (TRAIL receptor 2) and TRID (TRAIL receptor 3) genes in multidrug resistant human acute myeloid leukemia cell lines that overexpression MDR1(HL60/79X) or MRP (HL60/AR). Biochem Biophys Res Commun, 2000, 277(20): 311-316
    刘光伟, 龚守良. 细胞凋亡的线粒体调控机制与电离辐射. 国外医学·放射医学核医学分册. 2003, 27(2): 90-93
    Herr I, Debatin K. Cellular stress response and apoptosis in cancer therapy. Blood, 2001, 98(9): 2603-2604
    Wang QF, Chen JC, Hsieh SJ, et al. Regulation of Bcl-2 family molecules and activation of caspase cascade involved in gypenosides induced apoptosis in human pipatoma cells. Cancer Lett, 2002 , 183(2): 169-178
    Nakagami H, Morishi R, Yamamoto K, et al. Hepatocyte growth factor prevents
    
    
    endothelial cell death through inhibiton of Bax translocation from cytosol to mitochondrial membrane. Diabetes, 2002, 51(8): 2604-2611
    Yamamura T, Otani H, Nakao Y, et al. IGR-1 differentially regulates Bcl-xl and Bax confers myocardial protection in the rat heart. Am J Physiol Heart Circ Physiol, 2001, 80(3): 11191-11200
    Dimatola T, Dascoli F, Fenzi G, et al. Amiodarone induces cytochrome c release and apoptosis through an iodine independent mechanism. J Clin Endocrinol Metab, 2000, 85(11): 4323-4330
    Sugiyema T, Shimizu S, Matsuoko Y, et al. Activation of mitochondrial voltage dependent anion channel by apro-apoptotic BH3-only protein Bim. Oncogene, 2002, 21(32): 4944-4956
    Mather M, Rottenberg H. Polycations induce the release of soluble intermembrane mitochondrial protein. Biochem Biophys Acta, 2001, 1503(3): 357-368
    Lam M, Oleinick NL, Nieminen AL. Photodynamic therapy induced apoptosis in epidermoid carcinoma cells, reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem, 2001, 276(50): 47379-47386
    Kleibl Z, Raisova M, Novotny J, et al. Apoptosis and its importance in the development and therapy of tumors. SB Lek, 2002, 103(1): 1-13
    Eskes R, Rossse T. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol, 2000, 143(2): 217-224
    Basanez G, Zhang J, Chau BN, et al. Pro-apoptotic cleavage products of Bcl-xl from cytochrome c conducting pores in pure lipid membranes. J Biol Chem, 2001, 276(33): 31083-31097
    Cecconi F, Gruss P. Apaf1 in developmental apoptosis and cancer: how many ways to die. Cell Mol Life Sci, 2001, 58(11): 1688-1697
    Wei MC, Zong WX, Chang EH, et al. Proapoptotic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517): 227-230
    Wei MC, Zong WX, Chen EH, et al. Proapoptotic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517): 624-629
    刘光伟, 龚守良. 电离辐射诱导的细胞G2阻滞. 国外医学·放射医学与核医学分册, 2002, 26 (4): 180-182
    Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem, 2001, 268(15): 2764-2772
    Khosravi R, Maya R, Gottlieb T, et al. Rapid ATM-dependent phosphorylation of mdm2 precedes p53 accumulation in response to DNA damage. Pro Nat1 Acad Sci USA, 1999, 96 (17): 14973-14977
    
    Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase in preconditioning: a detrimental factor or a protective kinase? Circ Res, 2000, 86(15): 921-922
    Verheij M, Bartelink H. Radiation induced apoptosis. Cell Tissue Res, 2000, 301(5): 133-142
    Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans, 2001, 29 (5): 684-688
    She QB, Chen N, Dong Z. Erks and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem, 2000, 275123 (5): 20444-20449
    Datta K, Babbar D, Srivastava T, et al. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int J Biochem Cell Biol, 2002, 34(2): 148-157
