水肥耦合对日光温室生菜生育及土壤环境的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水肥施用不合理已成为制约设施农业生产可持续发展和生态环境改善的瓶颈,制约蔬菜产量和品质提高的重要因子。因此,有关蔬菜作物的需水规律和土壤肥力对蔬菜的影响一直是设施农业蔬菜栽培研究的热点之一。国内外有关蔬菜水肥指标的研究较多,但大多集中在果菜类蔬菜上,如黄瓜、番茄等,而对叶菜类蔬菜的研究较少。生菜(Lactuca Sativa L.)是叶菜类蔬菜的典型代表,目前关于生菜与水肥耦合之间的研究报导较少。本文结合吉林省科技计划重点资助项目“寒地现代设施农业关键技术与示范(20080246)”,于2008年在吉林大学生物与农业工程学院日光温室内进行,以生菜为研究对象,氮肥、磷肥、钾肥和灌水量为试验因子,采用四因素五水平通用旋转(1/2实施)组合设计,分析了水肥对生菜生长发育、产量、品质、经济效应及土壤环境的影响,并采用主成分分析法和灰色关联度分析方法对其进行多目标综合评价。通过试验,得到如下研究结果与结论:
     (1)通过分析不同水肥处理对生菜产量的影响,建立了生菜产量与水肥因子间的数学回归模型。结果表明,磷肥对产量的贡献率最大(2.612),其次是灌水量(2.186)、氮肥(2.102)和钾肥(1.762)。通过频率分析得到,生菜产量大于50000kg·hm~(-2)的水肥优化方案:氮肥、磷肥、钾肥的施用量分别是473.6~583.0kg·hm~(-2)、529.7~626.3kg·hm~(-2)、150.6~212.8kg·hm~(-2),灌水量为537.2~655.6m3·hm~(-2)。
     (2)根据不同水肥处理对生菜营养品质的影响进行了全面系统的分析,并构建了生菜品质(维生素C含量和可溶性糖含量)与水肥间的数学模型。结果表明:①水肥与生菜维生素C含量呈显著关系,磷肥对维生素C的贡献率(2.258)最大,其次是灌水量(1.766)、氮肥(1.424)和钾肥(1.399)。通过频率分析得出,维生素C含量大于35.000mg·(100g)-1的水肥优化方案为施氮量518.3~648.8kg·hm~(-2),施磷量536.1~655.7 kg·hm~(-2),施钾量100.5~176.8kg·hm~(-2),灌水量427.3~585.6m3·hm~(-2)。②生菜可溶性糖含量与水肥四因子间呈正相关,其影响顺序为磷肥>氮肥>灌水量>钾肥。通过频率分析得出,生菜可溶性糖含量大于80.000%的水肥优化措施为施氮量为510.7~617.9kg·hm~(-2),施磷量为530.4~629.4kg·hm~(-2),施钾量为92.4~154.5kg·hm~(-2),灌水量为416.2~545.9m3·hm~(-2)。
     (3)通过对不同水肥处理生菜进行经济效益分析可知,处理8的生菜产量(47891kg·hm~(-2) )和利润(77937元·hm~(-2))最高,投入成本(17845元·hm~(-2))也是最高,但其收益率(437%)不是最高的,说明高投入可以带来高产出和高利润,但不一定会得到高收益率。
     (4)通过对日光温室生菜生理特征分析表明:随着生菜生育期的推进,其叶片净光合速率(Pn )、蒸腾速率(Tr )、气孔导度(Gs)、胞间CO2浓度(Ci),先增加后降低,而叶片水分利用率是先降低后增加。对叶片叶绿素荧光动力学参数的变化分析可知,生菜生育期内,从不同处理来看,低水平水肥处理的Fo、Fv大于高水平水肥处理,而低水平水肥处理的Fv Fm、Fv Fo却低于高水平水肥处理。就不同生长时期来看,Fo、Fv在生长的初期、中期和后期无明显变化,而Fv Fm、Fv Fo的生长中期高于生长的初期和后期。
     (5)不同水肥处理改变了土壤环境。各个处理土壤pH值有所下降,平均值为6.3,其中处理10的土壤pH值(6.0)最低。不同水肥处理土壤团聚体结构发生变化,处理8的土壤团聚体总量最高(50.9%),其次是处理10(49.8%)和处理16(49.1%)。而处理1的土壤团聚体总量最低(37.8%)。各处理土壤含水量变化不同,处理8、处理10和处理16生长期内土壤含水量皆较高,而处理1的土壤含水量最低,且所有处理生长后期土壤水分含量高于生长初期和中期。土壤有机质、碱解氮、速效磷和速效钾有相同的变化规律,同一水肥处理,高水平处理土壤碱解氮、速效磷和速效钾含量高于低水平处理。土壤团聚体结构与土壤有机质、速效N、速效P呈极显著正相关,与土壤速效K呈显著正相关;有机质与土壤速效K呈显著正相关;土壤速效N与速效P呈显著正相关。
     (6)运用主成分分析法和灰色关联度分析方法对日光温室生菜生产的不同水肥管理模式进行了综合评价,筛选出生菜高产、优质、高效和可持续生产的水肥管理模式。以生菜叶面积、产量、生理特征、品质、经济效益及土壤环境等14项指标为基础进行分析。结果表明,施氮肥为600kg·hm~(-2)、施磷肥为600kg·hm~(-2)、施钾肥为237.5kg·hm~(-2)、灌水量为680m3·hm~(-2)的处理8在主成分分析法中综合得分4.497,灰色关联度分析法中,其关联度为0.916,综合评价最高,能实现生菜高效、优质及可持续生产;而施氮肥为150kg·hm~(-2)、施磷肥为150kg·hm~(-2)、施钾肥为62.5kg·hm~(-2)、灌水量为320m3·hm~(-2)的处理1在主成分分析法中综合得分-2.604,灰色关联度分析方法中其关联度为0.611,综合评价最低,在生菜实际生产中应该被淘汰。
     文中利用试验优化设计建立了叶菜类蔬菜水肥耦合模型,对日光温室叶类蔬菜生产提供了科学依据。由于受试验时间和试验条件的限制,此模型具有特殊性,难以在不同肥力基础的保护地上推广应用,因此,应该对水肥-作物-土壤-环境系统进行更深入、更全面的研究,进而构建日光温室叶类蔬菜生产的通用型模型,建立健康的温室小环境生态系统。
The failure treatments of water and fertilizer have limited sustainable development of agriculture and improvement of ecological environment. How to resolve this problem was also a key point to improve yield and quality of vegetable. So researches on water-requirement-rule of vegetables and effects of soil-fertility on vegetables have been one of the hotspots on vegetable cultivation of agricultural facility. There were many researches on fertilizer and water of vegetables for fruit vegetables, such as cucumber, tomato and so on, while few of them were on leafy vegetables. Lactuca Sativa L. is the typical representative of leafy vegetables. There were few reports about the relationship between lettuce and water-fertilizer coupling presently. The works in this paper were supported by the key project of science and technology in Jilin Province“The key technologies and demonstration of modern facility agriculture in cold region (20080246)”. In this experiment, Lactuca was as sample in the greenhouse to be measured by four factors (nitrogen fertilizer(N), phosphate fertilizer(P), potash fertilizer(K) and irrigation amount(W)) and five levels of general rotation (1/2 implementation) combination design in 2008 at biological and agricultural engineering school of Jilin University. Effects on growth, yield, quality, economic effect of lettuce and soil environment that which were studies, and multiple objective comprehensive evaluation that which were used with principal component analysis method and grey relational analysis method. Through the experiment obtained the following results:
     (1)The effects of different water and fertilizer on yield of lettuce were studies, mathematical regression models were established between yield and water and fertilizer factors. The results show that, contribution of P on yield is maximum (2.612), secondly W(2.186), N(2.102), and K(1.762). When N, P, K and W are 473.6~583.0kg·hm~(-2), 529.7~626.3kg·hm~(-2), 150.6~212.8kg·hm~(-2), 537.2~655.6m3·hm~(-2), yield of Lettuce is higher than 50000kg·hm~(-2).