    Wu X, Deng Y. Bax and BH3 domain only proteins in p53 mediated apoptosis. Front Bio Sci, 2002, 7(4): 151-156
    Sheard MA. Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis. Int J Cancer, 2001, 96(3): 213-220
    Ashkenazi A, Dixit UM. Death receptors: signaling and modulation. Science, 1998, 281 (14): 1305-1308
    Bratton SB, Macfarlane M, Cain K, et al. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res, 2000, 256(1): 27-33
    Dang M, Rie WF, Jeaf CB, et al. Human and mouse Fas(APO-1/CD95) death receptor genes each contain a p53 resposive element that is activated by p53 mutant unable to induce apoptosis. J Bilo Chem, 2000, 275(6): 3867-3872
    黄宇烽, 徐建平, 高学军, 等. 凋亡生精细胞的观察, 解剖学报, 1996, 27(1): 58-60
    Tabaga SR, Desouza RS, Dossantos DC, et al. Spontaneous germ cell death by apoptosis in epididymic of the adult rat antibeus lituratus. Cytobios, 1999, 99(390): 39-45
    龚守良, 刘树铮. 生精细胞凋亡与电离辐射, 国外医学·放射医学核医学分册, 1999, 23 (5): 227-231
    Wang RA, Nakane PK, Kaji T. Automous cell death of mouse male germ cell during fetal and postnatal period. Biol Reprod, 1995, 55(5): 1250-1256
    Cai L, Hales B, Robaire B. Induction of apoptosis in the germ cells of adult male rats after exposure to cyclophosphamide. Biol Reprod, 1997, 56(3): 1490-1497
    Rockett JC, Mapp FL, Garges JB, et al. Effect of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice. Biol Reprod, 2001, 65(1): 229-239
    
    Mclaren A. Mammalian germ cells: birth, sex and immortality. Cell Struct Funct, 2001, 26 (3): 119-122
    Sukhacheva TV, Bogush TA, Kolomiets OL. Damaging effect of taxol on mouse spermatogenesis. Bull Exp Biol Med, 2001, 132(5): 1087-1092
    Clouthier DE, Averbock MA, Maika SD, et al. Rat spermatogenesis in mouse testis, Nature, 1996, 381(5): 418-421
    Kramer JA, Mccarrey JR, Dijakiew D, et al. Human spermatogenesis as a model to examine gene potentiation. Mol Reprod Dev, 2000, 5612 (supp1): 254-258
    Blanco RJ, Martinez GC. Spontaneous germ cell death in the testis of the adult rat takes the form of apoptosis: re-evaluation of cell types that exhibit the ability to die during spermatogenesis. Cell Prolif, 1996, 29(1): 13-31
    Mastwi Y. Regulation of growth and survival of germ cells. Hum Cell, 1997, 10(1): 63-68
    Vonahsen O, Renken C, Perkins G, et al. Preservation of mitochondrial structure and function after Bid- or Bax- mediated cytochrome c release. J Cell Biol, 2000, 150 (5): 1027-1036
    Vilagraga X, Mexquita C, Mexquita J. Differential expression of Bcl-2 and Bax during obicken sperm alogenegig. Mol Repro Dev, 1997, 47(1): 26-60
    Gartner A, Milstein S, Ahmed S, et al. A conserved checkpoint patyway mediates DNA damage-induced apoptosis and cell cycle arrest in c-elegans. Mol Cell, 2000, 5(3): 435-443
    Eddy EM. Regulation of gene expression during spermatogenesis. Semin Cell Dev Biol, 1998, 9(2): 451-457
    Kondo S. Apoptotic repair of genotoxic tissue damage and the role of p53 gene. Mutut Res, 1998, 402(1-2): 311-319
    Yin Y, Vewon W, Morgnatater X. p53 is associated with the nuclear envelope in mouse testis. Biochem Res Commun, 1997, 253 (3): 689-697
    Hamer G, Gademan IS, Kal HB, et al. Role for c-Ab1 and p73 in the radiation response of male germ cells. Oncogene, 2001, 20 (32): 4298-4344
    Burger H, Nooter K, Boersma AW, et al. Distinctive p53-independent apoptotic cell death signaling pathways in testicular germ cell tumor cell lines. Int J Cancer, 1999, 81(4): 620-628.
    Richburg JH, Nanez A, Willamx LR, et al. Sensitivity of testicular germ cells to toxicant induced apoptosis in gld mice that express a nonfunctional form of Fas ligand. Endocrinology, 2000, 141(2): 787-793
    Wilson G, Meistrich ML. Enhancement of A spermatogonial proliferation and differentiation in irradiated rats by gonadotropin-releasing hormone antagonist
    
    
    admistration. Endocrinology, 2000, 14(1); 37-49
    Matsumoto M, Fujimoto H. Cloning of a hsp70-related expressed in mouse spermatids. Biochem Biophys Res Comm, 1999, 166(1): 43-49
    Eddy EM, Obrien DA. Gene expression during mammalian meiosis. Curr Top Dev Biol, 1998, 37(1): 41-200
    Syed V, Hecht NB. Up-regulation and down-regulation of genes expressed on coculatures of rat sertoli cells and germ cells. Mol Reprod Dev, 1999, 47(3): 380-389
    Tsunekawa N, Matsumoto M, Tone S, et al. The HSP 70 homologene, Hsc70t, is expressed under translational control during mouse spermatogenesis. Mol Reprod Dev, 1999, 52(3): 383-391
    Desdoues C, Matesic G, Mauima CA, et al. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM. Mol Cell Biol, 1999, 15(13): 3301-3309
    刘光伟, 龚守良. SCF/c-kit系统对生精细胞发育的调控作用. 吉林大学学报(医学版), 2002, 28(5): 561-563
    Sinhahikim AP, Rajavashisth TB, Sinhahikim I, et al. Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotropin deprivation. Biol Reprod, 1997, 57(5): 1193-1201
    Richthoff J, Spano M, Giwercman YL, et al. The impact of testicular and accessors sex gland function on sperm chromatin integrity as assessed by the sperm chromatin structure assay. Hum Reprod, 2002, 17(21): 3162-3169
    Sjioblom T, West A, Lahdetie J. Apoptotic response of spermatogenic cells to the germ cell mutagens etoposide, adriamycin, and diepoxybutane. Environ Mol Mutagen, 1998, 31(2): 133-148
    Nakagawa S, Nakamura N, Fujioka M, et al. Spermatogenic cell apoptosis induced by mitomycin c in the mouse testis. Toxicol Appl Pharmacol, 1997, 147(3): 204-213
    Lopes S, Jurisicova A, Sun JG, et al. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod, 1998, 13(4): 896-900
    Shirarshi K, Yoshida K, Fujimiya T, et al. Activation of mitogen activated protein kinases and apoptosis of germ cells after vasectomy in the rat. J Urol, 2002, 168(3): 1273-1278
    Kubota Y, Sasaki S, Kubota H, et al. A study on the mechanisms of the spermatogenic damage after vasectomy in rats. Nippon Hinyokika Gakkai Zasshi, 2001, 92(1): 13-22
    Fei QJ, Zhang KM, Li SW, et al. The effect of antioxidant enzyme on germ cell apoptosis in cryptorchidism. Zhong Hua Nan Ke Xue, 2002, 8(4): 255-257
    Laperle KM, Blomme EA, Sagartz JE, et al. Epididymal cribriform hyperplasia with nuclear atypia in p53 homozygous knockout mice on a mixed 129/SV-FVB/N
    
    
    background. Comp Med, 2002, 52(6): 568-571
    Shinomiya N. Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells. Int J Radia Oncol Biol Phys, 2000, 47(8): 767-769
    Blank KR, Rudoltz MS, Kao GD, et al. The molecular regulation of apoptosis and implications for radiation oncology. Int J Radiat Biol, 1999, 71(5): 455-458