     (2)The effects of different water and fertilizer on quality of lettuce were studies, mathematical regression models were established between quality(vitamin C content and soluble sugar content of lettuce) and water and fertilizer factors. The results show that,①water and fertilizer combined with vitamin C content of lettuce was a significant relationship. In which, contribution of P on vitamin C(2.258) is maximum, secondly W(1.766), N(1.424) and K(1.399); When N, P, K and W were 518.3~648.8kg·hm~(-2), 536.1~655.7kg·hm~(-2), 100.5~176.8kg·hm~(-2), 427.3~585.6m3·hm~(-2) respectively, vitamin C content of lettuce was higher than 35.000mg·(100g)-1;②Soluble sugar content of lettuce was positively correlated with the four factor, and the effect of order was P>N>K>W. When N, P, K and W were 510.7~617.9kg·hm~(-2), 530.4~629.4kg·hm~(-2), 92.4~154.5kg·hm~(-2), 416.2~545.9m3·hm~(-2) respectively, soluble sugar content of lettuce was higher than 80.000%.
     (3)Through analysis on economic benefit of different water and fertilizer treatment of lettuce were done, more investment could bring more output and more profit, but could not necessarily with more benefit, and would destroy the ecological environment security.
     (4)Based on the physiological characteristics of lettuce, some analysis were made. During the growth progress of lettuce, the leaf net photosynthesis rate ( Pn ), transpiration rate (Tr ), stomatal conductance (Gs ) and intercellular CO2 concentration (Ci ) are increased firstly and then decreased, but the leaf water use efficiency is decreased firstly and then increased. Analysis on chlorophyll fluorescence kinetics parameters showed that Fo and Fv were higher in low level of water and fertilizer treatment, but Fv Fm and Fv Fo are lower in low level of water and fertilizer treatment in different growth period. In early, middle and late growth period, Fo and Fv have not significant changes, and Fv /Fm, Fv /Fo are higher in the middle than early and late.
     (5)Soil environment was changed by different water and fertilizer treatment. Soil pH was decreased in each unit. The average value was 6.3. In which, soil pH value (6.0) of unit 10 was minimum. Soil aggregate structure was also changed in different units. Soil aggregate gross was maximum in unit 8(50.9%), secondly unit 10(49.8%), unit 16(49.1%), but soil aggregate gross was minimum in unit 1(37.8%). The variation of soil moisture was different that soil moisture of unit 8, unit 10 and unit 16 was higher in growth period, but soil moisture of treatment1 was the lowest. And soil moisture content of all of the treatment at later growth stage was higher than the growth of early and mid. Soil organic matter, available nitrogen, available phosphorus and available potassium had the same variation. For same kind of water and fertilizer treatment, contents of soil available nitrogen (available N), available phosphorus (available P) and available potassium (available K) at high level treatment were higher. Structure of soil aggregate were extremely significant positive correlated with soil organic matter, available N, available P at level 0.01, and with available K at level 0.05; significant positive correlation at level 0.05 between organic matter and soil available K were found; soil available N was significantly positive correlated to available P at level 0.05.
     (6)Principal component analysis and grey correlative degree analysis were used to evaluate physiological characteristics of lettuce, yield, quality and economic benefit and soil environment of different water and fertilizer treatment. The more benefit and sustainable development of lettuce production was achieved under the unit of 600 kg·hm~(-2) N+ 600 kg·hm~(-2) P+ 237.5kg·hm~(-2) K+ 680 m3·hm~(-2) W.
     The water and fertilizer coupling model in this paper was special and difficult to apply in protection ground of different soil-fertility. So we should construct a universal model of solar-greenhouse. These should be developed in the future.
引文
[1]方瑞华.我国设施农业的现状和发展方向[J].江苏理工大学学报,1998,19(4):53 -58.
    [2]徐希春,初江,高晓慧.设施农业的发展分析[J].农机化研究,2008,8:237-240.
    [3]余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究.土壤学报,2006,43,(4):471-476.
    [4] http://www.cnyouzhi.com/html/Articles/20100607/48360.htm.
    [5]郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36(1):25-29.
    [6] Wang Yu,Zhang Yiping. Quantitative effect of soil texture composition on retardati- on factor of K+ transport. Pedosphere, 2001,11(4):377-381.
    [7]张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境,2000,9 (2):154-157.
    [8]李银坤,武雪萍,武其甫,等.不同水氮处理对温室黄瓜产量、品质及水分利用效率的影响[J].中国土壤与肥料,2010(3):21-24.