    Herr I, Ucur E, Herzer K, et al. Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res, 203, 63(12): 3112-3120
    Lizard G, Deckert V, Dubrez L, et al. Induction of apoptosis in endothelial cells treated with cholesterol oxides. Am J Pathol, 1998, 148(5): 1625-1638
    童新, 童燕, 张双喜, 等. γ射线诱发细胞程序性死亡的时间及剂量效应研究. 辐射研究与辐射工艺学报, 1996, 14(2): 111-117
    吴玮. 小鼠受亚致死剂量60Coγ射线照射后胸腺细胞凋亡的研究. 中华放射医学与防护杂志, 1998, 18(2): 82-87
    牟颖, 刘树铮. X射线对小鼠胸腺细胞凋亡的影响. 中华放射医学与防护杂志, 1996, 16(5): 296-299
    Ling CC, Chen C, Li W, et al. Apoptosis induced at different dose rate implication for the should region of cell survival curves. Radiotherapy Oncol, 1994, 32(3): 129-131
    Macklis RM, Beresford BA, Palayoor S, et al. Cell cycle alterations apoptosis and response to low dose rate radioimmuntherapy in lymphoma cells. Int J Radiat Oncol Biol Phys, 1999, 27(6): 643-645
    ling CC, Guo M, Chen CM, et al. Radiation induced apoptosis: effect of cell age and dose fraction. Cancer Res, 1999, 55(15): 5207-5209
    Sellins KS, Cohen JJ. Gene induction byγ-irradiation leads to DNA fragmentation in lymphocytes. J Immunol, 1987, 139(11): 3199-3201
    刘树铮. 辐射免疫学中的剂量效应关系. 中华放射医学与防护杂志, 2002, 22(6): 385-390
    Liu SZ. Cellular and molecular changes induced by low- versus high-dose radiation. International Congress Series, 2002, 1225(1): 179-188
    傅强. 放射性核素147Pm诱发Molt-4细胞和Ana-1细胞凋亡. 中华放射医学与防护杂志, 1998, 18(2): 92-96
    朱寿彭. 电镜形态和DNA断裂研究153Sm内照射诱发骨肉瘤细胞凋亡. 中华放射医学与防护杂志, 1998, 18(2): 98-100
    Henriksen K, Hakovirat H, Parvinen M. In situ quantification of stage specific apoptosis in the rat seminiferous epithelium: effects of short term experimental cryptorchidism. Int J Andrl, 1995, 18(5): 256-262
    Moreno SG, Dutrillaux B, Coffigny H. High sensitivity of rat foetal germ cells to low
    
    
    dose rat irradiation. Int J Radiat Biol, 2001, 77(2): 529-538
    Woloschad GE. Different patyways for radiation induced apoptosis. Int J Radia Oncol Biol Phys, 1997, 39(2): 951-954
    Hasegawa M, Wilson G, Russell LD, et al. Radiation induced cell death in the mouse testis: relationship to apoptosis. Radiat Res, 1997, 147(4): 457-467
    Hasegawa M, Zhan Y, Niibe H, et al. Resistance of differentiating spermatogonia to radiation induced apoptosis and loss in p53 deficient mice. Radiat Res, 1998, 149(3): 263-270
    Sjohlom T, West A, Lahdetie J. Apoptotic response of spermatogenic cells to the germ cell mutagens etoposide, adriamycin and diepoxybutane. Environ Mol Mutogen. 1998, 31(2): 133-148
    Olivieri G, Bodycore J, Wollf S. Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science, 1984, 223(4636): 594-597
    UNSCEAR Report Aunex B. Adaptive responses to radiation in cells and organisms. United Nations. New York. 1994. 302
    Ikushima T. Radio-adaptive response: characterization of a cytogenetic repair induce by low-level ionizing radiation in cultured Chinese hamster cells. Mutat Res, 1989, 227(4): 241-246
    Ishii K, Misonoh J. Induction of radio-adaptive response by low dose X-irradiation on chromosome aberrations in human embryonic fibroblasts. Physiol Chem Phys Med NMR, 1996, 28(2): 83-90