    [9]王朝辉,宗志强,李生秀,等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,5(23):79-83.
    [10]陈晓群,姚军,朱文清,等.设施蔬菜地土壤硝态氮的变化及其对环境的影响[J].宁夏农林科技,2004(5):4-5.
    [11] Montgomery E. G. Correlation studies of corn. Nebraska Agr. 24th Annual Report Agricultural experiment Station[R],1911.
    [12] Amon. Physiological principle of dryargland crop production [J]. In: Gupta, U.S. (ed) 22physiological aspects of dryland farming,1975:3-124.
    [13]文宏达,刘玉柱,李晓丽,等.水肥耦合与旱地农业持续发展[J].土壤与环境,2002, 11(3):315-318.
    [14]汪德水.旱地农田水肥协同效应与耦合模式[M].北京:气象出版社,1999,44-85.
    [15] Brown PL. Water use and soil water depletion by dry land winter wheat as affected by nitrogenfertilization [J].Agronomy Journal, 1971,63:43-46.
    [16] Bhan S, Misra DK. Effects of variety spacing and soil fertility on root development in groundnut under arid conditions. Indian Journal of Agricultural Science,1970,5: 1050-1055.
    [17] Begg J E, Turner NC. Crop and water deficits [J]. Adv Agron. 1976,28:161-218.
    [18]金轲,汪德水,蔡典雄,等.水肥耦合效应研究Ⅰ.不同降雨量年型对N、P、水配合效应的影响[J].植物营养与肥料学报,1999,5(1):1-7.
    [19] Arthur Wallance, Garn A Wallance. Interactions encountered when supplying nitro- gen and phosphorus fertilizer and a water-soluble polyacrylamide to soil[J].Journal of Plant Nutrition.1990,13(3&4):343-347.
    [20] Viets F G. Water deficits and nutrient availability [A].Kozlow ski T T. water deficit- sand p lant grow th [C].USA:Acad Press,1972,217-247.
    [21] Begg J.E., Turner N. C. Crop water deficits[M].Adv. Agrion, 1976,28:161-218.
    [22] Shimshi D.The effects of nitrogen supply on the transpiration and stomatal behviour of beans[J].Agronomy Joumal,1970,69:405-412.
    [23]刘晓楠,张和平.黑龙港地区冬小麦生产中水肥关系的研究[J].土壤肥料,1991,(4): 1-4.
    [24] Myers RJK.Nitrogen and phosphorus nutrition of dryland grain sorghum at Katherin- e,Northem Territory.3.Effect pf nitrogen carrier time and method of application[J]. Australian Joumal of Experimental Agriculture,1978,18:834-843.
    [25] Shaima BD,Kar S,Cheema SS.Yield,water use and nitrogen uptake fou different wat- er and N levels in winter wheat[J].Fertilizer Research,1990,22:119-127.
    [26] Singh NT,Vig AC,Singh R,et al.Influence of different levels lf irrigation and nitrogen on yield and nutrient uptahe by wheat[J].Agronomy Joumal,1979,71:401-404.
    [27]徐岩,于海业.设施农业水肥耦合技术的研究进展[J].安徽农业科学,2011,39(5): 2718-2721.
    [28]李生秀,李世清,高亚军,等.施用氮肥对提高作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):47-53.
    [29] Shengxiu Li, Boshan Zhao, Changwei Li. Rational application of phosphate fertilizer to wheat,PartⅠ[J].Acta Collegii Septenreioni Occidentali Agiculturae,1978,6(1):77- 85.
    [30] Shengxiu Li, Boshan Zhao, Changwei Li. Rational application of phosphate fertilizer to wheat,PartⅡ[J].Acta Collegii Septenreioni Occidentali Agiculturae,1979,7(1):55- 59.
    [31] Haynes RJ,Goh KM.Ammonium and nitrate of plants[J].Biological Review,1978,53: 465-510.
    [32] Huang MB, dang TH,Gallichand J,et al.Effect of increased fertilizer applicationa to wheat crop on soilwater depletion in the Loess Plateau,China.Agricultureal[J].Water Management.2003,58:267-278.
    [33] ZZ Li,WD Li,WL Li. Dry-period irrigation and fertilizer application affect water use and yield of spring wheat in semi-srid regions[J].Agricultureal Watermanagement,2004,65:133-143.