    Ghiassi-nejad M, Mortazavi SM, Cameton JR, et al. Very high background radiation areas of Ramsar, Iran: prelimary biological studies. Health Phys, 2002, 82(1): 87-93
    Cai L, Liu SZ. Induction of cytogenetic adaptive response of somatic and germ cells in vivo and in vitro by low-dose X-irradiation. Int J Radiat Biol, 1990,58(1): 187- 194
    Cai L, Jiang J, Wang B. Induction of an adaptive response to domaint lethality and to chromosome damage of mouse germ cells by low dose radiation. Mutat Res, 1993, 303(4): 157-161
    Cai L, Wang P. Induction of a cytogenetic adaptive response in germ cells of irradiated mice with low dose rate of chronic gamma-irradiation and its biological influence on radiation-induced DNA or chromosomal damage and cell killing in their male offspring. Mutatgenesis, 1995, 10(2): 95-100
    Wang B, Jones DN, Kaine BP, et al. High-resolution structure of an archaeal zinc ribbon define a general architectural motif in eukaryotic RNA polymerase. Radiat Res, 1998, 150(2): 120-122
    Wang B, Fujita K, Ohhira C, et al. Radiation-induced apoptosis and limb teratogenesis in embryonic mice. Radiat Res, 1999, 152(1): 119-123
    
    Venkat S, Apte SK, Chaubey RC, et al. Radioadaptive response in human lymphocytes in vitro. J Environ Pathol Toxicol Oncol, 2001, 20(3): 165-175
    Ju GZ, Su X, Song CH, et al. Immunological adaptive response induced by low dose X-rays. J N Bethune Univ Med Sci, 1999, 25(5): 559-563
    赵勇, 龚守良, 刘树铮. 低剂量电离辐射诱导免疫适应性反应的时间效应. 白求恩医科大学学报, 1995, 21(5): 441-443
    龚守良, 刘淑春, 张迎春, 刘建香, 刘树铮. 低剂量辐射诱导小鼠胸腺细胞凋亡及细胞周期进程的适应性反应, 1998, 16(3): 21-24
    Gong SL, Liu SC, Liu JS, et al. Adaptive response of thymocyte apoptosis and cell cycle progression induced by low dose X-ray irradiation in mice. Biomed Environ Sci, 2000, 13(3): 180-188
    Wolff S. Aspect of the adaptive response to very low doses of irradiation and their agents. Mutat Res, 1996, 358(2): 135-142
    Bravard A, Luccioni C, Moustacchi E, et al. Contribution of antioxidant exzymes to the adaptive response to ionizing radiation of human lymphoblast. Int J Radiat Biol, 1999, 75(3): 639-645
    Kang CM, Park KP, Cho CK, et al. Hspa 4 (HSP 70) is involved in the radioadaptive response: results from mouse splenocytes. Radiat Res, 2002, 157(6): 650-655
    Carette J, Lehnert S, Chow TY. Implication of PBP 74/mortalin/GRP 75 in the radioa- ptive response. Int J Radiat Biol, 2002, 78(3): 183-190
    Cai L, Cherian MG. Adaptive response to ionizing radiation induced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts. Mutat Res, 1996, 396(3-4): 233-241
    Tiku AB, Kale RK. Radiomodification of glyoxalase Ⅰin the liver and spleen of mice: adaptive response and split-dose effect. Mol Cell Biolchem, 2001, 216(1-2): 29-83
    刘树铮. 低水平环境因子与适应性反应. 中华放射医学与防护杂志, 1998, 18(5): 310-315
    Masao SS, Yosuka E, Akira T, et al. DNA damage response pathway in radioadaptive response. Mutat Res, 2002, 504(2): 101-118
    Claudia S, Gerog BG. Adaptive response to DNA damaging agents. Biochem Pharmo-colgy, 1998, 55(3): 941-951
    Michoel CJ, Philippe L, Brian M. Adaptive response and induced resistance. Academic Des Sci, 1999, 322 (1): 167-175