    [34]吴海卿,杨传福,孟兆江,等.以肥调水提高水分利用效率的生物学机制研究[J].灌溉排水,1998,17(4):6-10.
    [35] Belford R.K.,B.Klepper, and R.W.Rickman.Studies of intact shoot-root systems of field grown winter wheat, root and shoot development patterns as related to nitrogen fertilizer[J].Agron.J. 1987,79:310-319.
    [36]贾树龙,孟春香,唐玉霞.水分胁迫条件下小麦的产量反应及对养分的吸收特征[J].土壤学报,1995,26(1):6-8.
    [37] Browm PL.Water use and soilwater depletion by dryland winter wheat as affected by nitrogen fertillization[J].Agronomy Joumal,1971,63:43-46.
    [38]刘晓宏,肖洪浪,赵良菊.不同水肥条件下春小麦耗水量和水分利用率[J].干旱地区农业研究,2006,24(1):56-59.
    [39] Barth C A, Lurnling B, SchmitzM, et al.Soybean trypsin inhibitorsreduce absorption of exogenous and increase loss of endogenous pro-tein in Iniature Pigs [J·]Nutrition, 1993(123):2195-2220.
    [40]于敏,励建荣.去除大豆抗营养因子的研究[J].营养学报,2001,2(34):383-385.
    [41] Wenqing Li, Min Zhang,van der Zee S.Salt contents in soils under plastic greenhouse gardening in China [J]. Pedosphere,2001,11(4):359-367.
    [42] Lathwal O P, Rathore D N. Effect of nitrogen and irrigation levels on NUE in wheat [J]. Haryana Agric. Univ. J. of Res. 1992,22(2): 113-124.
    [43] Ed-Huan Chang, Ren-Shih Chung, et al. Effect of different application rates of organic fertilizeron soil enzyme activity and microbial pollution [J]. Soil Science and Plant Nutrition, 2007,53: 132-140.
    [44] Baselga Yrisarry J J, Prieto Losada M H. Response of processing tomato to three different levels of water andnitrogen application[J]. Acta Hort,1993,335(ISHS): 149-156.
    [45] Banedjschafie S, Bastani S, Widmoser P, et al. Improvementof water use and N fertilizer efficiency by subsoil irrigationof winter wheat[J]. European Journal of Agronomy,2008,28(1):1-7.
    [46]周博,周建斌.不同水肥调控措施对日光温室土壤水分和番茄水分利用效率的影响[J].西北农林科技大学学报(自然科学版),2009,37(1):211-216.
    [47]赵义涛,梁运江,许广波.水肥耦合对保护地辣椒水分利用效率的影响[J].吉林农业大学学报,2007,29(5):523-527,546.
    [48]唐新莲,杨博,李婷,等.不同水氮处理对菜心产量和品质的影响[J].广西农业科学, 2006,37(3):288-290.
    [49]贾彩建,周海燕,刘新渠,等.滴灌施肥对温室番茄产量及品质的影响[J].山东农业科学,2008, 8:70-72.
    [50]陈碧华,郜庆炉,杨和连,等.日光温室膜下滴灌水肥耦合技术对番茄生长发育的影响[J].广东农业科学,2008,8:63-65,78.
    [51]王绍辉,张福墁.不同土壤含水量对日光温室黄瓜生理特性的影响[J].中国蔬菜, 2000(增刊):26-29.
    [52]梁运江,依艳丽,许广波,等.水肥耦合效应对辣椒植株生长发育的影响[J].中国农村水利水电, 2009,4:42-45.
    [53]冯嘉玥,邹志荣,陈修斌.土壤水分对温室春黄瓜苗期生长与生理特性的影响[J].西北植物学报, 2005,25(6):1242-1245.
    [54]杨彬,陈修斌,鄂利锋,等.温室辣椒水肥耦合效应研究[J].土壤,2009,41(2):278-281.
    [55]陈修斌,潘林,王勤礼,等.温室番茄水肥耦合数学模型及其优化方案研究[J].南京农业大学学报,2006,29(3):138-141.
    [56]陈修斌,邹志荣,姚静,陈双臣,冯嘉玥.日光温室西葫芦水肥耦合效应量化指标研究[J].西北农林科技大学学报(自然科学版), 2004,32(3):49-52,58.
    [57]姚静,邹志荣,杨猛,等,日光温室水肥耦合对甜瓜产量影响研究初探[J].西北植物学报, 2004,24(5):890-894.
    [58]李邵,薛绪掌,郭文善,等.水肥耦合对温室盆栽黄瓜产量与水分利用效率的影响[J].植物营养与肥料学报,2010,16(2):376-381.
    [59]贺超兴,张志斌,刘富中,等.日光温室水钾氮耦合效应对番茄产量的影响[J].中国蔬菜, 2001(1):31-33.
    [60]梁银丽,熊亚梅,吴燕,等.日光温室豇豆产量和品质对水分和氮素水平的响应[J].水土保持学报,2008,22(5):142-145.
    [61]王荣莲,于健,谭玉梅,等.温室滴灌施肥水肥耦合对无土栽培樱桃番茄产量的影响.灌溉排水学报2009,28(4):87-89.
    [62] Borosia J. Romic D,et al.International symposium on timing of field production in vegetable cyops [J].Baril,Italy, Acta-Hoticulture,2000,8(53):451-459.
    [63] Daniel I, Leskovar A, Meriri. Irrigation timing affects fruit number and yield of water-melon [J].Texal A&M Agricultural Research& Extension center at Uvalde, 1995:1-2.
    [64]彭强,梁银丽,陈晨,等.土壤含水量对结果期温室辣椒生长及果实品质的影响[J].西北农林科技大学学报(自然科学版),2010,38(1):154-160.
    [65]杨红,姜虹,赖卫,等.水肥耦合对辣椒产量和品质协同提高的研究[J].长江蔬菜, 2009,6:53-56.
    [66]陈碧华,郜庆炉,杨和连,等.日光温室内膜下滴灌水肥耦合技术对番茄品质的影响[J].江苏农业学报, 2008,24(4):476-479.
    [67]虞娜,张玉龙,张玉玲,等.灌溉和施肥对温室番茄产量和品质影响效应的研究[J].中国土壤与肥料,2009(4):32-35.
    [68] Sveda R.et al.Evaluation of various nitrogen sources and rates on nitrogen moveme- nt.Pensacola bahiagrass production and water quality[J]. Cornmun Soil Sci Plant Arial,1992,23(17-20):2451-2478.
    [69] Chaney K. Effect of nitrogen fertilizer rate on soil nitrate content after harvesting winter wheat[J].J Agrie Sci.1990,114:171-176.
    [70] Selenka F.Nitrate in drinking water. The basis for a regulatory Limit[A].In:FPW Winteringham (Editor). Emvironment and Chemicals in Agriculture[C].Elsevier Sci.Publ.Amsterdam,1985,87-104.
    [71]汤丽玲,陈清,张宏彦,等.不同水氮处理对菠菜硝酸盐累积和土体硝态氮淋洗的影响[J].农业环境保护,2001,20(5):326-328.
    [72]陈碧华,郜庆炉,段爱旺,等.水肥耦合对番茄产量和硝酸盐含量的影响[J].河南农业科学,2007,5:87-90.
    [73]谢建昌,陈际型.菜园土壤肥力与蔬菜合理施肥[M].南京:河海大学出版社出版, 1997:289-293.
    [74]任祖金,邱孝煊,蔡元程,等.化学氮肥对蔬菜硝酸盐污染影响的研究[J].中国环境科学, 1997,17 (4):326-329.
    [75]高强,刘淑霞,王宇,等.施肥对农业生态环境的影响[J].吉林农业大学学报,2000,22 (专辑):106-112.
    [76]张昌爱,毕军,夏光利,等.大棚土壤的理化状况和微生物状况[J].安徽农业科学, 2002,30(2):275-276.
    [77]吴风芝,刘德,王东凯,等.大棚蔬菜连作年限对土壤主要理化性状的影响[J].中国蔬菜,1 998,(4):5-8.
    [78]梁运江,依艳丽,许广波,等.水肥耦合效应对保护地土壤硝态氮运移的影响[J].农村生态环境2004,20(3):32-36.
    [79]梁运江,依艳丽,许光波,等.水肥处理对辣椒保护地土壤速效氮、磷的影响[J].土壤通报,2009,40(5):1111-1114.