    Hallaham DE, Sukhatme VD, Sherman ML, et al. Protein kinase c mediate X-ray inducibility of nuclear signal transducers EGR1 and Jun. Proc Nat1 Acad Sci USA, 1991, 88(6): 2156-2160
    Liu SZ. Biological defense and adaption induced by low dose radiation. Human Eco
    
    
    Risk Assess, 1998, 4(5): 1217-1254
    Horie K, Kubo K, Yonezawa M. p53 dependency of radio-adaptive response in endogenous spleen colonied and peripheral blood cell counts in C57BL mice. Radiat Res, 2002, 43(4): 353-360
    Friederike ES, Christian K. Radiation inducible DNA repair processes in eukaryocytes. Soc Biochem Biomol, 1999, 81(2): 161-171
    Moustaclh E. DNA damage and repair: consequences on dose response. Mutat Res, 2000, 464(1): 35-40
    Konei S, Zhang QM. Biological effects of low dose radiation and adaptive responses in mammalian cells. Nippon Hashasen Gijutas Gakkai Zasshi, 2002, 58(10): 1328-1334
    Keskov KS, Criswell T, Antonio S, et al. When X-ray inducible protein meet DNA double strand break repair. Radiat Oncol, 2001, 11(4): 352-372
    Feinenoegen LE. The role of adaptive responses following exposure to ionizing radiation. Hum Exp Toxicol, 1999, 18(77): 426-432
    Pollycove M, Feinendegen LE. Molecular biology, epidemiology and the demise of the linear no-threshole (LNT) hyphothesis. Acad Sci Ⅲ, 1999, 322 (2-3): 197-204
    Sagan LA. A brief history and critique of the low dose effects of low level exposures: dose-response relationships. Boca Raton: Lewis Publishers, 1994. 15-16
    Gillian MR. Genetic determinants of radiosensitivity: potential for therapeutic modulation. Mutat Res, 1999, 17(6): 116-117
    陈如云. 辐射的低剂量生物效应及分子流行病学研究现状. 辐射防护通讯, 2003, 23 (1): 13-19
    Stephens LC, Ang KK, Schulthesis TE, et al. Apoptosis in irradiated murine tumors. Radiat Res, 1991, 127(3): 244-246
    吴鲣, 蒋耀青. Percoll密度梯度离心分离不同发育阶段生精细胞的方法. 遗传, 1987, 9(6): 33-35
    黄均蓉, 李征明. 不连续密度梯度离心法分离睾丸细胞. 生殖与避孕, 1980, 13(1): 53-59
    Heriksen K, Vauxo L, Nakagawa S, et al. Stage specific apoptosis on the rat seminiferous epithelium quantification of irradiation effects. J Androl, 1996, 17(1): 394-397
    Mori C. Morphological analysis of germ cells during postnatal testis development in normal and HSP 70-2 konckout mice. Dev Dyn, 1997, 208(3): 125-126
    Binkwolt MH. Indentification on male germ cells undergoing apoptosis in adult rats. J Reprod Fertility, 1995, 105(7): 25-27
    Billig AD. Apoptosis in the testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Encocrinology, 1995, 36(2): 5-7
    
    Michiharu M, Isoji S, Yasuhiro S, et al. Apoptosis and espression of apoptosis -related genes in the mouse testis following heat exposure. Fertil Steril, 2002, 77(4): 787-793
    Jeffrey JL, Stephen DT, Tervy TT. Molecular patway of germ cell apoptosis following ischemia/reperfusion of the rat testis. Biol of Reprod, 2000, 63(15): 1465-1472
    刘光伟, 刘淑春, 吕哲, 龚守良. 低剂量电离辐射对小鼠睾丸生精细胞凋亡的影响. 辐射研究与辐射工艺学报, 2003, 21(2): 148-153
    Kevin MR, Andrew CP, Karen HV. Regulation and function of p53 tumor suppression protein. Curr Opin Biol Cell, 2001, 13(2): 332-337
    Hamer G, Gademan Ism Kal AB, et al. Role for c-AB1 and p73 in the radiation response of male germ cells. Oncogene, 201, 20(32): 4298-4304
    Sucphan H, Polzar B, Rauch F, et al. Distribution of deoxyribonucleaseⅠ(DNaseⅠ) and p53 in rat testis and their correlation with apoptosis. Histochem Cell Biol, 1996, 106(7): 383-393
    杜联芳, 张青萍, 刘望彭. 诊断超生辐射后大鼠睾丸生精细胞p53 mRNA和Bcl-2 mRNA表达改变. 中华超声影像学杂志, 2001, 10(3): 182-187
    Sacher SA, Yin Y, Dcwolf WC, et al. Temperature mediated germ cell loss in the testis is associated with altered expression of the cell cycle regulator p53. J Urol, 1997, 157(13): 1986-1989
    Yu X, Kubota H, Wang R, et al. Involvement of Bcl-2 family genes and Fas signaling system in primary and secondary male germ cell apoptosis induced by 2-bromoprapane in rat. Toxical Appl Pharmacol, 2001, 184(1): 35-48
    郑航, 胡礼泉, 郑陪民, 等. Bcl-2/Bax基因表达对隐睾生殖细胞凋亡的影响. 中华男科学杂志, 2000, 14(2):81-85
    沈凯, 杨宇如, 李虹, 等. 输精管解扎对大鼠生殖细胞凋亡Bcl-2和Bax蛋白表达影响的研究. 生殖与避孕, 1999, 19(1): 11-17
    王文恭, 童坦君. 小鼠成纤维细胞凋亡过程中p53和Bcl-2表达的时序性. 中国生物化学与分子生物学报, 1998, 14(3): 318-321
    Koji T. Male germ cell death in mouse testis: possible involvement of Fas and Fas-ligand. Med Electron Microsc, 2001, 34(4): 213-222
    Sasagawa I, Yazawa H, Suzuki Y, et al. Stress and testicular germ cell apoptosis. Arch Andol, 2001, 47(3): 211-216
    Griswold MD. Interactions between germ cells and sertoli cells in the testis. Recent Progress in Hormone Research, 2002, 57(2): 75-101
    Lvogemuth DJ, Laurion E, Karen ML. Regulation of mitotic and meiotic cell cycles in the male germ cells. Biol of Reprod, 2003, 68(15): 2249-2254
    杜联芳, 张青萍, 刘望彭. 诊断超声对不同年龄大鼠睾丸组织Fas/FasL蛋白表达的研究. 中国超声医学杂志, 2000, 16(4): 252-254
    
    Pentikainen V, Erkkila K, Dunkel L. Fas regulates germ cell apoptosis in the human testis in vitro. Fertil and steril, 1999, 77(3): 651-658
    Embree KM, Venturini D, Boekelheide K. Fas is involved in the p53 dependent apoptotic response to ionizing radiation in mouse testis. Biol Reprod, 2002, 166(15): 1456-1461
    Sasaki MS. On the reaction kinetics of the radioadaptive response in cultured mouse cells. Int J Radiat Biol, 1995, 68(2): 281-291
    Yang L, Sasaki MS. Trans-regulated silencing and reaction of Trp53 tumor suppressor gene in malignant transformation and its reversiong. J Cancer Res, 2000, 91(13): 1111-1118
    Pfeiffer P, Goedecke W, Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberration. Mutagenesis, 2000, 15(3): 289-302
    Sasaki MS, Ejima Y, Tachibana A, et al. DNA damage response pathway in radiaoadaptive response, 2002, 2504(2): 101-118
    刘光伟, 李鹏武, 刘淑春, 龚守良. 低剂量电离辐射诱导小鼠睾丸生精细胞凋亡的适应性反应. 中华放射医学与防护杂志, 2002, 22(5): 322-325
    刘光伟, 董丽华, 刘扬, 刘淑春, 龚守良. 低剂量X射线照射选择性诱导小鼠睾丸生精细胞凋亡的适应性反应. 中华放射医学与防护杂志, 2003, 23 (6):14-16
    Jiang Y, Escano MF, Kusuhara S, et al. p53-mediated apoptosis in human RPE cells after low dose irradiation. Invert Dphthalomol Vis Sci, 2003, 144(23): 4546-4550
    Shimura T, Toyoshima M, Taga M, et al. The novel surveillance mechanism of the Trp 53-dependent S-phase checkpoint ensures chromosome damage repair and preimplantation stage development of mouse embryos fertilized with X-irradiated sperm. Radiat Res, 2002, 158(6): 735-742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700