    [80]依艳丽,梁运江,张大庚.不同水肥处理对辣椒保护地土壤温度和CO2含量的影响[J].土壤通报, 2006,37(5):875-880.
    [81]米国全,袁丽萍,龚元石,等.不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究[J].农业工程学报,2005,21(7):124-127.
    [82]张国红,任华中,高丽红,等.京郊日光温室土壤微生物状况和酶活性[J].中国农业科学,2005,38(7):1447-1452.
    [83]杜社妮,梁银丽,徐福利,等.日光温室不同水分条件下盆栽黄瓜产量和土壤微生物数量[J].干旱地区农业究,2005,23(5):49-53.
    [84]袁志发,周静芋.试验设计与分析[M].高等教育出版社,2000.8.
    [85] Rosenfeld H J.1999.Qualitv improvement of vegetables by cultural practices-A literature review.Acta Hort,283:57-67.
    [86]梁称福,李玲,肖和艾,等.氮肥追施量对黄瓜产量和品质的影响[J].长江蔬菜,1998, (5):34-35.
    [87]王景军,黄金丽.施肥处理对黄瓜营养品质的影响[J].临沂师范学院学报,2003,25 (3):66-69.
    [88]裴芸,别之龙.塑料大棚中不同灌水量上限对生菜生长、品质及生理特性的影响[J].农业工程学报,2007,23(9):176-180.
    [89]裴芸,别之龙.塑料大棚中不同灌水量下限对生菜生长和生理特性的影响[J].农业工程学报,2008,24(9):207-211.
    [90]郎文培,艾绍英,王朝辉,等.钾肥种类及用量对生菜生长和品质效应的影响研究[J].农业环境科学学报,2008,27(5):1946-1950.
    [91]孙旭霞,薛玉花,伍晓华.氮肥水平对生菜产量及品质的影响研究[J].北方园艺, 2009(8):100-101.
    [92]王克武,程明,肖长坤,等.滴灌施肥强度对温室生菜生长、产量和品质的影响[J].北方园艺,2010(11):55-58.
    [93]董燕,王正银,丁华平,等.平衡施肥对生菜产量和品质的影响[J].西南农业大学学报(自然科学版),2004,26(6)740-744.
    [94]曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社.2007,76-113.
    [95]徐岩,于海业,张蕾.水肥耦合对生菜产量的影响研究[J].北方园艺,2011,04:1-5.
    [96]孟兆江,刘安能,吴海卿.商丘试验区夏玉米节水高产水肥耦合数学模型与优化方案[J].灌溉排水,1997,16(4):18-21.
    [97]韩炳芳,田军仓,杨金忠.膜侧灌甜菜水肥耦合产量效应研究[J].中国农村水利水电,2008,3:39-43.
    [98]王兴仁主编.现代肥料试验设计[M].北京:农业出版社,1996,164-190.
    [99]金轲,汪德水,蔡典雄,等.旱地农田肥水耦合效应及其模式研究[J].中国农业科学,1999,32(5):104-106.
    [100]王兴仁,王秋杰,李小平.二次型多元函数的极值判别及其农业应用[J].开封沙地试验区赤血农业发展综合技术研究报告(1991-1995),1995.
    [101] Bert G. More efficient plants[J]. Annu. Rev. Plant Phyiol. Plant Mol. Biol.,1997,(48): 609-639.
    [102] Sage R F, Reid C D. Photosynthetic response mechanisms to environmental change in C3 plants. In: Wilkinson R E. Plant-Environment Interactions [M]. New York: Marcel Dekker, New York: Marcel Dekker,1994,413-499.
    [103]艾希珍,张振贤,王绍辉,等.强光胁迫下SOD对生姜叶片抑制破坏的防御作用[J].园艺学报,2000,27(3):198-201.
    [104]梁宗锁,李新有.节水灌溉条件下玉米气孔导度与光合速度的关系[J].干旱地区农业研究, 1996,14(2):101-105.
    [105]张依章,张秋英,孙菲菲,等.水肥空间耦合对冬小麦光合特性的影响[J].干旱地区农业研究,2006,24(2):57-60.
    [106]沈玉芳,李世清,邵明安.水肥空间组合对冬小麦光合特性及产量的影响[J].应用生态学报,2007,18(10):2256-2262.
    [107]翟云龙,郑德明,宋敏,等.水肥调控对滴灌棉花光合特性的影响[J].节水灌溉,2009, 10:25-27,33.
    [108]王德权,马忠明,杨蕊菊,等.水肥耦合条件下间作小麦光合特性的响应[J].中国农学通报,2009,25(15):215-218.
    [109]张金秀,毛罕平.土壤水分对温室黄瓜生长于光合特性的影响[J].农机化研究,2011, 2:116-119.
    [110]杨阳,徐福利,陈志杰.施用钾肥对温室黄瓜光合特性及产量的影响[J].植物营养与肥料学报,2010,16(5):1232-1237.
    [111]李银坤,武雪萍,吴会军,等.水氮互作对温室黄瓜光合特征与产量的影响[J].中国生态农业学报,2010,18(6):1170-1175.
    [112]杨国栋,周宝利,李沫,等.日光温室茄子光合特性的研究[J].中国农学通报,2006,22 (4):307-309.
    [113]王磊,任树梅,毕勇刚,等.土壤水分及有机肥料对番茄叶片光合特性及叶绿素含量影响的试验研究[J].灌溉排水学报,2004,23(2):66-68,80.
    [114]许莉,刘世琦,齐连东,等.不同光质对叶用莴苣光合作用及叶绿素荧光的影响[J].中国农学通报,2007,23(1):96-100.
    [115]王波,王梅农,赖涛,等.不同形态氮素营养对生菜光合特性的影响[J].南京农业大学学报,2007,30(4):74-77.
    [116] Fischer R A, Turner N C. Plant productivity in the arid andsemiarid zones[J]. Annual Review of Plant Physiology,1978, 29:277–317.
    [117]李美荣.介绍一种新的气孔开度测定方法[J].植物生理学通讯,1990,5:51-55.
    [118]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [119]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4): 237-243.
    [120]殷永娴,刘鸿雁.设施栽培下土壤中硝化、反硝化作用的研究[J].生态学报,1996,16 (3):246-250.
    [121]李东坡,武志杰,梁成华,等.设施土壤生态环境特点与调控[J].生态学杂志,2004, 23(5):192-197.
    [122]于锡宏,于广健.高寒地区节能日光温室存在问题及其解决途径[J].北方园艺, 2002,(5):14-15.
    [123]冯永军,陈为峰,张黄娜,等.设施园艺土壤的盐化与治理对策[J].农业工程学报, 2001,7(2) :111-114.
    [124]李廷轩,张锡洲,王昌全,等.保护地次生盐渍化研究进展[J].西南农业学报,2001,14 (增刊):103-107.
    [125]中国土壤学会编.土壤农业化学分析方法[M].中国农业科技出版社,1999,150-195.
    [126]高亚军,朱培立,黄东迈,等.稻麦轮作条件下长期不同土壤管理对有机质和全氮的影响[J].土壤与环境,2000,9(1):27-30.
    [127]张爱君,张明普.长期施用有机和无机肥料对黄潮土有机质含量及组成的影响[J].江苏农业研究,2001,23(3):30-33.
    [128]杨玉盛,何宗明,林光耀.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(3):528-535.
    [129]李月芬,汤洁,李艳梅.用主成分分析和灰色关联度分析评价草原土壤质量[J].世界地质,2004,23(2):169-174,200.
    [130]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002: 20-50.
    [131]夏建国,李廷轩,邓良基,等.主成分分析法在耕地质量评价中的应用[J].西南农业学报,2000,13(2):51-55.
    [132]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社.1987.
    [133] Deng J L. Control problems of gray systems[J ] . Systems & Control Letters,1982,1 (5):288-294.
    [134]陈加兵,曾从盛.主成分分析、聚类分析在土地评价中的应用[J].土壤,2001(5):243- 246,256.
    [135]何晓群.现代统计分析方法与应用[M].北京:中国人民大学出版社,1998:281-312.
    [136]张佳华.主成分分析对恢复过去植被和环境作用的再分析—以北京坟庄剖面为例[J].地理科学,1997,17(4):316-322.
    [137]侯彦林.生态平衡施肥的技术及理论体系[J].生态学报,2000,20(4):653- 658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700